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A model of an unmagnetized, steady-state, paraxial, collisionless, quasineutral plasma
plume expanding into vacuum is presented. Electrons are treated kinetically, relying on
the first-order conservation of their averaged radial action integral for the integration of
Vlasov’s equation, whereas ions are treated as a cold species. The quasi-2D behavior
of plasma density; self-consistent electric potential; electron pressure, and temperature
is analyzed. In particular, the model yields the electron cooling rate in the collisionless
plume, which differs from the Boltzmann relation or polytropic laws usually employed in
fluid and PIC/fluid hybrid plume models. A simplified polytropic law is derived that is
consistent with the kinetic electron expansion, which can replace current models in electric
space propulsion plasma-spacecraft interaction codes.

I. Introduction

The operation of electric space propulsion systems such as the gridded ion thruster (GIT) and the Hall
effect thruster (HET) results in the directed expansion of a plasma into vacuum, consisting of hypersonic

ions with velocities in the order of tens of km/s and subthermal electrons with temperatures of a few eV.
These plasma plumes can interact mechanically, chemically, and electrically with nearby objects, potentially
damaging or contaminating their surfaces[1–4]. This affects, in particular, solar arrays and other appendages.
When in operation, the plasma emitted by electric thrusters is also the main factor that sets up the electric
charge and potential of the whole spacecraft, compared to the more tenuous environmental plasma and
the photoelectric effect on sunlit surfaces[5, 6]. Consequently, electric propulsion plasma plumes play an
important role in space systems engineering and constitute a serious concern for satellite integrators. Plasmas
expanding into vacuum are also transversal to many different fields, such as plasma material processing[7,8]
and astrophysics[9].

Plasma plumes have therefore been extensively researched in the laboratory[10–17] and in space[18–22].
Existing experimental data shows the monotonic decrease of plasma density, electron temperature and electric
potential along the expansion. In the near-region, which extends for the first few thruster radii outside of
the thruster, residual electric and magnetic fields from the thruster, collisions with the larger concentration
of neutrals there, and three-dimensional non-homogeneities resulting from the geometry of the thruster and
its neutralizer exert an important influence on the plasma dynamics[12, 13, 23, 24]. Farther downstream, in
the far-region, these effects become negligible, the inhomogeneities in the radial density profile smooth out,
and the plasma is near-collisionless, unmagnetized, and quasineutral[11,16,17,25,26].

Together with these experimental observations, the present understanding of plasma plumes stems from
models. Full particle-in-cell (PIC) approaches have been used to study the expansion of rarefied plasmas
with mixed success: while this method yields great physical detail, the extent of the plume domain and
the reduced time scale of electron motion make them impractical except for some specialized studies[27–29].
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Moreover, the expansion causes the number of numerical particles per cell to decrease downstream, resulting
in high statistical noise and regularization problems. Multi-fluid models, on the other hand, enable the quick
estimation of the plasma properties in the plume[26, 30, 31], but have limited accuracy when dealing with
a near-collisionless medium, as they require external closure relations to truncate the infinite series of fluid
equations, and do not provide the kinetic plasma response. Hybrid PIC/fluid models, which treat the heavy
species as particles and the electrons as a fluid, combine some of the advantages of each approach[32–38].
This third way to study plasma plumes has thus become popular in the last decades, with multiple examples
of hybrid codes being developed.

The need of a closure relation for electrons affects multi-fluid and hybrid models both, and is one of their
major downsides. Such closure is commonly applied at the pressure-tensor level, although approaches at the
heat flux level also exist[1, 39]. The most extended model relies on Boltzmann’s relation, which results in
isotropic, isothermal electrons[35, 39]. Unfortunately, while Boltzmann’s relation is adequate for a confined
electron population, and thus it is a valid approximation in the first part of the expansion, it fails to predict
the electric potential fall along the plume, which is infinite in the Boltzmann model. A small improvement
over that closure is to treat the electrons as a polytropic species[15, 26, 30, 40], which cools down at a rate
given by the cooling exponent γ, i.e., Te9nγ´1

e . While this model yields a finite electric potential fall in the
plume, and can to some extent recover the electron temperature drop with the expansion, the self-consistent
determination of this new parameter remains an open problem. Clearly, only a kinetic electron model can
provide a satisfactory closure relation for fluid electrons.

This paper presents a quasi-2D kinetic plasma plume model and uses it to characterize the electron
features of the expansion. The model assumes a collisionless, unmagnetized, quasineutral, steady-state
plasma, providing a good description of the far-region plume. The integration of the model relies on the
first-order conservation of an averaged action integral of the electron motion, which is an adiabatic invariant
under the assumption of low plume divergence angle[41]. This invariant plays an analogous role to the
magnetic moment in the magnetized plasma expansion in a magnetic nozzle[42–44]. The electron velocity
distribution function (EVDF) is recovered in the plume and the evolution of its lower moments along the
expansion is discussed. The collisionless cooling of electrons is studied in detail, and a simplified, ‘lumped’
polytropic model that respects the total potential fall of the kinetic solution is proposed that can inform
multi-fluid and hybrid codes.

The rest of the paper is structured as follows. Section II introduces the general kinetic plasma plume
model. This sets up a framework for solving the plasma expansion, which is particularized in Section III for
the case of a plasma plume with a radially-parabolic electric potential. Section IV presents the numerical
results of the plasma expansion. Then, in Section V the simplified electron cooling model based on a
polytropic cooling law is proposed. Finally, Section VI presents some additional comments on the kinetic
model in the light of the obtained results, including a discussion of its limits of validity, and Section VII
gathers the main conclusions of this work.

II. General kinetic plasma plume model

The kinetic model of a plasma plume expanding into vacuum consists of combined electron (‘e’) and ion
(‘i’) submodels as described below, which are used iteratively to find the self-consistent electric potential
response. The plume is assumed to be steady-state, axisymmetric, non-rotating, quasineutral, collisionless
and unmagnetized. These conditions are well satisfied in the far-region plume of common thrusters like GITs
and HETs, after the collisions with neutrals, thruster electromagnetic fields, and 3D features existing around
the thruster become irrelevant as described in the Introduction.

The electric potential in a plasma plume decreases axially and radially, accelerating all ions downstream
and confining most of the electrons, as sketched in Fig. 1. In this model, the electric potential is assumed
to confine all electrons radially, and that only the most energetic electrons overcome the axial potential fall
and escape downstream, to offset the ion current and produce a current-free plume.

The expansion is also required to be paraxial, i.e., slowly diverging. This condition allows writing the
self-consistent electric potential as

φ “ φ pεz, rq , (1)

with ε ! 1. In other words, the axial derivatives of φ are distinctly smaller than radial derivatives in
the plume. Under these assumptions, electrons typically perform many radial and azimuthal orbits before
experiencing an important axial change of the electric potential.
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Figure 1. Sketch of the plasma plume expansion from an initial plane z “ 0 (the upstream model boundary) to
z Ñ8 (downstream boundary). The electric potential φ decreases gently in the axial direction to an asymptotic
value φ8, and faster in the radial direction. Examples of ion and electron trajectories are shown. The outer
solid lines represent the characteristic radius of the plume at each z position, hpεzq. The N dots on the plume
axis denote the evaluation nodes used in the model of Section III.

A. Electron model

The Hamiltonian of an electron in the steady-state, axisymmetric, paraxial electric potential φ can be written
as:

H “ 1

2me

ˆ

p2
z ` p2

r `
p2
θ

r2

˙

´ eφ pεz, rq , (2)

where H “ H pz, r, θ, pz, pr, pθq, with pz “ mevz, pr “ mevr, and pθ “ rmevθ. The mechanical energy
E “ H and the canonical azimuthal momentum pθ of the electron are conserved quantities of motion.

For ε “ 0 (i.e., a zero-divergence plume), φ becomes a function of r only, so the Hamiltonian has no
dependency on z, and pz is conserved. The perpendicular and axial energies are then independent invariants:

EK “ 1

2me

´

p2
r `

pθ
r2

¯

´ eφprq, (3)

Ez “ E ´ EK. (4)

As electrons are radially trapped by φprq, each of them bounces back and forth between certain limit values
r´ and r` while moving in the z and θ directions. The radial action integral can be defined along one such
radial orbit:

Jr “
¿

prdr, (5)

and is another conserved quantity of motion. The conjugated Hamilton-Jacobi phase-angle variable that
parametrizes the radial motion is

βr “ B
BJr

ż

prdr “ me
BH
BJr

ż

dr

pr
. (6)

The variable βr grows linearly with time and increases in 1 unit every full radial orbit, with 9βr “ BH{BJr.
Finally, under these conditions, it is possible to write the Hamiltonian as a function of pz, Jr, and pθ
only. Incidentally, the conservation of Jr holds exactly also for separable electric potentials of the form
φ “ φzpzq ` φrprq.

For 0 ă ε ! 1, Ez and EK are not independently conserved, and energy can indeed flow between the
perpendicular directions of motion pr, θq and the axial one pzq. The definitions of Jr and βr of Eqs. (5) and
(6) may nevertheless still be used, by treating z, pz as constants inside the integrals. Now, however, Jr varies
in time, with

9Jr “
¿

e
Bφ
Bz

pz
pr

dr ´ eBφBz
¿

pz
pr

dr, (7)
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Likewise, βr no longer increases linearly in time:

9βr “ BH
BJr

ˆ

1´
ż

e
Bφ
Bz

mepz
p3
r

dr ` eBφBz
ż

mepz
p3
r

dr

˙

.

Additionally, the relation between E and pz, Jr and pθ codified in the Hamiltonian now also has a dependency
on z at order ε,

E “ E pz, pz, Jr, pθq . (8)

Notwithstanding this, action integrals like Jr are adiabatic invariants under small perturbations[45].
This means that, while Jr can have periodic variations of order ε, its secular changes are only of order ε2 or
higher, as can be shown by detailed inspection of the time integral of Eq. (7). Likewise, 9βr in Eq. (8) has
only periodic variations to order βr. The conservation of E, pθ and the adiabatic invariance of Jr can be
exploited to simplify the solution of the electron kinetic equation. The electron velocity distribution function
fe is decomposed into a βr-averaged value f̄e plus an oscillation f̂e about this average:

fe “ f̄e pz, E, Jr, pθq ` f̂e pz, βr, E, Jr, pθq , (9)

with f̄e “
ş1

0
fedβr and

ş1

0
f̂edβr “ 0. Since the chosen variables do not discriminate between electrons

with positive or negative axial velocity, whenever this distinction is necessary, f̄e and f̂e are further split as
f̄e “ f̄è ` f̄é , f̂e “ f̂è ` f̂é , where superscript ‘`’ indicates vz ě 0, and ‘´,’ vz ă 0.

The complete electron Vlasov equation for electrons then reads:

vz
Bfe
Bz `

9βr
Bf̂e
Bβr `

9Jr
Bfe
BJr “ 0. (10)

Integration of this equation requires boundary conditions f̄`e0, f̂
`
e0 at z “ 0, which we refer to as upstream

or source electrons, and f̄é8, f̂é8 at z Ñ 8, i.e., downstream or background electrons. For a plasma plume

expanding into vacuum, there are no background electrons, i.e. f̄é8, f̂é8 “ 0.
Actual plasma sources are expected to deliver an electron population that is near-homogeneous in βr, so

that f̂`e0 “ Opεq; in particular, for initially semi-Maxwellian electrons, f̂`e0 is strictly 0. If f̂`e0 is of order ε,

then f̂e is also of order ε inside the plasma plume domain. Hence, we can establish the following ordering in
the plasma plume,

f̄e “ O p1q ; f̂e “ O pεq . (11)

Then, after averaging over βr, Eq. (10) becomes,

vz
Bf̄e
Bz “ O

`

ε2
˘

, (12)

This means that, up to order ε, f̄e is constant along z for each combination of E, Jr, pθ, in regions delimited
by the axial turning manifold vz “ 0, whose expression must be obtained by inversion of Eq. (8):

pz pz, E, Jr, pθq “ 0. (13)

The phase space beyond this manifold is energetically forbidden.
In general, Eq. (13) has a non-monotonic behavior in the z direction, which results from two competing

effects on the electron motion: on the one hand, the axially-decreasing electric potential causes a confining
force that pushes electrons upstream. On the other hand, in the expanding electric potential, the adiabatic
invariance of Jr and the conservation of pθ create a net axial force on the radially-averaged electron motion
that pushes them downstream. This phenomenon is analogous to the magnetic mirror effect in a magnetized
plasma, which pushes electrons in the direction of the expanding magnetic field due to the invariance of
the magnetic moment of the electron. Consequently, the turning manifold can divide the solution existence
domain into regions of four different types, or equivalently, the electrons into four subpopulations, according
to their connectivity with the upstream and downstream boundaries:

1. Regions that connect with both upstream and downstream boundaries. In these regions, electrons
have enough energy to overcome all potential barriers and reach the opposite boundary without any
reflections, and they are therefore termed free electrons. Hence, f̄`ep1q “ f̄`e0, f̄´ep1q “ f̄é8 in the free

electron region.
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2. Electrons in regions connected only with the upstream boundary eventually turn back and return to
the source. They are called reflected electrons. In these regions, f̄`ep2q “ f̄´ep2q “ f̄`e0.

3. Similarly, there are regions only connected with the downstream boundary. Therefore, for a plasma
plume expanding into vacuum f̄`ep3q “ f̄´ep3q “ f̄é8 ” 0, and these are empty regions.

4. Lastly, regions of existence that are not connected with either the upstream or downstream boundaries
may contain doubly-trapped electrons. Here, f̄`ep4q “ f̄´ep4q, but the value of the distribution function in

these regions remains otherwise undetermined, and the solution requires additional information from
outside of the present kinetic model. As discussed in Section VI, physical reasoning suggests that these
regions must be populated by a fe that is near-Maxwellian and near-continuous with neighboring parts
of phase space.

To obtain the βr-dependent part of the distribution function, f̂e, to comparable accuracy, it is necessary to
tackle the rest of the non-averaged Vlasov Eq. (10) up to order ε, i.e.,

vz
Bf̂e
Bz `

BH
BJr

Bf̂e
Bβr “ ´

9Jr
Bf̄e
BJr `O

`

ε2
˘

. (14)

This correction to fe is not computed in the present work. As a result, the obtained solution fe “ f̄e is strictly
only accurate to zeroth-order in ε. Once f̄e is known, any moment of the electron species or of a particular
subpopulation, and other standard related quantities such as densities, velocities, and temperatures can be
computed as described in Appendix A.

B. Ion model

The ions emitted by a plasma thruster are commonly much colder than the electron population, Ti ! Te.
Additionally, ions are hypersonic[26], with a bulk velocity ui about 5–40 times larger than the plasma sonic
velocity cs “

a

Te{mi. Nonetheless, except for the lightest propellants, ui is still much less than the electron

thermal velocity, ce “
a

Te{me. Thus, the following ordering of velocities is satisfied in an electric propulsion
plasma plume:

ci ! cs ! ui ! ce. (15)

Moreover, ions are accelerated downstream by the electric field in the plasma plume, so all of them are free
ions that undergo no axial reflections. Consequently, their motion is far simpler than that of electrons.

Neglecting the dispersion in the ion velocity distribution function (vi » ui), ions are modeled as a cold
species that satisfies the following steady-state continuity and momentum equations,

∇ ¨ pniuiq “ 0, (16)

mipui ¨∇qui ` e∇φ “ 0, (17)

which must be supplemented with upstream boundary conditions at z “ 0, ni0 and ui0.
These hyperbolic equations can be solved numerically for a given φ, with Eq. (17) providing ui by direct

propagation of ion trajectories with the method of characteristics. Once ui is known, discretization of
Eq. (16) in the plume domain gives ni.

C. Self-consistent electric potential determination

The electron and ion models defined above can be used to compute the zeroth-order ne,ue, and ni,ui at any
point pz, rq of the plume, given a electric potential map φpεz, rq and a set of compatible boundary upstream
conditions f̄`e0, ni0, and ui0. The quasineutrality assumption and current-free condition in the paraxial limit
couple the two species together and allow finding the self-consistent plume solution iteratively, including the
electric potential φ,

ni “ ne; uzi “ uze. (18)

Observe that ne can be decomposed as ne “ nè `né , where the ` and ´ signs denote the contributions
of f̄è and f̄é , respectively. Similarly, uze “ uz̀e`uźe. Since f̄é at z “ 0 is part of the solution, only nè and
uz̀e are known a priori at the upstream boundary. Indeed, the values of né and uźe depend on the fraction
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of reflected electrons that return to the plasma source. Thus, it is not possible, in general, to determine
whether the upstream boundary conditions are compatible with Eqs. (18) at z “ 0 without solving the
electron expansion. To overcome this difficulty, only the shape, but not the magnitude, of f̄`e0 is prescribed:

f̄`e0 “ n`e0F̄
`
e0 (19)

where F`e0 is the specified normalized distribution function, and n`e0, is the magnitude of f̄`e0 to be computed
as part of the solution.

An iterative solution procedure can then be established as follows. The value of φ is fixed at the origin,
where φp0, 0q “ 0 is chosen. Then, an initial guess of the functions φ and n`e0 is produced. The electron
and ion models are solved to obtain ne, uze, ni, uzi at a set of evaluation nodes pzi, riq for i “ 1, . . . , N .
Equations (18) at those points provide 2N error equations to be zeroed. Next, a new guess of φ and n`e0 is
generated to lower this error, and the procedure is repeated until convergence with a prescribed tolerance is
achieved. Upon completion, the solution method yields the self-consistent φ and n`e0 functions.

III. Radially-parabolic electric potential

Applying a constraint on the radial shape of the electric potential allows reducing the electron integrals
of Jr and βr in Eqs. (5) and (6) to closed forms, simplifying the solution process. In this section, solutions
with a radially-parabolic potential are sought,

φ ph, rq “ ´Te̊ h
2
0

eh4
r2 ` φz phq , (20)

where h pεzq is a monotonically-increasing function that represents the (unknown) characteristic radius of
the plasma plume at each axial position z, and is used to replace z as the independent variable of the
problem, with hp0q “ h0. In expression (20), φz phq is the value of the electric potential along the plume
axis, which will be computed by coupling together the electron and ion models as discussed above, and Te̊
is an arbitrary energy constant. The radial electron density profile of Eq. (20) corresponds to a Gaussian
density profile ne9 exp p´r2{h2

0q in the limit of isothermal electrons with temperature Te̊ . Such radial profile
is a reasonable model of the far-region plasma plume that agrees well with experimental measurements of
many GITs and HETs[26]. Observe that the non-separability of φ stems from first term in the right hand
side of Eq. (20) only.

For this electric potential, the corresponding expression for Jr is

Jr
π
“
c

me

2Te̊

h2

h0

„

1

2me

ˆ

p2
r `

p2
θ

r2

˙

` Te̊ h
2
0

h4
r2



´ |pθ| . (21)

For compactness, the perpendicular momentum is defined as

pK “ Jr
π
` |pθ| . (22)

Then, βr is related to r through:

cos p2πβrq “ pK ´
a

2Te̊ meh0r
2{h2

a

p2K ´ p2
θ

, (23)

and the extreme values of r in a radial electron orbit, r` and r´, are given by

r2˘
h2
“ pK ˘

a

p2K ´ p2
θ

a

2Te̊ meh0

. (24)

Equation (13) becomes:
1

2
mev

2
z “ E ´ Ueff ph, pKq “ 0, (25)

where Ueff is an effective potential of the axial electron motion, which depends on Jr and pθ only through
pK,

Ueffph, pKq “ ´eφz phq `
c

2Te̊
me

h0

h2
pK. (26)
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The turning-point manifold of Eq. (25) is illustrated in Fig. 2 for an example function φz. Inverting Eq. (25)
the maximum value of pK for each E and h is given by:

pKM ph,Eq “
c

me

2Te̊

h2

h0
rE ` eφz phqs . (27)

Locating the extrema of either Ueff or pKM along h helps define the connectivity of each point of phase space
with the upstream and downstream boundary conditions efficiently, and thus dividing it into regions of types
1 to 4 as defined in Section II. Alternatively, Eq. (13) can be analyzed in the E, pK plane, where it has the
form of a straight line sphq for each value of h, proving that the manifold is a ruled surface.
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Figure 2. Sketch of the phase space for a radially-parabolic electric potential for �z “ (some simple function
of h, representative of the actual expansion, but giving rise to interesting features).
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Figure 2. Phase space diagrams for a radially-parabolic electric potential. For the purpose of illustration,
the function φzphq for the case χ “ 0.02, µÑ8 has been chosen.

As the case of most practical interest, the moment integrals are next particularized for a semi-Maxwellian
population upstream in velocity space,

f̄`e0 “ fMe “ 2n`e0

ˆ

me

2πTe̊

˙3{2
exp

ˆ

´ E

Te̊

˙

, (28)
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where the previously-introduced dimensioning constant Te̊ is the reference temperature. It should be ob-
served that, as f̄é ‰ f̄è in general, the initial electron temperature Te0 does not coincide with Te̊ . Only
in the limit where the free electron population is negligible (and all electrons at the source are reflected
electrons) does Te0 Ñ Te̊ .

To fully determine the electron distribution function in the doubly-trapped regions while retaining some
degree of freedom, it is assumed that they are populated by a fraction of the same Maxwellian distribution
function,

f̄`ep4q “ f̄´ep4q “ αfMe , (29)

where α is a chosen filling factor between 0 and 1.
The moment integrals of the electron species and subpopulations for the radially-parabolic electric poten-

tial case, and in particular for the semi-Maxwellian distribution of above, are reduced to compact expressions
in the second part of Appendix A.

With regards to ions, under the paraxiallity assumption, the ion continuity Eq. (16) becomes

1 “ niph, 0q
ni0p0q

uziph, 0q
uzi0p0q

h2

h2
0

. (30)

Lastly, their momentum Eq. (17) at the plume axis can be integrated into the conservation of ion mechanical
energy

0 “ 1

2
mi

“

u2
ziph, 0q ´ u2

zi0p0q
‰` eφzphq, (31)

where φzph0q “ 0 has been prescribed.
The iteration procedure to determine the self-consistent φz and n`e0 is simplified by taking the N evalua-

tion nodes at the axis of the plume as shown in Fig. 1, the last of which is taken at h “ 8 (i.e., for z “ 8).
This yields N ´ 1 quasineutrality error equations for the nodes with h ă 8, plus a single independent
equation from the current-free condition, for a total of N equations. After fixing φzph0q “ 0, there are N ´1
unknowns for the discretized φzphq, plus one unknown in n`e0, for a total of N unknowns. Therefore, the
iteration scheme is well-determined. This approach has been implemented into an open source numerical
code named AKILES2D[46], after ‘Advanced Kinetic Iterative pLasma Expansion Solver 2D.’

The resulting model can be normalized with me, e, Te̊ , h0 and ni0p0q. The dimensionless plasma response
can be expressed as a function of a dimensionless velocity parameter χ, the ion-electron mass ratio µ, and
the filling factor α,

α; χ “ ui0p0q
a

Te̊ {me

; µ “ mi

me
. (32)

Since ui0p0q “ ue0p0q from Eq. (18), the parameter χ is also the electron Mach number, or the ratio of ion
(or electron) current in the plume to the thermal electron flux (in both cases, based on Te̊ instead of Te0p0q).
The range of χ from 0.002 to 0.2 covers amply all current and foreseen electric propulsion applications.

Observe that the dependency on µ is only introduced into the problem by Eq. (31). Note that the initial
ion Mach number at the axis is related to χ and µ through

Mi0p0q “ ui0p0q
a

Te0p0q{mi

“ χ
?
µ

Te̊
Te0p0q , (33)

where the factor Te̊ {Te0p0qmust be computed as part of the solution. For fixed χ, if µÑ8 then Mi0p0q Ñ 8
and the ion velocity remains constant in the expansion[26], uzi “ uzi0. This is the hypersonic limit, in which
the dependency with µ (or Mi0p0q) disappears from the problem. Thus, the plasma response in hypersonic
electric propulsion plumes depends dominantly on α and χ, while the dependency on µ is negligible.

As a final comment to this section, while the model formulated here has been left as a function of
the characteristic plume radius at each actual position, hpεzq, observe that it is possible to determine the
dependency of h on z by integrating the full ion model of Section B without using the paraxial approximation
of Eq. (30). Several approximated methods exist to determine the evolution of the characteristic plume radius
in hypersonic plasma plumes[26].
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IV. Results

The paraxial plasma plume model with the radially-parabolic electric potential and semi-Maxwellian
source electrons is integrated next to investigate the plasma expansion into vacuum. The analysis focuses
on the case of completely-filled doubly-trapped electron regions (α “ 1). The study of other regimes is left
for future work.

The solution of the electric potential at the plume axis, φzphq, is shown in Fig. 3(a) for χ “ 0.002, 0.02, 0.2
and µ Ñ 8 (hypersonic limit). In all cases, φzphq decreases monotonically downstream to an asymptotic
value φ8; most of the potential fall occurs early in the expansion. As it can be observed, increasing χ results
in a faster approach to the asymptotic value. The effect of a finite, moderate value of µ on the shape of
φzphq is only noticeable at low values of χ, and causes the potential to approach faster its asymptotic value
too. For completness, the 2D electric potential profile for χ “ 0.02, µÑ8 is illustrated in Fig. 3(b).

The value of φ8 is plotted as a function of χ in Fig. 4(a). As χ is increased, there is a larger free electron
current, and consequently, eφ8{Te̊ becomes less negative to allow more electrons to escape downstream. As
explained in Appendix B, when the condition in Eq. (56) is satisfied, then φ8 depends only on the value of
χ and can be computed from the quasineutrality and current-free conditions at h “ h0 only with Eqs. (57).
The limit curve of Eq. (56) is displayed in Fig. 3 for comparison with the actual solutions of φzphq. This
condition is met for all χ and for the studied range of 104 ď µ ă 8. Hence, in the presented cases φz and
the rest of magnitudes shown in Fig. 4 (n´e0{n`e0, Tze0{Te̊ , TKe0{Te̊ and Te0{Te̊ ) can be computed before
solving the full kinetic problem, and the parameter χ alone then controls the fraction of free electrons in the
plasma plume. The limit value of χ for a semi-Maxwellian population upstream is

a

2{π » 0.8, for which
all electrons at h “ h0 are free electrons and no reflected electrons exist (n´e0 “ 0). In this limit, the electron
population at h “ h0 is just the semi-Maxwellian in the boundary condition f̄`e0. As it can be observed in
Fig. 4, n´e0{n`e0 and Tze0p0q{Te̊ decrease with increasing chi, but TKe0p0q{Te̊ has a non-monotonic behavior
with a minimum value, as it is equal to 1 for a full Maxwellian and for the semi-Maxwellian f̄`e0. As a result,
the average temperature Te0p0q{Te̊ also displays a minimum. Due to the difference between f̄è and f̄é at
h “ h0, a small degree of temperature anisotropy already exists at the upstream boundary (not observable
in the figures).

For the rest of this section the discussion focuses on the hypersonic limit (µ Ñ 8) with χ “ 0.02,
unless otherwise noted. The evolution of the electron velocity distribution function f̄e in the E, pK plane is
presented in the plots on the left of Fig. 5. The plots on the right provide the corresponding view in the
vz, vr variables at the plume axis (r “ 0). At h “ h0, only free and reflected electron populations exist. As
the plasma expands, the fraction of reflected electrons gradually decreases, doubly-trapped electrons gain
relevance, and empty regions appear. As the plume characteristic radius h continues to increase, the doubly-
trapped population becomes dominant. Far downstream, as hÑ8 and φzphq Ñ φ8, electron density finally
drops to zero and the phase space is divided into a forbidden region and an empty region. The straight lines
sph0q and sp8q (and the corresponding transformed curves in velocity variables at the plume axis) are easily
identifiable in Fig. 5. As explained in Appendix B, these two lines play a central role in the geometry of
phase space.

From Eq. (30) and the quasineutrality assumption, the electron density along the axis in the hypersonic
limit is given by

neph, 0q
ni0p0q “

h2
0

h2
, (34)

This is plotted, together with the density of each electron sub-population at the axis, in Fig. 6. The
same conclusions on the dominance of each sub-population can be reached as with Fig. 5: initially, reflected
electrons dominate, but soon doubly-trapped electrons become the majority. Boltzmann’s relation for density,
ne9 exppeφz{Tep0qq, which would result from an isothermal expansion, is also plotted for comparison. As
it can be observed, Boltzmann’s relation is only a valid approximation in the first part of the expansion;
downstream, density drops at a faster rate, revealing that electron cooling takes place in that part of the
plume. The lower χ is, the larger the region where the (isothermal) Boltzmann’s relation adequately describes
the expansion, as it approaches a fully-confiend regime without free electrons.

The electron temperature tensor is diagonal to zeroth-order in ε, with:

Tze; TKe “ Tre, Tθe; (35)

as defined in the Appendix A. The axial and perpendicular temperatures Tze, TKe for the whole electron
species and for each subpopulation are plotted in Fig. 7. The average temperature Te is also shown. For the

9
The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA

October 8–12, 2017



100 101 102
´1

´0.8

´0.6

´0.4

´0.2

0

� “ 0.002

0.02
0.2

1 ´ h2
0{h2

h{h0

�
z
{|�

8
|

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z{h0

r{h
0

´12 ´10 ´8 ´6 ´4 ´2 0

(b)

(a)

Figure 3. (a) Electric potential �z{�8 along the plume axis for � “ 0.002, 0.02, and 0.2 and ↵ “ 1. The solid
lines denote the hypersonic limit; (?? use thick lines for the three of them). the dashed lines have µ “ 2.3 ¨ 105
(Xe), and the dotted lines µ “ 7.1 ¨ 104 (Ar). The limit curve of Eq. (61) is shown as a thin dash-dot line. (b)
Two-dimensional plot of the electric potential for � “ 0.02, µ Ñ 8, ↵ “ 1. Observe that the vertical axis is
normalized with the local value of hpzq. Thin solid lines are isopotential lines.
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Figure 3. (a) Electric potential φzphq{φ8 along the plume axis for χ “ 0.002, 0.02, and 0.2 and α “ 1. The
solid lines denote the hypersonic limit µ Ñ 8; the dashed lines have µ “ 2.3 ¨ 105 (corresponding to Xe). The
limit curve of Eq. (56) is shown as a thin dash-dot line. (b) Two-dimensional plot of the electric potential for
χ “ 0.02, µÑ8, α “ 1. Thin lines are isopotential lines.
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Figure 4. (a) Asymptotic electric potential downstream φ8, (b) Reflected electron density ratio n´e0p0q{n`e0p0q at
the upstream boundary condition, and (c) Initial electron temperature ratios Tze0p0q{Te̊ , TKe0p0q{Te̊ , Te0p0q{Te̊
as a function of χ for α “ 1. Thin lines correspond to the the solution of Eq. (57) for the studied range
104 ď µ ă 8.
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Figure 5. Evolution of the electron velocity distribution function f̄e at di↵erent values of h, for � “ 0.02,
µ Ñ 8 and ↵ “ 1. Plots on the left show the pE, pKq plane; those on the right the pvz , vrq plane at the plume axis
(r “ 0). The color map shows the magnitude of f̄è . The di↵erent regions of phase space are labeled according
to the enumeration of Section. A.
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Figure 5. Evolution of the electron velocity distribution function f̄e at different values of h, for χ “ 0.02,
µÑ8 and α “ 1. Plots on the left show the pE, pKq plane; those on the right the pvz , vrq plane at the plume axis
(r “ 0). The color map shows the magnitude of f̄è . The different regions of phase space are labeled according
to the enumeration of Section. A.
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Figure 6. (a) Electron density ne at the plume axis for χ “ 0.02, µ Ñ 8 and α “ 1 (thick solid line). The
thin lines represent the contributions of free electrons (red, triangles ), reflected electrons (green, circles

) and doubly-trapped electrons (blue, squares ). The dashed line shows Boltzmann’s relation for an
isothermal electron species with Te “ Te̊ for comparison. (b) Two-dimensional plot of the electron density for
χ “ 0.02, µÑ8, α “ 1. Thin solid lines are contour lines.
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whole electron species, both Tze and TKe decrease monotonically in the direction of the expansion, but show
markedly different behaviors: while Tze tends to an asymptotic value, TKe goes to zero. This can be explained
by analyzing the evolution of the temperatures of each subspecies. The free electron Tzep1q is nearly constant
through the expansion, increasing slowly after a minimum, and eventually dominates downstream. In TKe,
it is the doubly-trapped electrons which dominate nearly everywhere, both in density and in temperature.

The local cooling rates for each of the two temperatures and the average temperature are defined as:

γze “ d lnTze
d lnne

; γKe “ d lnTKe
d lnne

; γe “ d lnTe
d lnne

, (36)

and are also plotted in Fig. 7. Free electrons tend to have γzep1q » 1 (i.e., near isothermal) downstream,
and actually slightly smaller than 1, consistent with the rising Tzep1q, while the perpendicular energy cools
down quickly at a rate γKep1q » 2. Reflected and doubly-trapped electrons, on the other hand, both tend
to a nearly adiabatic (5{3) cooling rate for both temperatures. The initial behavior of the temperatures
and cooling exponents near h “ h0 is related to the chosen semi-Maxwellian boundary condition and the
forbidden region that appears for vz » 0 when the expansion begins, as can be observed in Fig. 5. The
behavior of the cooling exponents for the whole electron species results from compounding those of each
subpopulation.

While not shown here, the electron temperature in the radial direction is nearly constant. The 2D profile
of Fig. 6(b), which showed that plasma density is near-Gaussian in the radial direction, is consistent with a
electron population that is essentially isothermal in the radial direction at each plume cross-section.
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FIG. 7. Temperature of each electron subpopulation l and for the whole electron species along the plasma plume axis for
� = 0.02, µ ! 1 and ↵ = 1, (a) Tze(l)(h, 0)/T

⇤
e , (b) T?e(l)(h, 0)/T

⇤
e , and (c) Te(l)(h, 0)/T

⇤
e . The thin lines represent the

temperature of free electrons (red, triangles), reflected electrons (green, circles), and doubly-trapped electrons (blue, squares).
Thick black lines represent the temperatures of the global electron population. The lower plots depict the corresponding local
cooling exponents �ze(l), �?e(l) and �e(l). The dashed lines indicate the limits for an isothermal (� = 1) and an adiabatic
(� = 5/3) behavior.

ing paraxial. The validity of this assumption is com-
mented on below in Section VIA. Secondly, the filling
of the doubly-trapped electron regions, which are discon-
nected from both upstream and downstream boundary
conditions, cannot be explained from the present steady-
state, collisionless model. This issue is commented on in
Section VIB.

A. Validity of the paraxiallity approximation

The validity of the asymptotic expansion of the kinetic
electron model in " relies on the adiabatic invariance of
Jr. The extent to which Jr is conserved in each radial
orbit depends on the ratio of the radial electron period,
1/�̇r, to the characteristic time in which an electron ex-
periences changes in the non-separable part of the elec-
tric potential as it moves in the axial direction. For an
electron in the radially-parabolic potential of Section III,
this time is ⇠ vz"h

2
0/h

3, where dh/dz ⇠ " has been taken
into account. Proper Jr invariance then requires a small
value of the time ratio, i.e.,

"vzp
T ⇤
e /me

h0

h
⌧ 1. (47)

From this expression, it is possible to extract three con-
clusions. Firstly, a small value of " is necessary, as ex-
pected. Actual plasma thrusters have divergence half an-
gles in the range of 10–15 deg for GITs to 40–50 deg for
HETs. Clearly, the paraxiallity criterion is better satis-
fied by GITs. Secondly, the conservation of Jr and hence
the asymptotic expansion in " is not uniformly valid in
velocity space, as it fails for large vz. This a↵ects, in par-
ticular, the high energy tail in the free electron region.
Thirdly, Jr adiabaticity improves as h increases, even if
the radial electron period increases with h2.
Apart from these observations, the validity of the

model as z ! 1 merits its own discussion. As the
density decreases, the quasineutrality condition may be
called into question, and the plasma from a thruster
plume eventually merges into the thin ambient plasma,
altering the plasma response in the far downstream re-
gion. This may a↵ect, in particular, the amount of re-
flected and doubly-trapped electrons that are successfully
reflected back at large values of z.
Finally, it is noted that the discontinuity in f̄e that may

exist across the boundary between two di↵erently pop-
ulated regions leads to an infinite gradient that breaks
locally the asymptotic expansion in ". This phenomenon
is expected to give rise to a thin layer around the in-

terface, where f̂e can be of zeroth order. Such disconti-

Figure 7. Electron temperature along the plasma plume axis for χ “ 0.02, µÑ8 and α “ 1, (a) Tzeph, 0q{Te̊ , (b)
TKeph, 0q{Te̊ , and (c) Teph, 0q{Te̊ . Thick black lines represent the temperatures of the global electron population.
In each graph, the partial temperatures of free electrons (red triangles ), reflected electrons (green circles

) and doubly-trapped electrons (blue squares ) are also shown. The lower plots depict the corresponding
local cooling exponents γze, γKe and γe. The dashed lines indicate the limits for an isothermal and an adiabatic
population.

V. Simple electron cooling model

The results obtained in Section IV can be used to construct closure relations that can inform the fluid
electron models of multi-fluid and hybrid codes, replacing Boltzmann’s relation and similar laws that are
kinetically unjustified in a near-collisionless plasma plume. This can be done with arbitrary level of detail.
For example, the average electron temperature can be tabulated against the electron density, and the re-
sulting functional dependency Te “ Tepneq can be used to close the fluid equations at the pressure level.
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Alternatively, the temperature tensor components can be considered, to take into account the anisotropy
of the electron response. Or a closure can be established at the heat-flux level or higher moments of the
distribution function.

It is nonetheless desirable to derive a simple, approximate closure relation that can be easily implemented
in existing codes. As most codes already feature a simple polytropic cooling law for electrons, an interesting
choice is to establish a polytropic electron cooling model with a constant, averaged cooling rate γ̄e,

Te
Te0p0q “

ˆ

ne
ne0p0q

˙γ̄e´1

(37)

which respects the electric potential fall φ8 of the kinetic model. The total electric potential fall φ8 is a key
magnitude of the expansion that affects the interaction of the plasma plume with its environment and any
nearby objects such as solar arrays. Since φ8 is closeley linked to the current of free electrons that escapes
downstream, which under the current-free condition must equal the ion current emitted by the thruster, its
value is a robust feature of the kinetic model. The ‘lumped’ polytropic approximation would then at least
agree with the kinetic model in that key aspect of the expansion, Note, however, that this model ignores the
local variations of the electron cooling rate, and moreover, neglects the anisotropy that exists in the plasma
plume.

For a polytropic electron species, the cooling exponent γ̄e and the asymptotic potential fall φ8 are related
through

γ̄e “ |eφ8|
|eφ8| ´ Te0p0q . (38)

The value of γ̄e computed from the φ8 and Te0p0q of the kinetic solution of Fig. 4 is shown in Fig. 8. The
lumped cooling rate is seen to increase with χ, and becomes infinite at χ » 0.4, for which ´eφ8 Ñ Te0p0q,
hinting that this approximated closure relation is inadequate to model the electron expansion at high values
of χ.
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Figure 7. (a) Electron axial temperature Tzeph, 0q and (b) electron perpendicular temperature TKeph0, 0q at the
axis for � “ 0.02, µ Ñ 8 and ↵ “ 1 (thick lines). In each graph, the contributions of free electrons (red triangles

), reflected electrons (green circles ) and doubly-trapped electrons (blue squares ) are also shown.
The dashed lines indicate the expected slopes for an isothermal and an adiabatic population. (c) Local cooling
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Figure 8. Lumped polytropic model cooling rate �̄e that results in the same asymptotic potential fall �8 as
in the kinetic model as a function of � for ↵ “ 1. The solid line denotes the hypersonic limit (µ Ñ 8); the
dashed line has µ “?? (Xe), and the dotted line µ “?? (Ar).
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Figure 8. Lumped polytropic model cooling rate γ̄e that results in the same asymptotic potential fall φ8 as
in the kinetic model as a function of χ for α “ 1.
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VI. Discussion

There are two aspects worth further discussion. Firstly, the kinetic model hinges on the expansion being
paraxial. The validity of this assumption is commented on below in Section A. Secondly, the filling of the
doubly-trapped electron regions, which are disconnected from both upstream and downstream boundary
conditions, cannot be explained from the present steady-state, collisionless model. This issue is commented
on in Section B.

A. Validity of the paraxiallity approximation

The validity of the asymptotic expansion in ε of the kinetic electron model relies on the adiabatic invariance
of Jr. The degree to which Jr is conserved in each radial orbit depends on the ratio of the radial electron
period, 1{ 9βr, to the characteristic time in which an electron experiences changes of the non-separable part
of the electric potential as it moves in the axial direction. For an electron in the radially-parabolic potential
of Section III, this time is „ vzεh

2
0{h3, where dh{dz „ ε has been taken into account. Proper Jr invariance

then requires a small value of this ratio, i.e.,

εvz
a

Te̊ {me

h0

h
! 1. (39)

From this expression, it is possible to extract three conclusions. Firstly, a small value of ε is necessary, as
expected. Actual plasma thrusters have divergence half angles in the range of 10–15 deg for GITs to 40–50
deg for HETs. Clearly, the paraxiallity criterion is better satisfied by GITs. Secondly, the conservation of
Jr and hence the asymptotic expansion in ε is not uniformly valid in velocity space, as it fails for large vz.
This affects, in particular, the high energy tail in the free electron region. Thirdly, Jr adiabaticity improves
as h increases, even if the radial electron period increases with h2.

Finally, it is noted that the discontinuity in f̄e that may exist across the boundary between two differently
populated regions leads to an infinite gradient that locally breaks the asymptotic expansion in ε. This
phenomenon is expected to give rise to a thin layer around the interface, where f̂e can be of zeroth order.
Such discontinuities are inevitable between the free electron region, where f̄é “ 0, and any other populated
region with f̄è “ f̄é . The solution of these layers has not been addressed in the present work.

B. On doubly-trapped electron regions

As advanced above, the present model leaves the value of f̄e undetermined in doubly-trapped regions. A
qualitative discussion of two physical mechanisms that may populate them is presented here.

Firstly, collisionality has been neglected in the model, on the basis that the residence time of ions and
electrons in the region of interest of the plume is much shorter than the characteristic collision time in the
far-region. Nonetheless, while the electron residence time in regions connected to either the upstream or
downstream boundary conditions is finite, in doubly-trapped regions it is ideally infinite. This fundamentally
affects the time ordering in these regions, and hence the steady state solution in them must be a collisional
one for any non-zero plasma collisionality, even if it is arbitrarily small. This could provide a plausible
mechanism to populate doubly-trapped regions regions. This argument supports the choice of a Maxwellian
or near Maxwellian distribution function for these regions. Another similar population mechanism would be
enabled by plasma turbulence.

Secondly, during the transient set-up of the plasma plume, the electric potential changes in time. The
energy of an individual electron is not conserved, and decreases a bit on each reflection at the leading
expansion front. These two effects combined may result in the trapping of electrons into the doubly-trapped
regions as they are being formed. Ongoing work with a non-steady kinetic model in the analogous case of a
magnetized plasma expansion suggests that this mechanism can partially fill these regions[44].

VII. Conclusions

A collisionless, paraxial kinetic plasma plume model has been established to investigate the electron
expansion. The model exploits the conservation of mechanical energy and angular momentum about the
plume axis, and the adiabaticity of the radial action integral, to integrate the electrons Vlasov’s equation.

16
The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA

October 8–12, 2017



Phase space is seen to be divided into regions of four different types: free electrons, reflected electrons, empty
regions, and doubly-trapped electrons.

The evolution of the electric potential, the electron velocity distribution function, and its moments up to
the temperature tensor have been analyzed after prescribing a parabolic shape to the radial electric potential
profile. The expansion depends on three dimensionless parameters, which describe the free electron electric
current, the mass of the ions, and the degree of filling of the doubly-trapped regions.

The collisionless cooling of the electron subpopulations has been analyzed in detail. The local cooling
exponents have been computed, and an approximated, lumped polytropic model with exponent γ̄e that is
consistent with the total electric potential fall in the kinetic plume model has been proposed that is easy to
implement in existing fluid and hybrid simulation codes. The realization that the fraction of free electrons
is dictated by φ8 for the parametric ranges under study allows obtaining φ8 analytically without solving
the whole expansion, and thus the lumped cooling exponent γ̄e.

Future work will address higher moments such as the kinetic heat fluxes in the electron population and
investigate more accurate lumped models that respect the local cooling and anisotropic behavior of the
kinetic model to some extent will be proposed. The effect of partially removing doubly-trapped electrons
must be explored, as well as the mechanisms that can fill those regions of phase space. Other radial electric
potential profiles and initial distribution functions than semi-Maxwellian populations can be investigated.
The effect of background electrons approaching from infinity can be easily included in the model, affecting
the previously-empty regions and the free electron regions, as these are both connected to the downstream
boundary condition. Finally, the mathematical properties of the model such as the general existence and
uniqueness of solution should be discussed in more detail. A comparison with full-PIC codes and experiments,
such as those of Ref. [17] will be carried out to confirm the range of validity of the model.
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A. Computation of moments of the electron distribution function

Following the enumeration of the electron subpopulations given in Section A, the ijk-th moment of
electron distribution function fe at a point pz, rq of the plume for the l-th electron subpopulation is given
by:

Mijkplq pz, rq “
¡

f̄eplqvizvjrvkθdv, (40)

where the integral extends to all phase space. The total ijk-th moment for the full electron species is then

Mijk “Mijkp1q `Mijkp2q `Mijkp4q. (41)

Reflected electrons (subpopulation 2) and doubly-trapped electrons (4) do not contribute to odd moments
in vz, which depend only on the free electrons (1). Also as f̄e is independent of βr, it is symmetric in vr,
and for a non-rotating plume, f̄e is also symmetric in vθ. Hence, the integral vanishes for odd j or k.

Several derived quantities are commonly defined from the distribution function moments and are used in
the text. As in Eq. (41), a subindex in parenthesis, if present, denotes a single electron subpopulation, and
when dropped, refers to the full electron species. Electron densities are

neplq “M000plq. (42)

Axial velocities are defined as:

uzeplq “
M100plq
neplq

, (43)

with uzep2q “ uzep4q “ 0. Note that uzep1q ‰ uze as it is weighted with a different density. The temperature
tensor is diagonal, with

Tzeplq “ me

ˆM200plq
neplq

´ u2
zeplq

˙

, (44)

Treplq “ Tθeplq ” TKeplq “ me

M020plq
neplq

. (45)

The average temperature is defined as Teplq “ pTzeplq` 2TKeplqq{3. Observe that neTze ‰ ř

neplqTzeplq due to
the u2

ze term. Finally, higher moments can be defined likewise.
In the case of a radially-parabolic electric potential as in Section III, the even moments of the distribution

function in vr and vθ for the l-th electron subpopulation can be computed as the following triple integral in
the E, pK, pθ variables,

Mijkplq ph, rq “ 1

rk`1

a

2i`j`3Te̊
a

mi`j`2k`5
e

h0

h2

ż

dE

ż

dpK rE ´ Ueffph, pKqs
i´1
2

ż

dpθ . . .

ˆ

c

2Te̊
me

h0

h2
pK ´ Te̊ h

2
0

h4
r2 ´ p2

θ

2mer2

˙

j´1
2

pkθ

”

f̄`eplq ` p´1qif̄´eplq
ı

,

(46)

which has an avoidable singularity at the plume axis, r “ 0. In this expression, the integral on pθ runs from
0 to rr2a2Te̊ meh0pK{h2´ 2Te̊ meh

2
0r

2{h4s1{2, the integral on pK from raTe̊ me{2h0r
2{h2s to pKM , and the

integral on E from r´eφz phq ` Te̊ h2
0r

2{h4 pzqs to 8.
Lastly, if the distribution function at the upstream boundary condition is semi-Maxwellian as in Eq. (28),

the integral simplifies to:

Mijkplq pz, rq “ 2n`e0

d

ˆ

2Te̊
me

˙i`j`k Γ
`

1`j
2

˘

Γ
`

1`k
2

˘

2π3{2 Γ
´

1` j`k
2

¯ exp

ˆ

eφz phq
Te̊

´ h2
0

h4
r2

˙
ż 8

0

gijkplq pEq exp p´EqdE ,

(47)
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with:

gijkplq pEq “
ż E

0

Pl ph,E, pKq
b

pE ´ EKqi´1 Ej`kK dEK, (48)

where Pl ph,E, pKq is equal to 1 for passing electron regions, 1 ` p´1qi for reflected electron regions, and
αr1` p´1qis for doubly trapped regions; and

E “ 1

Te̊
rE ` eφzphqs ´ h2

0

h4
r2, (49)

EK “
c

2Te̊
me

h0

h2

pK
Te̊

´ h2
0

h4
r2. (50)

The integral of Eq. (48) can be reduced in each region of phase space to hypergeometric functions.

B. Additional analysis of phase space geometry

In the radially-parabolic potential case of Section III, the different regions of phase space are defined by
Eq. (25). As explained in Section III, for each h, this equation defines a straight line sphq,

sphq : E ` eφzphq ´
c

2Te̊
me

h0

h2
pK “ 0. (51)

For h “ h0 and hÑ8 this line takes the form

sph0q : E ´
c

2Te̊
me

pK
h0
“ 0, (52)

sp8q : E ` eφ8 “ 0, (53)

where φ8 “ φzp8q. When transformed into the velocity space at the plume axis, these lines become the
following circle and curve, respectively:

sph0q : v2
z ` v2

r

ˆ

1´ h2

h2
0

˙

´ 2e

me
φzphq “ 0, (54)

sp8q : v2
z ` v2

r ´
2e

me
pφzphq ´ φ8q “ 0. (55)

The extent of the free electron region is closely linked to the electron current in the plasma plume, the
value of φ8, and the ratio n`e0{n´e0. This region coincides with the space above sph0q and sp8q, as long as
there exist no intermediate barriers of Ueff that reduce its extent. According to Eq. (25), this condition is
met when the solution φzphq{φ8 satisfies

φzphq
φ8

ď 1´ h2
0

h2
(56)

for all values of h,. Condition (56) is plotted on Fig. 3(a). If this inequality is verified, the quasineutrality
and current-free Eqs. (18) at h “ h0 fully determine φ8 and n´e0{n`e0. For a semi-Maxwellian population at
the upstream boundary as in Eq. (28),

ni0

n`e0
“ 1` erf

d

´eφ8
Te̊

´
c

2

π

d

´eφ8
Te̊

exp

ˆ

eφ8
Te̊

˙

,

χ
ni0

n`e0
“
c

2

π

ˆ

1´ eφ8
Te̊

˙

exp

ˆ

eφ8
Te̊

˙

,

(57)

where χ is the normalized ion velocity parameter defined in Section III.
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