
SP2018 00288

Influence of relevant parameters on the radial PIC simulation of a Hall
effect thruster discharge

A. Domı́nguez-Vázquez1, F. Taccogna2, P. Fajardo1, E. Ahedo1

1Equipo de Propulsión Espacial y Plasmas, Universidad Carlos III de Madrid, Leganés, Spain,
addoming@ing.uc3m.es

2CNR-NANOTEC - PLasMI Lab, via Amendola 122/D, 70126 Bari, Italy, francesco.taccogna@nanotec.cnr.it.

KEYWORDS: Hall effect thrusters, particle-in-cell
simulations, secondary electron emission

ABSTRACT:

An investigation on the influence of different param-
eteres on a Hall effect thruster plasma discharge
is performed using a radial particle-in-cell model
with secondary electron emission from the walls
and a radial magnetic field. In particular, different
field values, wall temperature and secondary elec-
tron emission are considered. Besides, a plane
case (i.e. at larger radius) is explored. Primary
and secondary electrons show different temperature
anisotropy. Secondary electrons are found to be
partially recollected at the walls and partially turned
into primary electrons through collisional processes.
Significant asymmetries at the inner and outer walls
are found for the collected currents, the mean im-
pact energy, and the wall and sheath potentials. Ra-
dial profiles in the plasma bulk are asymmetric too,
due to a combination of the geometric expansion,
the magnetic mirror effect, and the centrifugal force
(emanating from the E × B drift). The asymmetries
above vanish for the planar case, for which the tem-
perature non-uniformity is the major responsible for
the deviation from the classical Boltzmann relation
on electrons along the magnetic lines.

1. INTRODUCTION

In a recent paper in the process now of being pub-
lished [1] we considered a 1D radial particle-in-cell
model of the plasma discharge at an axial section
within the acceleration region of an annular Hall ef-
fect thruster (HET), assuming a radial magnetic field
and significant secondary electron emission (SEE)
by the lateral ceramic walls. The main goals of that
work were to analyze the combined effects of SEE
and cylindrical asymmetry on (a) the velocity distri-
bution function (VDF) of ions and electrons (mainly
on these ones) and (b) the macroscopic steady-
state plasma response. The most valuable results
of this work are:
- the radial profiles in both the plasma bulk and
sheaths are asymmetric due to a combination of
the geometric expansion, the magnetic mirror effect,
and the centrifugal force (this last one emanating
from the E ×B drift);

- the collected electric currents, the mean impact en-
ergy, and the wall and sheath potentials present sig-
nificant differences at the inner and outer walls;
- the two secondary electron populations are par-
tially recollected by the walls and partially converted
into primary electrons;
- the perpendicular and parallel temperatures to the
magnetic field are different, and their ratios are dif-
ferent for primary and secondary electrons; and
- the temperature anisotropy and non-uniformity,
and the centrifugal force modify the classical Boltz-
mann relation on electrons along the magnetic lines.
The model and the numerical code presented in Ref.
[1] were based on the original ones by Taccogna
[2], but we added two important improvements on
numerical algorithms. The first one was to add a
temporal control of the neutral density, nn(t), in or-
der to have a prescribed mean plasma density, n̄e,
thus assuring a steady-state discharge. The second
one was to use a time-extended volumetric weight-
ing algorithm that allows to obtain correct values of
macroscopic variables of populations with very dif-
ferent densities; this was the case of the densities
of secondary an primary electron populations.
The reader is invited to read Ref. [1] to get a full ac-
count of the model, the new numerical algorithms,
and the results on the VDFs and the plasma macro-
scopic profiles. The paper illustrates them with a
single simulation case. The purpose of the present
work is to carry out a limited investigation of the in-
fluence of certain parameters on the results in or-
der to get further insight on the physics of the re-
sponse. Section 2 briefly summarizes the model
and the code used. Section 3 discusses several
cases, each one modifying one parameter from the
reference case of Ref. [1]. Section 4 is for conclu-
sions.
As pointed out already in Ref. [1], previous analytical
work on this subject was carried out by Ahedo and
Parra [3] and Ahedo and dePablo [4], while relevant
numerical work is due to Sydorenko, Kaganovich,
and coworkers [5,6] and Taccogna et al. [2,7,8].

2. THE RADIAL MODEL

Figure 1 sketches the annular HET chamber with
r1 and r2 as inner and outer radius. The 1D radial
(1Dr) model selects a radial section near the cham-
ber exit where the axial electric field is already signif-
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icant and the plasma beam is already accelerating.
The 1Dr model considers electrons e, (singly-
charged) ions i, and neutrals n. Electrons and
ions are modelled as two populations of macropar-
ticles with densities and temperatures, nj and Tj
(j = i, e), evolving with (r, t) from initial Maxwellian
populations uniformly distributed along the radial do-
main with nj0 and Tj0 (j = i, e). Neutrals are mod-
eled just as a spatially-uniform background with a
constant temperature Tn and a time-dependent den-
sity nn(t). This one is adjusted by an ionization-
controlled discharge (ICD) algorithm [1] in order that
the mean electron density in domain, n̄e, remains
constant (which is equivalent to keep constant the
total amount of plasma in the domain). There is not
axial contribution of plasma in this model.
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Figure 1: Sketch of a HET. The simulation domain
corresponds to the thick black vertical line from the
inner to the outer wall.

The divergent-free radial magnetic field satisfies

Br(r) = Br1
r1
r
, (Eq. 1)

with Br1 known. The induced magnetic field is ne-
glected.
The 1Dr model considers a prescribed constant ax-
ial electric field Ez which does not accelerate the
ions. Instead, macro-ions are inserted initially or
created later with a mean axial velocity uzi, and
they are advanced only with the radial electric field.
This procedure avoids refreshing of ions and elec-
trons during the simulation, caused by the secular
change of the ion axial velocity. The axial electric
field affects electrons only, primarily by forcing with
the magnetic field the electron E×B azimuthal drift.
The radial electric field, Er = −dφ/dr, with φ(r, t)
the electric potential, satisfies

ε0
r

∂

∂r

(
r
∂φ

∂r

)
= ρel(r, t), (Eq. 2)

with ρel the net electric charge density of the
plasma, and the boundary conditions

φ2 = 0, ε0Er2 = −σ2(t), (Eq. 3)

at the outer wall, r = r2, where ε0 is the vacuum
permittivity and σ2 is the surface charge there. It

can then be shown that

ε0Er1 = σ1(t), (Eq. 4)

with σ1 the surface charge at r = r1 is satisfied au-
tomatically.
The above surface charges are created by accumu-
lation over time of the net normal electric current to
the wall

σl(t) = −
∫
dtjl(t) · 1l, l = 1, 2, (Eq. 5)

where jl is the net electric current density to the
wall and 1l is the wall normal pointing towards the
plasma.
The collisional processes implemented in the code
are: electron-neutral collisions, including elastic
scattering, excitation and single ionization, follow-
ing the models of Refs. [9–11]; and electron-ion,
electron-electron and ion-ion Coulomb collisions,
according to the models of Refs. [12–15].
Turning now to plasma-wall interaction, ions and
electron reaching the radial walls are collected (for-
mally); ion recombination is not considered explicitly
since neutrals are modeled through a background
density nn(t). The SEE produced by the impacting
electrons follows the probabilistic model of Ref. [16],
already implemented in Ref. [2]. The total SEE yield
in that model accounts for elastically and inelasti-
cally backscattered electrons, and true secondary
electrons (those extracted from the surface layers of
the material), and thus may be expressed as

δSEE(E) = δBS(E) + δTS(E) (Eq. 6)

where δBS(E) and δTS(E) stand for the total (i.e. el-
lastic and inelastic) backscattering yield and the true
secondary yield, respectively, with E the impacting
electron energy.
Secondary electrons are transferred to the primary
population when they undergo a collision with neu-
trals or a large angle (higher than 90 degrees)
Coulomb collision. Three different electron species
are considered hereafter: primary electrons p, and
secondary electrons emitted by the inner s1 and
outer s2 walls. Notice that, in a kinetic or particle
formulation, this distinction between ’secondary’ and
’primary’ populations is just convenient for the anal-
ysis of the plasma response. On the contrary, that
distinction acquires full sense in multi-fluid electron
models.
The main model input parameters are listed on
Tab. 1 for the different simulation cases. Xenon
is the considered propellant. All electron and ion
macroparticles have the same weight W (number
of elementary particles per macroparticle) through-
out the simulation, and the initial number of both
electron and ion macroparticles is Np0 ≈ 105, cor-
responding to about 70 macroparticles per cell. It
has been checked that using the double number of
particles per cell reduces only the PIC fluctuations,
without changing the averaged trends.
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Type Description, symbol and units Case 1 Changes from case 1

Populations
settings

Number of elementary particles per macroparticle, W (-) 3 · 109 -
Initial average plasma density, ne0 (1017m−3) 0.8 -
Initial number of ions and electrons*, Np0 (-) 106814 -
Initial electron temperature, Te0 (eV) 10 -
Initial ion temperature, Ti0 (eV) 1 -
Ion axial mean velocity, uzi (km/s) 10 -
Initial background neutral density, nn0 (1017 m−3) 40 -
Neutral temperature, Tn (K) 700 -

E, B fields Electric field axial component, Ez (V/cm) 100 Case 2: 200
Magnetic field radial component at inner radius, Br1 (G) 150 Case 2: 300

Simulation
parameters

Backscattering SEE yield, δBS(E) (-) OFF Case 3: ON
True secondary SEE yield, δTS(E) (-) ON -
Walls temperature, TeW (eV) 2 Case 4: 0.2
Inner radius, r1 (cm) 3.5 Case 5: 103.5
Outer radius, r2 (cm) 5.0 Case 5: 105.0
Number of nodes, Nr (-) 1500 -
Grid spacing*, ∆r (µm) 10 -
Time step, ∆t, (ps) 5 -

Physical
parameters

Debye length*, λD (µm) 83.1 -
Electron Larmor radius*, rl (µm) 802.0 Case 2: 401.0
Inverse of plasma frequency*, 1/ωpe (ps) 62.7 -
Inverse of electron cyclotron frequency*, 1/ωce, (ps) 379.1 Case 2: 189.5

Table 1: Main input parameters including initial population settings, externally applied fields and grid definition
for the case 1 (reference case of Ref. [1]). The changes with respect to the case 1 defining the rest of the
cases considered are indicated in the last column. The magnitudes marked with an asterisk (*) are not input
parameters of the model, but are derived from the other parameters instead. The variables named as physical
parameters are estimated from the other input values given at initial conditions.

Second order finite difference schemes are used
for discretizing Poisson equation along the cylindri-
cal radial coordinate r. The Thomas tridiagonal al-
gorithm [17] is applied as direct solving technique.
Once the radial electric field is updated, macropar-
ticles are propagated along time using the Boris-
Buneman leapfrog algorithm [18]. The time step
is chosen so that ∆t < 0.3ω−1pe , where ωpe is the
plasma frequency. This condition ensures an ac-
curate integration of the electron gyromotion since
ωpe > ωce, with ωce the electron gyrofrequency (see
Tab. 1).
After advancing all macroparticles one time step, a
Monte Carlo Collisions algorithm simulates the colli-
sional events. A mean axial velocity uzi is added to
any new-born ion. More details on the algorithm and
procedure can be found in [1]. Regarding the emis-
sion of true-secondary electrons, a zero-drift semi-
Maxwellian distribution with temperature TeW is as-
sumed.
Plasma macroscopic properties are computed at
the mesh nodes through the area weighting algo-
rithm of Ref. [18] and the cylindrical correction of
Ref. [19]. The extended volumetric weighting (EVW)
algorithm of Ref. [1] is used to assess correctly
the densities of minor species and higher-order mo-
ments (such as temperature) of all species. In a

given node, the EVW defines the density, macro-
scopic velocity, and temperature of species j = i, e
as

nj =
W

Nk∆V

∑
k

∑
p

sp, (Eq. 7)

ue =

∑
k

∑
p vpsp∑

k

∑
p sp

, (Eq. 8)

Te =
me

3

∑
k

∑
p |vp − ue|2sp∑
k

∑
p sp

. (Eq. 9)

where ∆V is the weighting volume associated to the
node, sp is the linear weighting function assigning a
weight to each macroparticle depending on its rela-
tive position and distance to the node, the sum in p
is for all macroparticles with sp 6= 0, and the sum in
k is for Nk timesteps. Additionally, surface weighting
schemes [20, 21] are used for updating the particle
fluxes to the walls.
In general, new simulations are started assuming
uniform Maxwellian populations of electrons and
ions of the same density and a radially constant po-
tential. In the first timesteps, this implies large elec-
tron currents to the walls. These build up negative
surface charges there, which within 1µs create the
Debye sheaths that confine electrons. The surface
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Figure 2: Steady-state radial profiles of different macroscopic magnitudes for primary electrons for the cases
considered: (a) electric potential; (b) electron density; (c-e) electron total, parallel (radial) and perpendicular
temperatures, respectively; (f-h) radial, azimuthal and axial electron mean velocities, respectively. Black stars
on (a) indicates the points at the walls, sheath edges and channel mid radius. The weighted magnitudes are
computed through the EVW algorithm with Nk = 2 · 105 timesteps (equivalent to 1µs of simulation time).
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Figure 3: Steady-state radial profiles of different macroscopic magnitudes for secondary electrons for the
cases considered: (a-b) electron density; (c-d) radial temperature; (e-f) perpendicular temperature, for s1 and
s2 electron populations, respectively. The weighted magnitudes are computed through the EVW algorithm with
Nk = 2 · 105 timesteps (equivalent to 1µs of simulation time).
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Figure 4: Steady-state radial profiles of macroscopic velocity components for secondary electrons for the cases
considered: (a-b) radial velocity; (c-d) azimuthal velocity; (e-f) axial velocity, for s1 and s2 electron populations,
respectively. The weighted magnitudes are computed through the EVW algorithm with Nk = 2 · 105 timesteps
(equivalent to 1µs of simulation time).
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charges reach a steady state when the net electric
currents to the walls become zero, [see Eq. (5)].

3. RESULTS

The stationary plasma discharge obtained for the 5
cases with main input parameters listed on Tab. 1 is
analyzed in this section. The reference case, named
here as case 1, corresponds to that analyzed in de-
tail on Ref. [1]. The changes from the case 1 defin-
ing the rest of the cases considered in this work are
indicated on Tab. 1. For all the of them, Tab. 2
summarizes relevant data of the corresponding dis-
charge. Average values over 1µs of simulation time
are considered. Figs. 2-4 show the radial profiles
of the main plasma macroscopic magnitudes ob-
tained through the EVW algorithm with Nk = 2 · 105

timesteps (1µs of simulation time). For the sake of
clarity, the offset in the radial coordinate of the case
5 is eliminated for plotting purposes. The vertical
dashed lines in Figs. 2-4 represent approximately
the edges of the Debye sheaths, which are located
at 0.5mm from the walls, and where the radial ion
Mach number is found to be approximately 1. The
definition of ’sheath edges’ in the present one-scale
model is just meant for discussion purposes, since
plasma response is known to change sharply when
entering the thin Debye sheaths. The discussion
here is focused on the plasma bulk.
The electric potential radial profiles are depicted on
Fig. 2(a). PointsW1,W2,Q1,Q2, andM correspond
to walls, sheath edges, and channel mid radius, re-
spectively. The electric potential values at those
points is listed in Tab. 2. As already found on Ref.
[1], the magnetic mirror effect and the centrifugal
force in the cylindrical geometry lead to asymmetric
radial profiles in the cases 1 to 4. The potential drop
∆φW1W2

> 0 and the change on the E ×B drift due
to the radially varying magnetic field facilitate that
electrons emitted from the wall W2 be recollected at
the wall W1. On the contrary, the magnetic mirror
effect opposes the electron collection at W1. This
asymmetry becomes also evident in the collected
electron currents at the walls, in the mean wall im-
pact energy per particle and thus in the SEE yields.
All these data is detailed in Tab. 2 for each case
considered. As expected, the asymmetry vanishes
in the planar case (case 5), in which the effect of the
geometric cylindrical expansion (i.e. terms ∼ 1/r)
tends to zero. This case will be further analyzed
below. Tab. 2 also provides the fractions of sec-
ondary electrons recollected at each wall and trans-
ferred to the primary population through collisional
processes. A significant secondary electron recol-
lection at walls is found due to the low collisionallity
regime. For all cases Coulomb collisions are negligi-
ble compared to electron-neutral collisions, but even
the elastic e-n collision frequency, ∼ 3.7MHz, is
low compared with the transit frequency, ∼ 62MHz.

The SEE yields and the amounts of wall-recollection
and thermalization determine the density and other
macroscopic properties of secondary electrons.
Figs. 2(b), 3(a) and 3(b) plot the density profiles for
p, s1 and s2 electrons, respectively, confirming the
much lower density of the secondary electrons and
thus their minor role in shaping the electric potential.
The lower s1-density is partially caused by the lower
SEE yield at the inner wall in all cases.
Figs. 2(c-e) show the total, radial (i.e. B-parallel)
and perpendicular temperature profiles for the pri-
mary electrons population. Likewise, parallel and
perpendicular temperatures profiles are depicted in
Figs. 3(c) and 3(e) for the s1-electrons and in
Figs. 3(d) and 3(f) for the s2-electrons. For the
three populations, it is found Tθ ≈ Tz ≈ T⊥ and
the anisotropy is the combined consequence of the
electron magnetization and depletion at walls. The
radial and perpendicular temperature values at point
M are listed in Tab. 2 for each electron population.
The ratio Tr/T⊥ is lower than 1 for primary elec-
trons and larger than 1 for secondary electrons in
all cases considered but the case 3 for s2-electrons.
This fact will be commented below. The tempera-
ture behavior of primary electrons is a direct conse-
quence of the partial depletion of the radial VDF tail
[1]. In general, p-electrons bounce radially between
the sheaths several times before completing an az-
imuthal turn. The collisions (mainly with the neutral
gas) introduce a larger dispersion (i.e. temperature)
on the B-perpendicular direction and contribute to
the replenishment of the primary EVDF tails. In con-
trast, the secondary electrons emitted from the walls
are radially accelerated by the sheaths and act like
two opposite radial beams before being quickly col-
lected at the walls. The trend Tr/T⊥ > 1 is further
enhanced by the fact that when they collide strongly
(i.e electron-neutral or large angle Coulomb colli-
sions) they are transferred to the primary population.
The macroscopic radial velocity profiles for the p,
s1 and s2 electron populations are depicted in Figs.
2(f), 4(a) and 4(b), respectively. Primary electrons
behave as usual with fluxes from the channel mid-
point M to the walls. The velocity increase inside
the sheaths is just the consequence of the decreas-
ing density there. s1-electrons present a net out-
wards radial velocity, indicating that their outwards
flow is slightly larger than the inwards one, due to
a larger recollection at W2. The opposite situation
happens to s2-electrons.
The macroscopic azimuthal velocity of the three
electron populations satisfy the E × B drift in all
cases. The corresponding radial profiles for the p,
s1 and s2 electrons are plotted in Figs. 2(g), 4(c)
and 4(d), respectively. As it was already shown in
Ref. [1], this result is particularly important to vali-
date the simulation of the secondary electrons and
reveals the excellent performance of the EVW algo-
rithm in the computation of the weighted magnitudes
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Type and units Description and symbol Case 1 Case 2 Case 3 Case 4 Case 5

Electric
potentials

(V)

At the mid radius M , φM 17.47 17.19 14.94 17.41 14.66
At the inner sheath edge Q1, φQ1

13.70 13.44 11.24 13.62 10.53
At the outer sheath edge Q2, φQ2

12.74 12.38 10.30 12.61 10.47
At the inner wall W1, φW1

2.27 2.35 1.33 2.39 0.05
At the outer wall W2, φW2 0.00 0.00 0.00 0.00 0.00

Current
densities

(A/m2)

p to the inner wall, |jp,1−| 12.80 13.19 20.99 13.62 17.88
s1 to the inner wall, |js1,1−| 0.17 0.21 1.81 0.29 0.17
s1 from the inner wall, |js1,1+| 2.36 2.75 54.08 2.51 3.35
s2 to the inner wall, |js2,1−| 2.96 2.93 44.90 2.26 1.20
p to the outer wall, |jp,2+| 23.97 23.71 67.86 23.98 18.12
s1 to the outer wall, |js1,2+| 0.48 0.64 26.95 0.22 1.05
s2 to the outer wall, |js2,2+| 0.81 0.71 29.17 0.54 0.20
s2 from the outer wall, |js2,2−| 7.23 7.17 106.31 6.94 3.53

Mean impact
energies per
elementary

particle
(eV)

e at the inner wall, Ewe,1 8.10 8.72 12.36 8.04 9.35
p at the inner wall, Ewp,1 8.50 9.01 8.49 6.87 9.71
s1 at the inner wall, Ews1,1 4.06 4.08 3.78 3.86 3.79
s2 at the inner wall, Ews2,1 6.59 7.76 14.52 7.25 4.76
e at the outer wall, Ee,2 15.75 15.99 14.99 15.74 9.64
p at the outer wall, Ewp,2 16.16 16.36 13.90 16.07 9.99
s1 at the outer wall, Ews1,2 6.24 8.11 13.90 5.55 4.75
s2 at the outer wall, Ews2,2 9.34 10.94 18.54 5.13 3.91

SEE yields
(-)

Backscattering at the inner wall, δBS,1 0.00 0.00 0.57 0.00 0.00
True secondary at the inner wall, δTS,1 0.15 0.17 0.23 0.16 0.17
Backscattering at the outer wall, δBS,2 0.00 0.00 0.58 0.00 0.00
True secondary at the outer wall, δTS,2 0.29 0.29 0.27 0.28 0.18

Conversion
to p and wall

collection
fractions

(%)

s1 conversion to p 63.2 59.1 25.4 76.2 63.2
s1 collection at the inner wall 7.5 7.8 3.4 11.5 4.9
s1 collection at the outer wall 29.3 33.1 71.2 12.3 31.9
s2 conversion to p 60.1 61.4 43.0 69.4 60.7
s2 collection at the inner wall 28.7 28.6 29.6 22.8 33.6
s2 collection at the outer wall 11.2 10.0 27.0 7.8 5.7

Electron
temperatures

at M
(eV)

p radial, Trp,M 4.81 4.80 4.55 4.83 4.77
p perpendicular, T⊥p,M 7.53 7.55 7.33 7.48 6.73
s1 radial, Trs1,M 8.97 9.07 9.55 8.45 8.88
s1 perpendicular, T⊥s1,M 2.06 2.01 2.45 1.64 2.30
s2 radial, Trs2,M 9.77 9.83 9.23 9.13 9.53
s2 perpendicular, T⊥s2,M 4.70 4.59 8.40 3.36 2.62

Table 2: Main parameters characterizing the steady-state discharge for the different cases considered. Time-
averaged values over 1µs of simulation time are considered.

for the low-populated species.
Figs. 2(h), 4(e) and 4(f) show the profiles of the
macroscopic axial velocity for the p, s1 and s2 pop-
ulations, respectively. These velocities are close to
zero except for the oscillations shown in secondary
electrons which correspond to the well known near
wall conductivity (NWC) phenomenon [22]. As
proved in Ref. [1], the simulations confirm that there
are not secular effects on the axial flow of all popu-
lations and therefore there is no need of performing
particle refreshing.
After describing the general structure of the plasma
discharge in all cases considered, in the following
some particularities of the cases 2 to 5 are worth to
be commented in comparison to the reference case

1.
Regarding the case 2, when both the axial elec-
tric field and the radial magnetic field are doubled,
the number of peaks in the secondary electrons az-
imuthal and axial macroscopic velocity profiles is
doubled (see Figs 4(d) and 4(f) for the s2-electrons,
for example) while the rest of plasma properties (in-
cluding the electric potential and the electron tem-
peratures) remain the same, as expected.
In the case 3 we have considerably larger total SEE
yields: ∼ 0.8 and ∼ 0.85 at the inner and outer
walls, respectively. As listed in Tab. 2, δBS > δTS ,
which is consistent with the SEE analysis performed
in Ref. [2] for the impacting energy values obtained
in this case. As a result, the sheaths potential drops
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decrease by a value of ∼ 1.5eV and of ∼ 2.5eV at
the inner and outer walls, respectively, thus facili-
tating the electron collection at the walls both for
primary and secondary electrons. Consequently,
larger electron current densities to the walls are ob-
tained and, since the collisional frequencies remain
approximately the same, the secondary electrons
wall collection fractions increase (see values in Tab.
2). This physical argument could explain the slightly
lower primary electron temperatures obtained [see
Figs. 2(c-e)], and the fact that the ratio Tr/T⊥ be-
comes smaller than 1 for s2-electrons in the region
from r ≈ 3.9cm to the inner wall.
In the case 4 secondary electrons are emitted with
10 times less energy due to the lower wall temper-
ature. As expected, they exhibit lower temperatures
and lower absolute values of the macroscopic radial
velocity. The influence of the wall temperature in
the rest of plasma radial profiles is negligible. Due
to their lower energy, secondary electrons spend a
longer time bouncing radially between the sheaths
where an eventual collision may turn them into the
primary population. This explains the significantly
larger thermalization fractions of both the s1 and s2
electrons (see Tab. 2).
Finally, special attention must be paid to the case
5. As mentioned above, the typical geometrical ef-
fects in cylindrical coordinates (i.e. terms ∼ 1/r) be-
come negligible when the simulation domain is dis-
placed towards larger radii (e.g. 1m displacement
in the case 5). Therefore, the case 5 corresponds
to a planar simulation in which the applied radial
magnetic field is approximately constant (from Eq.
(1): Br2/Br1 = r1/r2 = 0.986 ∼ 1). Hence, the
E×B drift is approximately constant as well, and the
magnetic mirror effect becomes negligible along the
simulation domain. As a result, the asymmetries in
the radial profiles and in the different magnitudes at
the walls vanish. Interestingly, the different electron
populations exhibit a similar temperature anisotropy
in comparison to the other cases.
Neglecting collisions, the macroscopic radial equi-
librium for p electrons integrated along the radial co-
ordinate yields

(eφ− eφM )− TrpM ln
np
npM

=

(Trp − TrpM ) +

∫ r

rM

dr (Trp − TrpM )
d lnnp
dr

+∫ r

rM

dr
Trp − T⊥p

r
−
∫ r

rM

dr
meu

2
θp

r
.

(Eq. 10)

The left side of Eq. (10) groups the terms of the
Boltzmann relation while the right side groups all
terms (the non-uniform radial temperature, the mag-
netic mirror effect, which in turn is a combination of
temperature anisotropy and cylindrical expansion,
and the centrifugal force) affecting their fulfillment.
The results shown in Ref. [1] for the case 1 are here

compared to those of the case 5 in Fig. (5). The
whole radial equilibrium of Eq. (10) is excellently
satisfied in both cases confirming the marginal role
of the collisional processes and other convection ef-
fects. In the case 1, the three terms of the right side
of Eq. (10) are of the same order and the sum of
these 3 contributions introduces a correction of up
to 30% (relative to eφ− eφM ) in the Boltzmann rela-
tion. In the case 5 however, the terms ∼ 1/r vanish
so that the correction below reduces approximately
up to 15% and is mostly due to the non-uniform ra-
dial temperature.

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

−5

−4

−3

−2

−1

0

1

(V)

Case 1

Case 5

Figure 5: Fulfilment of the integrated radial momen-
tum balance of electrons in Eq. (10) (solid lines);
Boltzmann relation (dashed lines); electric poten-
tial profile relative to φM (dotted lines). Dashed
vertical lines mark approximate sheath edges loca-
tion. The macroscopic variables involved are com-
puted through the EVW algorithm with Nk = 2 · 105

timesteps (equivalent to 1µs of simulation time).

4. CONCLUSIONS

This work advances in the previous investigation
carried out in Ref. [1] simulating a steady HET
plasma discharge in different scenarios and analyz-
ing the effect of different parameters in order to get
a further insight of the discharge structure. The an-
nular model and related PIC/MCC code of given ax-
ial section of the acceleration region of a HET was
built on a previous one by Taccogna [2]. Important
improvements have been recently added [1]. The
main concluisions are the following. The case 2 al-
lows the further code validation specially for what
concerns the simulation of the dynamics of the sec-
ondary electron populations: the number of turns
along the radial coordinate doubles when both the
electric and the magnetic field are doubled while
keeping the same electron temperature. The case 3
explores the influence of a complete SEE including
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backscattered electrons. The total SEE yields are
found to be significantly larger with a predominance
of the backscattering process. The enhanced SEE
reduces the sheath potential drops which facilitates
the electron wall collection. This could explain the
primary electron population temperature decrease
in the bulk plasma. The influence of the wall temper-
ature for the SEE has a negligible effect on the struc-
ture of the plasma discharge, as illustrated by the
case 4. Finally, as expected, the cylindrical effects
inducing asymmetries in the macroscopic profiles
and in the different plasma magnitudes at the inner
and outer walls vanish in the planar case 5. How-
ever, the electron temperature anisotropy induced
by the magnetic field follows the same trend as in
the reference case 1. From the analysis of the ra-
dial momentum equilibrium for the primary electron
population, a smaller deviation from the Boltzmann
relation is found in this case since the influence of
the magnetic mirror effect (which is a combination of
temperature anisotropy and cylindrical divergence)
and the centrifugal force tends to zero as 1/r.
Further work will focus on the effect of a higher axial
electric field in the reported transition from a sta-
tionary solution to an instability saturated one. In
addition, a non-purely radial magnetic field should
change substantially the plasma discharge structure
and thus have important consequences on the elec-
tron VDFs.
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