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ABSTRACT:

In the past, 1D-axial stationary macroscopic mod-
els have been seen to be able to properly capture
the main features of a conventional Hall-thruster
discharge, in-between the anode-to-cathode region,
with small computational cost. In this work, a 1D-
axial stationary macroscopic model is proposed,
partially based on previous works, keeping effects
that allow to better reproduce the physics in the
vicinity of the cathode and in the far-plume region.
Previous studies highlighted that azimuthal elec-
tron inertia effects are important in the vicinity of
the cathode. Here, we propose a fluid model for
electrons that account for the corresponding terms.
The azimuthal inertia cannot be neglected when
the electrons eventually demagnetize in the plume,
yielding much lower decay of the azimuthal drift than
an inertialess model. This can have a direct im-
pact on the performances obtained from the thruster
model. An accurate and smooth behavior of the
plasma variables in the vicinity of the cathode is
achieved by using a finite thickness cathode, mod-
eled as a source of particles and energy in the elec-
tron macroscopic equations. In contrast with in-
finitely thin models used so far, the finite cathode
model couples the evolution of the plasma variables
in the internal an external regions of the discharge.
This requires to solve in a domain extending from
the anode sheath edge to an arbitrarily far far-field
boundary. Despite its limitations, the 1D axial sta-
tionary model provides solutions that are simple to
interpret with a small computational effort. We use
the model to analyze the role of electron azimuthal
inertia, the far-field plasma behavior, the impact of
the finite cathode, the effect of a change in the far-
field boundary conditions or test different turbulent
transport approaches.

1. INTRODUCTION

Hall-effect thrusters (HET) are electric propulsion
devices well consolidated in the current market.
However, certain physical phenomena are poorly
understood and the lack of predictive models is a

matter of fact, what makes HET discharge modeling
a very active field of research [1,2].

One of the main challenges is the modeling and
characterization of cross-field electron transport due
to turbulence and instabilities. There are numerous
examples in the recent literature dealing with this
matter from different perspectives: macroscopic lo-
cal [3–5] and global [6–9] stability analyses, local
kinetic instabilities [10–12] and particle-in-cell simu-
lations [13–16].

The analysis of axial plasma oscillations in HET dis-
charge has motivated also the recent development
of transient 1D axial fluid and hybrid models [17–19].
However, there are no many recent examples of 1D
axial stationary models that can be, however, very
relevant, e.g., for the analysis of global instabilities.
In a very recent article [6], we conducted this type of
stability analysis and showed the global dispersion
relations resulting for several equilibrium solutions
obtained with a 1D axial stationary model of the HET
plasma in-between the anode and the cathode. The
results prove that the families and characteristics of
the obtained instabilities are very dependant on the
equilibrium solution and, thus, an accurate descrip-
tion of the axial equilibrium plasma response may
be important for a better characterisation of global
instabilities. Apart from that, axial stationary mod-
els offer great flexibility and low computational effort
when it comes to carry out parametric studies and
analyze the impact of modeling decisions on the av-
erage axial behavior of the discharge, e.g., the role
of electron inertia, boundary conditions or turbulent
transport models.

In this work, we present a 1D axial stationary model
for the HET plasma discharge, whose main nov-
elties with respect previous works [20–22] are the
inclusion of inertia in the electron momentum bal-
ance and a finite-thickness cathode. While these
articles were much more focused on the analysis
of the anode-to-cathode region, the new features
of the model here allow a more accurate descrip-
tion of the discharge in the vicinity of and past the
cathode, where the transition to the unmagnetized
plume happens. In contrast with [20–22], the fi-
nite cathode model couples the evolution of plasma
variables in the interior and exterior regions of the
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discharge. Therefore, the solutions to our model
are computed on a domain that covers the complete
region from the anode sheath-edge to an arbitrarily
far downstream boundary.

The formulation of the three-fluid axial stationary
model is included in section 2, including a detailed
description of the infinitely thin and finite cathode
models. Section 3 is devoted to results. A reference
nominal solution with parameters partially based on
SPT-100-type HET is presented and several effects
are discussed: role of electron inertia, effect of the
finite cathode model, different turbulent transport
approaches and effect of far-field boundary condi-
tions. Finally, conclusions and other considerations
are gathered in section 4.

2. MODEL FORMULATION

The axial stationary Hall discharge is modeled in
this work as three fluids: neutral, singly-charged ion
and electron species (sub-indexes n, i, e; respec-
tively). The model is partially based on previous
works by Ahedo et al. [20–22]. There, a quasineu-
tral plasma is considered, with unmagnetized ions,
negligibly small pressure force on ion and neutral
fluids; and negligible electron inertia. The magnetic
field is assumed to have only radial component. The
cathode was modeled in [20–22] as an infinitely thin
layer where the total axial current changes abruptly
from Id inside the chamber to zero in the plume re-
gion (the axial electron velocity changes sign and
gets modified accordingly). The general stationary
model introduced below includes some additional
physical effects, such as a cathode source or az-
imuthal electron inertia.
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N

Figure 1: Schematic representation of the plasma
discharge structure in a Hall thruster. Hereafter, ṁ
is the mass flow, Vd is the discharge voltage, Id the
discharge current, and I∞ is the far-field total cur-
rent. A is the anode wall, B is the anode sheath
edge, D is the ion stagnation point, S is the ion sonic
point, E is the chamber exit, De is the electron stag-
nation point, N is the cathode center and ∞ is the
far-field downstream boundary. A(z) is the effective
cross-section area.

Let us assume axial symmetry and study the axial
evolution of plasma variables at the chamber mid-
radius (R), with the divergence operator (acting on

an arbitrary vector v) expressed as

∇ · v =
1

A

d
dz

(Avz) + v′w (Eq. 1)

where z stands for the axial coordinate, A for the
cross-sectional area of the plasma beam and v′w ac-
counts for contributions from lateral wall fluxes. As
shown in figure 1, the simulation domain includes
the complete plasma region in-between the anode
sheath edge (B) and an arbitrarily far downstream
boundary (∞). The point A stands for the real an-
ode wall, which has attached an infinitely thin non-
neutral sheath from A to B. The thruster exit is lo-
cated at point E (z = LE) and the cathode is cen-
tered at point N (z = LN ). The distance from N to
the∞ is LN∞ . The azimuthal flows are assumed to
be important only for electrons and the radial veloc-
ity components are disregarded. The macroscopic
equations, under these assumptions and following a
standard notation, read

1

A

d
dz

(Annuzn) = −n(νp − νw), (Eq. 2)

1

A

d
dz

(Anuzi) = n(νp − νw), (Eq. 3)

1

A

d
dz

(Anuze) = n(νp − νw) + Sc, (Eq. 4)

minnuzn
duzn
dz

= min[νw(uznw − uzn)

+ νin (uzi − uzn)] (Eq. 5)

minuzi
duzi
dz

= −endφ
dz
+minνi (uzn − uzi) , (Eq. 6)

0 = −dpe
dz

+ en
dφ
dz

+ eBnuye −menνeuze, (Eq. 7)

menuze
duye
dz

= −eBnuze −menνeuye, (Eq. 8)

1

A

d
dz

[
A

(
5

2
nTeuze + qze

)]
= uze

dpe
dz

− nνpEinel − nνweTe +menνeu
2
e + ScEc, (Eq. 9)

qze = − 5pe
2meνe

1

1 + χ2

dTe
dz

, (Eq. 10)

where νp is the production frequency due to ioniza-
tion, νw particle wall-loss frequency, Sc a volumet-
ric source of cathode electrons, uznw is the effec-
tive axial velocity of wall-born neutrals, νin is the
charge-exchange collision frequency, νi = νin + νp
is the total ion collision frequency, φ is the electro-
static potential, B is the magnitude of the magnetic
field (assumed purely radial), νe is the total electron
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collision frequency, Einel is the effective ionization-
plus-excitation energy, νwe is the frequency of en-
ergy wall losses, Ec is a cathode emission energy,
χ = ωce/νe is the Hall parameter, ωce is the elec-
tron gyrofrequency and pe = nTe. After [20], the
plasma plume expansion is accounted for through
the expansion law dA/dz = 4πR(TeE/mi)

1/2/uzi.
The plasma beam cross-sectional area is constant
inside the chamber. All auxiliary models for colli-
sional terms come from previous works [20–22] and
are compiled in an appendix of [6]. The axial heat
transport equation (Eq. 10), that is a Fourier-type
law, comes the vector equation [23]

0 =
5

2
pe∇Te + eqe ×B +meνeqe, (Eq. 11)

after eliminating the azimuthal heat flow qye from the
system.

The magnetic field magnitude is assumed to have a
Gaussian shape

B(z) = Bm exp

[
− (z − zm)

2

L2
m

]
, (Eq. 12)

being Bm the maximum magnetic field, zm the lo-
cation of that maximum and Lm the characteristic
length of magnetic decay. Let us note that, in gen-
eral, different values of Lm are used for the internal
(Lm,in) a the external (Lm,out) regions.

The electron collision frequency include several
contributions, such that νe = νen + νei + νwm + νt.
Here, νen is the electron-neutral elastic collision fre-
quency, νei is the Coulomb collision frequency (with
negligible effect on ion momentum), νwm accounts
for near-wall conductivity. The turbulent transport
is modeled as and additional collisional contribu-
tion [20, 24] νt(z) = αt(z)ωce(z), where ωce is the
electron gyrofrequency and αt is a phenomenolog-
ical profile (not necessarily constant [25, 26]). Un-
less stated otherwise, we will use a constant value
αt(z) = 0.0094.

As already identified in [20], there may be singular-
ities at sonic points, where u2zi = c2s; being cs =√
Te/mi. Equations (Eq. 2)-(Eq. 10) can be com-

bined to obtain

mi

(
c2s − u2zi

) duzi
dz

= G, (Eq. 13)

with

G = Te (νp − νw)− eBuziuye − uziTe
d lnA

dz
+miνiuzi (uzi − uzn)

+meνeuziuze + uzi
dTe
dz

, (Eq. 14)

where dTe/dz is directly given by (Eq. 10). In a con-
ventional solution [20], two sonic points are found
in the discharge: at the anode-sheath edge (point
B) and an interior sonic transition (point S). The
first one is at one of the boundaries and is singu-
lar, while for the second one only smooth solutions
have physical sense. For point S to be a regular
sonic point, necessarily, GS = 0.

Differently to [20–22], we find another possible sin-
gularity in (Eq. 8) when uze = 0, as a consequence
of having introduced the azimuthal electron inertia.
We can expect an electron stagnation point in the
vicinity of the cathode (point De), since electrons
move mostly inwards in the chamber and mostly
outwards in the far-field plume. The regularizing
condition is, in this case, uye = 0 at De.

From the sheath model used in [20], the potential
drop from B to A reads

φAB =
TeB

e
ln

c̄eB

4|uzeB|
, (Eq. 15)

where c̄e =
√

8Te/πme is the electron thermal ve-
locity. The heat flux at the anode sheath edge fol-
lows [21]

qzeB = nBuzeB

(
eφAB −

1

2
TeB

)
. (Eq. 16)

Above equations are solved with the following
boundary conditions: (i) total mass flow ṁ the
anode, (ii) neutral injection velocity at the anode
uznA = uznB, (iii) ions have sonic speed uziB = −csB
at B, (iv) reference potential value at the anode
φA = 0 that is translated to B as φB = φA + φAB,
(v) the anode-sheath edge heat flow qzeB, (vi) the
discharge potential φN = −Vd at the cathode, (vii)
GS = 0 at the interior regular sonic point, (viii) the
regularizing condition uye = 0 at point De and (ix) the
far-field electron temperature Te∞ or, alternatively,
its gradient (dTe/dz)∞.

2.1. CATHODE MODEL

Infinitely thin model

The infinitely thin cathode model used in [20–22]
considers separately, the interior region (from point
B to N−) from the exterior one (from point N+ to
∞)1. In addition, there is no electron source term
(i.e., Sc = 0) in the equilibrium equations. The inte-
rior problem is decoupled from the plume past the
cathode and is solved from B to N− with the same
boundary conditions of the previous section, except
for the following two. The regularizing boundary
condition (viii) at the electron stagnation point (i.e.,

1Points N+ and N− are considered to be located immediately after and before point N, respectively.
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uye = 0 when uze = 0) is not required and is substi-
tuted by uyeN− = 0 (note that uzeN− 6= 0). And the
condition (ix) is substituted by the value of TeN− .

The exterior problem is solved with boundary con-
ditions at N+ that guarantee the continuity at point
N of every plasma variable, except for uze and qze.
The value of uzeN+ is set according to the desired
value of the downtream total current I∞, i.e.,

uzeN+ = uziN+ − I∞
enN+AcN+

. (Eq. 17)

being I∞ the far-field plume axial current. Let us
note that the total current is spatially conserved, if
there is nor cathode particle source, in the interior
and exterior regions, independently. For a current-
free plume, uzeN+ = uziN+ . The far-field boundary
condition (ix) is also used and determines the value
of qzeN+ .

Finite thickness model

Subtractring equations (Eq. 3) and (Eq. 4) and mul-
tiplying times the unit charge (e), yields

dI
dz

= −eASc, (Eq. 18)

where
I = eAn(uzi − uze) (Eq. 19)

stands for the total current. Therefore, the variation
of I is produced exclusively by the cathode term.
Far from the cathode, where Sc ≈ 0, the total cur-
rent is constant. This equation can be integrated
from the anode to the far-field to get

Id − I∞ =

∫ ∞
zA

dz eA(z)Sc(z), (Eq. 20)

being zA ≈ zB , Id the discharge current and I∞ the
plume downstream current. The value of I∞ will be
treated as a parameter of the problem, and gen-
erally equal to zero for a conventional current-free
plume. Since, the discharge voltage Vd is used as
boundary condition to fix the potential at point N, the
value of Id is a result. Let us decide that the cath-
ode charge emission is concentrated close to point
N and follows a Gaussian evolution

eA(z)Sc(z) = Kg exp

[
− (z − LN)2

L2
g

]
(Eq. 21)

where Kg and Lg are constants. The value of Lg
is intrinsically related to the cathode effective emis-
sion thickness lc and, thus, Lg = lc/2 is a meaning-
ful choice. The integral in equation (Eq. 20) can be
computed analytically, assuming that (LN−zA)� lc;
and Kg can be computed from this expression as a
function of Id − I∞ and lc. The resultant cathode
volumetric source term reads

Sc(z) =
2√
π

Id − I∞
elcA(z)

exp

[
−4

(z − zN)2

l2c

]
. (Eq. 22)

This cathode source model produces a change in
the axial current equal to Id − I∞.

3. RESULTS

The model introduced in the previous sections has
an important number of parameters that are sum-
marized in the table 1. These values are used
through the cases shown in the article, unless stated
otherwise. In addition, we will take Xenon as pro-
pellant. As noted in this table, the nominal far-
field boundary condition is chosen to be the gradient
(dTe/dz)∞ = 0 rather than Te∞. We expect that, in
the far-field plume, the plasma is substantially ho-
mogeneous. Directly related to this, the value of
LN∞, that determines how far the far-field boundary
condition is imposed, should be taken, ideally, large
enough so that the solution becomes independent
of LN∞ (next subsection is devoted to this issue).

Table 1: Nominal simulation case parameters,
based on a SPT-100-type Hall thruster, used in this
work and defined in the main text. Ac,in is the cham-
ber cross-section area.

ṁ 4.75 mg s−1 Vd 300 V
Bm 247 G zm 2.5 cm
Ac,in 40 cm2 R 4.25 cm
uznB 300 m s−1 (dTe/dz)∞ 0
I∞ 0 lc 1 cm
Ec 7.5 eV LN∞ 40 cm
LE 2.5 cm LN 3.35 cm
Lm,in 1.5 cm Lm,out 0.5 cm

The axial evolution of some relevant plasma vari-
ables, solution to the HET discharge model with
parameters in table 1, are shown in figure 2. Let us
note that LN∞ = 40 cm is used for the calculations,
but for the figure the abscissa limits are chosen to
have a clearer view of the much more inhomoge-
neous evolution within the thruster chamber.

Inside the chamber, an ion-backstreaming region is
identified between points B (left boundary) and the
ion-stagnation point D. Ions are generated in the
middle of the plasma discharge due to ionization
and some of them move together with electrons to-
wards the anode, since, naturally, the plasma tends
to be quasineutral. The electric field Ez is small and
points towards the anode here. The main ioniza-
tion region can be identified to be in-between D and
the ion-sonic point S, where the ion flow is subsonic
and the plasma density peak takes place (see figure
2(a)). The most significant ion acceleration happens
in-between points S and N (see figure 2(b)), where
there is the largest potential drop. Consequently,
ions become highly supersonic and plasma density
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decreases due to the acceleration of the ion flow.
From N to∞ (right boundary), there is an slight po-
tential rise that decelerate the ions. Although barely
noticeable in figure 2(d), after plasma is approxi-
mately demagnetized, the supersonic expansion of
the plume results in a mild acceleration of the ions.
The conservation of the ion particle flux in the plume
requires a decay of plasma density.

0 2 4 6 8

z [cm]

0

50

100

@

(i)

D

S
E N

Figure 2: Stationary axial response for parameters
in Table 1. Ion-stagnation (D), ion-sonic (S) and
channel exit (E) are marked with crosses. Only B(z)
is an input, its maximum being at E.

Looking now at electron variables, the electron flow
is heated, starting at N, both inwards and outwards
mostly due to Joule heating, that competes with
lateral-wall energy losses. In the chamber, a max-
imum Te is reached close to the exit (point E) and
electrons flow is cooled from E to the anode due,
mainly, to the energy expended in ionization. Let
us note that the sign of dTe/dz is governed by the
sign of qze. In the far-field plume, the temperature
stabilizes around Te∞ = 8.4 eV, and the electron ax-
ial momentum (Eq. 7) and energy (Eq. 9) equations
can be approximately simplified to

0 = −Te
dn
dz

+ en
dφ
dz

(Eq. 23)

and

1

A

d
dz

[
A

(
5

2
n0Te0uze0 + qze0

)]
=

uze0Te
dn
dz
, (Eq. 24)

respectively; where we neglected the temperature
gradient compared to the density one. After integra-
tion, (Eq. 23) yields a Boltzmann-type relation.

Let us note that (Eq. 23) can be interpreted as the
conservation of mechanical energy while, on the
other hand, (Eq. 24) is the internal energy balance.
The work of the pressure force appears in both
equations as a term taking the electron thermal en-
ergy flux and expending it into electric field work. At
the same time, this electric field produces the ac-
celeration of ions in the expanding plume. From an
energetic point of view, the electron thermal energy
is converted into ion kinetic energy.

Inside the thruster and part of the near plume, elec-
trons move axially towards the anode, while they
move downstream in the plume past the cathode.
If the cathode source is adjusted, as explained in
section 2.1., for I∞ = 0, in the far-field, necessar-
ily, the electrons move with uze = uzi, in a quasi-
neutral plasma. Therefore, there is, macroscopi-
cally a change of sign in uze, that is produced by the
cathode. The azimuthal velocity uye is the result,
inside the thruster and in the magnetized plume, of
E×B and diamagnetic drifts (see equation (Eq. 7),
without the collisional term). The electric and pres-
sure forces associated to these phenomena, re-
spectively, are plotted in figure 2(h). Clearly, the
diamagnetic contribution dominates near the an-
ode , while the E × B is dominant in the rest of
the chamber and near-plume. The azimuthal mo-
mentum balance requires that the change of sign of
uze goes with a change of sign of uye. Mathemati-
cally, this is required to have a non-singular electron
stagnation point. In the unmagnetized plume, the
physics are quite different and the evolution of uye
is governed by (Eq. 8) (of course, without magnetic
term). This is, the collisions should progressively
attenuate uye. This evolution is however quite slow,
compared to other variables, in the solution shown
in figure 2.

The rate of decay of |uye| is intrinsically related to
Te∞ through νe∞. As noticed in coming sections,
the value of Te∞ is much more sensitive to changes
in the model and parameters than nn∞ and n∞. The
evolution of νe∞ ≈ νei∞+νen∞ with Te∞, taking fixed
reference values nn∞ = n∞ = 1017 m−3, is as plot-
ted in figure 3. The net collision frequency has a
minimum at Te∞ ≈ 26 eV. For the reference case
of figure 2, a colder plume would result into a faster
decay of |uye| in the plume.
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Figure 3: Evolution of the far-field electron colli-
sion frequency νe∞ with Te∞ for reference values
nn∞ = n∞ = 1017.

For the next part of the article, changes in the pa-
rameters and in the model itself are considered. In
every case, we decided to keep constant the value
of nB, by changing Bm accordingly. This is moti-
vated by numerical difficulties found in some calcu-
lations (mainly when trying to get solutions with no
turbulent transport, i.e., αt(z) = 0). The obtained
values of Bm and other characteristic magnitudes
are included in table 2.

Table 2: Characteristic values for the different con-
sidered cases throughout the article. The value of
Bm is such that nB is kept constant for all cases. Af-
ter [21], the value of the thrust F takes into account
the contribution of azimuthal plasma current in the
plume.

Case Bm [G] F [mN] Id [A] IeB [A] Ii∞ [A]
nominal 247 81.9 5.19 5.44 2.95

LN∞ = 10 cm 247 82.9 5.19 5.44 3.06
lc = 0 216 80.5 5.24 5.49 2.94

inertialess 245 81.2 5.17 5.43 2.95
αt(z) = 0 92 78.6 4.29 4.54 2.94

rippled αt(z) 231 83.1 5.14 5.40 2.95
Te∞ = 1 eV 247 82 5.18 5.43 3.07

3.1. SOLUTION DEPENDENCE ON LN∞

As aforementioned, LN∞ should be taken big
enough so that the solution is independent of its
value. Figure 5 shows some relevant profile solu-
tions for values LN∞ = 40 cm (reference case) and
LN∞ = 10 cm. The solutions match almost perfectly
in region from B to N. In the plume past the cathode,
some profiles are in good agreement (e.g., φ and n).
However, uye and Te have been realized to be more
sensitive to LN∞. To be precise, the value of Te∞
is 11.6 eV for the case with LN∞ = 10 cm, while it
is 8.4 eV in the reference case. These values have
a direct impact on duye/dz in the far-field. In fact,
the slower decay of |uye| in the off-nominal case is
consistent with figure 3.

The value of Te∞ seems a good indicator that the
solution is independent of LN∞. We have repeated

the calculations for several values of LN∞. The evo-
lution of Te∞ with LN∞ is represented in figure 4.
An asymptotic behaviour can be suspected with the
asymptote at around Te∞ = 8 eV. Although there is
some dependence of the solution on LN∞ for the
reference value of 40 cm, we consider it a reason-
able trade-off between accuracy and computational
time (larger LN∞ implies more points required for
the numerical grid and, thus, more computing work-
load).
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Figure 4: Stationary axial response of reference
case (black solid line) and with LN∞ = 10 cm (red
dash-dotted line). Black dotted vertical lines denote,
from left to right, respectively, the location of the exit
(point E) and the cathode center (point N).
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Figure 5: Evolution of Te∞ with the parameter LN∞.

3.2. ANALYSIS OF CATHODE EFFECTIVE
THICKNESS

In this section, let us compare the reference solu-
tion with the case of an infinitely thin cathode (see
figure 6). As explained in section 2.1., in the in-
finitely thin case, the cathode model used for the
reference case becomes singular. Therefore, the
cathode has to be modeled as boundary conditions,
having interior and exterior decoupled regions and
allowing discontinuities in uze(z) and qze(z) at point
N. Moreover, every other profile solution is neither
differentiable at point N. A finite cathode smooths
these profiles in the vicinity of the cathode. The
general behaviour of both solutions is similar, but
the effect of the cathode cannot be disregarded.
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Apart from the impact on stationary solutions, hav-
ing a cathode model may be relevant for global sta-
bility analyses such as those of references [6, 9].
In [6] we studied global instabilities in Hall thrusters
using an infinitely thin cathode for the equilibrium
model. With a finite cathode, the interior and exte-
rior regions are mathematically coupled what would
allow to extent this analysis to the plume past the
cathode. Moreover, some near-plume instabilities
found in [6] brought up the necessity of a finite cath-
ode model and extending the domain into the down-
stream plume.
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Figure 6: Stationary axial response of reference
case (black solid line) with infinitely cathode (red
dash-dotted line). Black dotted vertical lines denote,
from left to right, respectively, the location of the exit
(point E) and the cathode center (point N).

3.3. ANALYSIS OF ELECTRON INERTIA

A novelty of the presented model with respect to
previous works [20–22] is the inertia term in the left-
hand side of equation (Eq. 8). In this section we
evaluate the relevance of azimuthal inertia in the dis-
charge. If that term is disregarded, equation (Eq. 8)
gets simplified to

0 = −eBnuze −menνeuye, (Eq. 25)

which can be rewritten as

uye = −ωce
νe
uze = −χuze. (Eq. 26)

Let us note that, in the inertialess case, the points
having uze = 0 are no longer singular and the model
does need boundary condition (vii). Even so, ac-
cording to the previous expression, the inertialess
solution still satisfies that uye = 0 when uze = 0. The
existence of the electron stagnation point is closely
related to the finite cathode model, that movitates a
change of sign of uze.

The inertialess and reference cases are compared
in figure 7. Both solutions are in good agreement for
most variables. Regarding uye the two profiles show
good matching in the interior region from B to N, but

the evolution in the downstream plume is completely
different. This is because, in the inertialess model,
the value of uye is tied to the the magnitude of the
magnetic field, as in (Eq. 26), because the magnetic
and collisional forces are the only terms in the az-
imuthal momentum balance. However, this model is
not suitable for unmagnetized regions of the plume,
where inertia cannot be neglected and is able to bal-
ance the collisional force.
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Figure 7: Stationary axial response of reference
case (black solid line) and inertialess solution (red
dash-dotted line). Black dotted vertical lines denote,
from left to right, respectively, the location of the exit
(point E) and the cathode center (point N).

In reference [6], we compared solutions with and
without azimuthal inertia, in the region from B to N
and having an infinitely thin cathode. Those results,
in the interior region close to point N, were not in as
good agreement as those in figure 7(d). In an iner-
tialess model, the effect of the finite cathode partially
mitigates the lack of electron inertia in the vicinity of
point N.

3.4. ANALYSIS OF THE TURBULENT PARAM-
ETER αt

The analysis and understanding of turbulence and
instablities in Hall thrusters [4, 6, 7, 14, 15, 27–30]
(and plasmas under E × B fields) is a very active
field of research since is crucial for the achieve-
ment of predictive numerical codes. As aforemen-
tioned, the stationary model considered here mod-
els anomalous transport using and additional contri-
bution νt(z) = αt(z)ωce(z) and we have considered,
so far, αt(z) = 0.0094. In this section we consider
two additional cases: absence of anomalous colli-
sions (i.e., αt(z) = 0) and oscillatory αt(z).

First, the comparison between the reference and
the case with constant αt(z) = 0 is plotted in figure
8. Numerical difficulties were found when trying to
set αt(z) = 0 keeping the same value of Bm. These
difficulties, however, can be explained physically by
the fact that reducing the turbulent contribution to νe
leads to a more effective magnetic confinement of
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electrons. Consequently, it is more complicated for
the cathode electrons to reach the anode and elec-
tron density tends to decrease substantially. In order
to overcome these problems, we decided to fix the
anode density nB and let Bm to change accordingly.
When αt(z) = 0, this approach results in a sub-
stantially weaker magnetic field having Bm = 92 G
(compared to the reference Bm = 247 G). Neverthe-
less, the maximum Hall parameter increases from
χ = 105, in the reference case, to χ = 2450. There-
fore, as it should, electrons are much better confined
when disregarding the anomalous collisionality. A
measure of the poorer cross-field electron transport
is the axial electron current Ie = −enAuze reaching
the anode; that decreases from 5.4 to 4.5 A when
setting αt = 0 (see table 2). That is to say, without
the turbulent contribution the electron current that
can be extracted from the cathode has decreased
significantly by almost 1 A.

Other side effects of the smaller Bm are the dis-
placement of the ionization region towards the exit
(see the peak densities in figure 8(a)) and a short-
ening of the acceleration region (the decay of φ hap-
pens within a thinner region in 8(b)). Also the values
of uye near the exit are much more exaggerated so
that the axial magnetic force in (Eq. 7) is able to bal-
ance the electric one (that is similar in both cases)
with a weaker magnetic field.
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Figure 8: Stationary axial response of reference
(black solid line) and αt(z) = 0 cases (red dash-
dotted line) given by (Eq. 27) (red dash-dotted line).
Black dotted vertical lines denote, from left to right,
respectively, the location of the exit (point E) and the
cathode center (point N).

On the other hand, azimuthal plasma oscillations
are currently considered to be one of the main con-
tributions to electron cross-field transport. The os-
cillations produce turbulent force contributions to the
azimuthal momentum balance that enhances the
axial drift of electrons. However, plasma waves in
the Hall discharge have, in general, an axial com-
ponent. Therefore, the turbulent force can be ex-
pected to be oscillatory in the axial direction, what

would result in an oscillatory αt(z). Some examples
have been reported in numerical simulations [6,15].
In figure 9, we consider

αt(z) = αt0 + αt1 cos

(
8π

LE
z

)
, (Eq. 27)

(with αt0 = 0.0094 and αt1 = αt0/2 = 0.0047),
and compare it with the reference case. As dis-
cussed in [6], an axially rippled turbulent term is ex-
pected to enhance the role of azimuthal electron in-
ertia. Moreover, the inertialess model can even fail
if αt < 0 within certain region and νt is such that
νe < 0, what could result in electron backstreaming
(these type of αt(z) profiles are not considered here
and are left for future work). For this reason the iner-
tialess solution with oscillatory αt is also computed.
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Figure 9: Stationary axial response of reference
case (black solid line) and case having αt(z) given
by (Eq. 27), with (red dash-dotted line) and without
(blue dashed line) azimuthal electron inertia. Black
dotted vertical lines denote, from left to right, re-
spectively, the location of the exit (point E) and the
cathode center (point N). Included enlargement of
(d) in the vicinity of the cathode (e).

The reference and rippled-αt solutions follow the
same tendency except for the spatial rippling on
the plasma variables. These axial oscillations are
present in every variable but are more prominent in
uye. The rippling of uye implies larger duye/dz and
a more significant contribution of the inertia term in
(Eq. 7).

The discrepancies in the far field between the so-
lutions with and without inertia were already dis-
cussed in section 3.3.. Regarding the behavior of
the solutions in the near-cathode region (see fig-
ure 9(e)), the electron inertia introduces two effects:
damping of uye oscillations and certain lag between
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ripples of uye and αt. These are even more evident
just past the cathode, where the inertialess solution
has much larger amplitude ripples.

3.5. ANALYSIS OF ELECTRON ENERGY FAR-
FIELD BOUNDARY CONDITION

Here, we analyze the effect of a far-field boundary
condition Te∞ = 1 eV (instead of (dTe∞/dz)∞ = 0)
in, figure 10. The solution in the interior part of
the discharge seems to be quite independent of
the imposed far-field condition. In the plume, the
most remarkable differences are the value of the
plume electron temperature Te∞ and the evolution
of uye. As highlighted several times, these two are
intimately related through the electron collision fre-
quency νe∞ in the plume. Figure 3 represents this
relation for characteristic values of n∞ and nn∞.
When imposing Te∞ = 1 eV, according to this graph,
the electron collisionality level in the plume is higher
and, thus, |uye| decays faster than in the reference
case.
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Figure 10: Stationary axial response of reference
(black solid line) and Te∞ = 1 eV cases (red dash-
dotted line). Black dotted vertical lines denote, from
left to right, respectively, the location of the exit
(point E) and the cathode center (point N).

The low value Te∞ makes also that the work done
by the pressure in (Eq. 23) and (Eq. 24) gets dimin-
ished and the conversion of electron thermal energy
into ion kinetic energy is spatially slower. In figure
11, the axial evolution of φ and

Pe ≡ A
(

5

2
neTeuze + qze

)
(Eq. 28)

are represented. As anticipated, dPe/dz (this is, the
right-hand side of (Eq. 24)), is much smaller in the
case with lower Te∞. The result is a much weaker
plume electric field and, thus, a lesser acceleration
of ions.

It is striking that the temperature profile is very flat
downstream even when not imposing (dTe/dz)∞ =

0. Although barely visible in figure 10(c), there is a
small non-zero temperature gradient in the plume.
The large thermal conductivity (see (Eq. 10))

κ =
5pe

2meνe

1

1 + χ2
(Eq. 29)

in the plume (due to χ ≈ 0 and very low νe) makes
qze quite sensitive to temperature gradients. At the
same time, qze has an influence on Te through the
internal energy equation (Eq. 9). Therefore, the
large plume value of κ explains that an impercepti-
bly small difference in (dTe/dz)∞ may produce large
changes in Te∞, as seen in figure 10. This could ex-
plain also why Te∞ seems to be quite sensitive to
almost every analysis carried out through the arti-
cle.

5 10 15
z [cm]

-300

-250

?
[V

]

(b)

5 10 15
z [cm]

0

50

100

P
e
[W

]

(a)

reference
Te1 = 1 eV

Figure 11: Stationary axial evolution, past the cath-
ode, of φ and Pe in the reference (black solid line)
and Te∞ = 1 eV cases (red dash-dotted line).

4. CONCLUSIONS

In this article we considered an axial stationary
model of a Hall-thruster discharge, including the
chamber, near plume and far-field regions. Previ-
ous works [20–22] used an infinitely thin cathode
model to study the interior region from the anode to
the cathode and disregarding some other physical
effects, such as azimuthal electron inertia. In ref-
erence [6], devoted mainly to global instabilities, a
similar model was used but incorporating inertia in
the azimuthal momentum balance. The equilibrium
solutions computed there show that inertia may be
important, mainly, close to the anode and cathode
regions. Here a finite cathode model is also in-
cluded and the simulation domain is extended into
the far-field region.

If the far-field boundary is placed far enough, the
solutions include the plume demagnetization, after
which the azimuthal momentum equation is a bal-
ance of inertia and collisional forces. The value of
|uye| decays collisionaly in the plume with a rate that
can be easiliy correlated to the far-field electron tem-
perature Te∞. For the typical solutions considered
in this work, colder plumes lead to faster decay rates
due to the dominance of electron-ion Coulomb colli-
sions at low Te∞. The electron thermal conductivity
in the unmagnetized plume becomes several orders
of magnitude greater than values in the chamber
making Te∞ quite sensitive to changes in the model
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and in the parameters. Regarding the energy bal-
ance, in the expanding plume the electron thermal
energy flux decreases and this translates into ion
acceleration. On the other hand, the interior part of
the solutions seems to be quite robust to the far-field
boundary conditions and other minor changes.

The distance from the cathode center to the far-field
boundary (LN∞) is considered as one of the pa-
rameters of the problem, although it must be large
enough so that the solutions become independent
of it. The slow decay of |uye| and the sensitivity of
Te∞ requires that the far-field boundary is placed
very far (in our reference case, LN∞ = 40 cm) in
order to reach a decent degree of independence.

When comparing with inertialess solutions, account-
ing for the electron flow transition across the cath-
ode mitigates, in the vicinity of the cathode, the lack
of electron inertia terms; because both solutions
satisfy that uye = 0 when uze = 0 (that is promoted
by the cathode electron source) and the gradient
duye/dz is smoothed. In view of recent studies
on turbulent cross-field transport, we test a rippled
turbulent profile αt(z), that induces large gradients
of uye. This enhances the role of electron inertia,
that attenuates the amplitude of uye ripples. On
the other hand, the presence of ripples in uye and
other plasma variables may produce drift-gradient
instabilities. An stability study, using equilibrium so-
lutions presented here, is left as future work.
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