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ABSTRACT

Magnetized plasma plumes are quite common in
electric propulsion applications, both due to in-
ternally generated magnetic field for confinement
and/or acceleration, and, also in near Earth or-
bit operations, due to the influence of an arbitrar-
ily inclined geomagnetic field on the plume expan-
sion into vacuum. In order to save computational
time, electrons are generally modeled as a fluid, and
the corresponding conservation equations are dis-
cretized and solved in a given computational mesh.
When large anisotropies affect the electron mobil-
ity, special care must be taken to reduce or to limit
the effect of numerical diffusion. Several codes
dedicated to the simulation of magnetized thruster
plumes avoid this problem by using a magnetically-
aligned mesh, at the cost of more complex algo-
rithms for the mesh generation that may not be
worth it. In this work, a method to characterize
these numerical diffusion effects in a structured non-
magnetically aligned mesh, using the in-house code
EP2PLUS, is proposed. It is found that, for angles
between the plume axis and the uniform magnetic
field between 5 and 30 degrees, the effects of nu-
merical diffusion on the steady state plasma solution
are small and do not jeopardize neither the qualita-
tive picture of the self-consistent electron currents
and electric fields, nor their quantitative estimation.

1 INTRODUCTION

The present work focuses on the anisotropy existing
in conductive fluids, like a plasma, under the effect
of a uniform magnetic field, and more specifically, on
the numerical analysis of a plasma thruster plume
expansion into vacuum. Normally, in such a sce-
nario, only the electrons are “magnetized”, so that
the plasma is said to be mesomagnetized. Further-
more, since electrons are generally well confined
by electric and magnetic fields, a typical assump-
tion in the modeling of the electron population is to
consider electrons as a fluid of a highly anisotropic
nature, in which transport in the perpendicular and

parallel directions to the magnetic field is widely dif-
ferent. The classical plasma transport theory states
that, for a given plasma density, the perpendicular
electron transport coefficient is inversely propor-
tional to the square of the magnetic field strength,
B−2 and is always smaller, up to various orders of
magnitude, than the parallel transport coefficient.
These anisotropic transport coefficients may induce
a numerical error when numerically solving the flow
transport equations, the error becoming more sig-
nificant if the computational mesh is not aligned
with the principal magnetic directions. This numeri-
cal error is commonly known as numerical diffusion
and its consequences have already been discussed
in [1], [2] and [3].

Even in the limit of a perfect confinement, physically
possible only in the absence of electron collisions,
an undesirable and numerical transfer of particles
arises due to the fact that the gradients are com-
puted on mesh nodes that are not aligned with the
principal directions of the electron mobility/conduc-
tivity tensor. Fig. 1 shows a simplified 2D scenario,
in which the electron current is estimated in a non-
aligned mesh, from the knowledge of the gradient of
a scalar variable Φ, whose iso-lines are parallel to
the magnetic field. In the upper red region Φ = 1,
and in the lower part Φ = 0 for simplicity, but this can
be generalized to any Φ map.

Figure 1: Numerical diffusion effect on a mesh that is
not aligned with the magnetic field. A miscalculation of
numerical origin in the j‖,e leads to a non-zero j⊥,e even
in the perfect confinement limit.
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The parallel electron current (i.e. along the magnetic
field) is then

j‖,e = σ‖∂Φ/∂1‖, (Eq. 1)

where ∂Φ/∂1‖ is directional derivative along the
magnetic field direction of a scalar variable Φ (which
will be later called thermalized potential in Sec. 2.1)
and σ‖ is the high B-parallel conductivity. While the
exact value of ∂Φ/∂1‖ is zero everywhere in this ex-
ample, the numerical parallel gradient at the yellow
point is computed by considering the value of Φ at
the 4 blue points shown in the figure. Applying a
central difference scheme in a uniform mesh, for the
considered Φ map, we have:

∂Φ

∂1‖
= cos θ

∂Φ

∂x
+ sin θ

∂Φ

∂z
' − cos(θ) + sin(θ)

2h
,

(Eq. 2)

with h representing the uniform mesh spacing along
either x or z. Hence, the parallel gradient is gener-
ally non-zero (with the isolated exception of θ = π/4)
and this results in the miscalculation of j‖,e. Since
the electron current density is subject to a continuity
equation of the type ∇ · je = 0, a spatial variation of
the parallel electron current (e.g. between the top
blue point where it would be zero, and the yellow
point) induces a non-zero perpendicular electron
current j⊥,e at the yellow point. Hence, if this were
a time marching method, the Φ = 1 side and the
Φ = 0 side would slowly merge and the whole do-
main would finally reach an average value in the
steady state.

Apart from increasing the mesh resolution or the
discretization order scheme, the only solution to
avoid this numerical diffusion is the use of a mesh
that is aligned with the preferential directions of the
problem; i.e. the principal directions of the conduc-
tivity/mobility tensor. Indeed, in the particular case
of the electron transport considered here, solving
the governing equations in a Magnetic Field Aligned
Mesh (MFAM), would avoid a cross-contamination
of the transport coefficients and hence numerical
diffusion. The assessment of a MFAM and its em-
ployment in plasma simulations has been carried
out in [4] and [5]. Nonetheless, the numerical diffu-
sion phenomenon has not received much attention
in the past, especially in the context of a magnetized
plasma plume expanding into vacuum and subject
to a uniform geomagnetic field [6]. It is not clear
if the added complexity of the magnetically-aligned
mesh generation [4] and required algorithms (e.g.
for the computation of a scalar gradient in a gen-
erally unstructured mesh whose cells can be very
irregular [1]) balance or not the use of a non-aligned
mesh with a higher resolution. From this point of
view, the use of MFAMs has not been properly jus-
tified in the literature, and the numerical diffusion
effects have rarely been characterized for realistic

simulation scenarios.

In this paper, two simulation scenarios of a mag-
netized plume expansion will be compared. Sim-
ulations with a plasma plume injection along the
z axis and a uniform magnetic field at an angle
α with it, shall be compared against simulations
featuring a magnetic field along z (hence aligned
with the mesh) and a plasma plume injection at the
same angle α, as shown in Fig. 2. In this figure,
{X,Y, Z} represents the intrinsic plasma plume ref-
erence frame, while {x, y, z} is the simulation (fixed
structured mesh) reference frame. In order to repro-
duce the same physical scenario, the angle α be-
tween the plume centerline and the magnetic field is
the same in both scenarios. While case (b) is unaf-
fected by numerical diffusion effects, case (a) should
be affected, so that a direct comparison of the re-
sults shown in the intrinsic frame {X,Y, Z} should
permit to evaluate the numerical diffusion effects, or
at least if they are relevant for the considered mesh
resolution. The above described simulations will be
carried out using our in-house code EP2PLUS [7],
which only considers structured meshes. In addi-
tion, this work will also aim at validating an oblique
field plume expansion case with α = 30◦, of a previ-
ous study on magnetized plasma plumes [6].

The rest of the paper is structured as follows. The
magnetized plume model as well as its boundary
conditions are described in Sec.2. Simulation set-
tings and case definitions are illustrated in Sec.3.1,
the main physical aspects of the magnetized plume
expansions are presented for different angles in
Sec. 3.2, while the numerical diffusion effects are
assessed and discussed in Sec.3.3. Finally, con-
clusions and future work are summarized in Sec.4.

2 3D MAGNETIZED PLUME MODEL

As described in [7], hybrid codes represent a very
good compromise between accuracy and computa-
tional cost, when dealing with the study of plasma
plume expansions. The EP2PLUS code (Extensi-
ble Parallel Plasma PLUme Simulator), is a three-
dimensional hybrid PIC-fluid code, which was firstly
presented at the 2016 Space Propulsion Confer-
ence [8]. For this specific study, it is relevant to
summarize the magnetized electron fluid model em-
ployed in the simulator. Regarding the ions, on the
other hand, they are modeled as macro-particles of
a particle-in-cell model, and move according to the
local electric and magnetic fields. In this work, they
are assumed to suffer no collisions with either the
fluid electrons or the neutrals (these ones consid-
ered as a uniform background).
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Figure 2: Investigated simulation scenarios for numerical diffusion assessment. Scenario A (a) features a straight plume
and an oblique magnetic field, thus not mesh-aligned. Scenario B (b) features an oblique plume injection and a magnetic
field aligned with mesh z axis. Thus, in the second scenario, the mesh is magnetically aligned and the simulations should
be free of numerical diffusion effects. The red arrows represent the axes of the intrinsic plume reference frame, whose Z-
axis always forms the same angle α with the magnetic field direction, so that the depicted scenarios A and B are physically
equivalent.

2.1 The magnetized electron model

For a stationary (∂/∂t = 0) and massless (me ≈
0) electron fluid, the electron momentum balance
equation can be written as:

0 =−∇ · Pe − ene (E + ue ×B)

−
L∑
s=1

νesmene (ue − us)
(Eq. 3)

where Pe is the electron pressure tensor, ne is the
electron number density, me is the electron mass,
ue is the electron fluid velocity, E is the electric field,
B is an externally applied magnetic induction field,
L is the number of heavy particle populations (with
which the electrons can collide), and νes is the mo-
mentum transfer collision frequency of the electrons
with the generic sth particle population, which fea-
tures a fluid velocity us.

Let je = −eneue and ji =
∑L
s=1 eZsnsus be

the electron and total ion current density (Zs and
ns are respectively the charge number and the
number density of the generic sth particle pop-
ulation). We define an effective current density
grouping collisional effects from heavy species [6]
as jc = ene

νe

∑L
s=1 νesus, where νe =

∑L
s=1 νes is

the total electron momentum transfer collision fre-
quency.

Assuming both isotropic and polytropic electrons,
∇ · Pe = ∇pe, with pe(ne) the scalar electron pres-
sure state law, which allows to introduce a barotropy
function he, such that ∇he = ∇pe/ne. For a given

electron polytropic coefficient γ, we have [7]:

he(ne) = − γTe0
(γ − 1)

[
1−

(
ne
ne0

)γ−1]
, (Eq. 4)

where Te0, ne0 are the reference electron temper-
ature and density, respectively, at the point where
he = 0.

It is now convenient to define the “residual thermal-
ized potential” Φ, such that ∇Φ = ∇φ − ∇he/e,
being φ the electric potential. The gradient of the
thermalized potential Φ measures the correction to
be applied to the Boltzmann relation (generalized
to polytropic, non-isothermal electrons), which ne-
glects both magnetic and collisional effects on the
electron momentum balance equation. Assuming
the same reference zero point for Φ, he and φ yields:

φ = Φ + he/e. (Eq. 5)

So, the electric potential can be retrieved from the
knowledge of the barotropic function he(ne) (known
from the PIC, in a quasineutral plasma, like the one
considered here) and of the thermalized potential
Φ, obtained as the solution of a partial differential
equation, as detailed below. It is underlined that the
near-totality of the existing 3D plume codes neglects
the effects of both electron collisions and magneti-
zation, implicitly assuming Φ ≡ 0.

Now, let 1b = [b1, b2, b3] be the unit vector along
the applied magnetic field, so that B = B1b, and
ωce = eB/(meνe) the electron gyrofrequency. Then,
the Hall parameter is defined as χ = ωce/νe. For a
finite non-zero total collision frequency, solving Eq. 3
for je, substituting all the previous definitions, yields
the generalized electron Ohm’s law:
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je = −K · (σe∇Φ + jc) , (Eq. 6)

where the electron scalar conductivity is defined as
σe = e2ne/(meνe) and K is the normalized conduc-
tivity tensor, for which K−1j = j +χ (j × 1b), where

K =

 1 χb3 −χb2
−χb3 1 χb1
χb2 −χb1 1

−1 . (Eq. 7)

In Eq. 6, the thermalized potential gradient is the re-
sponsible for numerical diffusion, as it can produce
non-physical electron current densities je, when∇Φ
is computed in a non-magnetically aligned mesh.

In steady state, the total current density j = je + ji
satisfies the continuity equation

∇ · j = 0, (Eq. 8)

which, employing the generalized electron Ohm’s
law (Eq. 6), becomes an elliptic equation for Φ:

K : ∇∇Φ+∇Φ · (∇ · K)

+K · ∇Φ · ∇ ln(σe) =
∇ · (ji −K · jc)

σe
(Eq. 9)

where ∇∇Φ is the Hessian tensor of the thermal-
ized potential, and ∇ · K is the divergence of the
conductivity tensor.

2.2 Boundary conditions

In order to solve Eq. 9, we set without loss of gen-
erality Φ = 0 at one point (e.g. the reference point
for the electron properties of the polytropic closure),
and prescribe the value of a Φ directional derivative
at the boundaries of the simulation domain.

In stationary conditions, the Gauss theorem applied
to the simulation volume with ∇ · j = 0, urges that
the total net current through the simulation bound-
ary be zero. It is noticed that this condition is valid
even during transient conditions, if quasineutrality is
assumed (ne =

∑
s eZsns). A strong closure, which

satisfies this integral relation, is to impose that the
normal electric current density be exactly zero at all
boundaries. If 1n is the normal unit vector at the
boundaries, directed towards the plasma domain,
from projecting Ohm’s law on the normal direction,
one obtains:

σe (K · ∇Φ) · 1n = σe∇Φ · (KT · 1n)

= (ji −K · jc) · 1n − jn
(Eq. 10)

where jn = (je + ji) · 1n is the local normal elec-
tric current density at the boundary, here set to zero
on all boundary surfaces. Eq. 10 imposes the direc-
tional derivative of Φ along the directionKT ·1n. This

direction is intermediate between the boundary nor-
mal (1n, for χ → 0) and the magnetic field direction
(1b, for χ→∞).

3 NUMERICAL SIMULATIONS

3.1 Cases and settings

All relevant physical and computational simulation
parameters are summarized in Tab.1. In this study,
the plasma is assumed to be quasineutral every-
where (ne =

∑
s eZsns), so Poisson’s equation is

not considered.

Two simulations per tilt angle will be carried out, as
already commented and shown in Fig.2: one with
the magnetic field rotated by an angle α (counter-
clockwise) and the plume axis aligned with the z
axis (hereafter referred to as scenario A); and a
second one with the magnetic field aligned with the
z axis and the plume axis rotated by the same angle
α (hereafter referred to as scenario B).

Table 1: Simulation parameters.

Simulation parameters Units Values

Reference ion density
at the origin (ne0) m−3 1.36 · 1016

Injected ions profile n/a Parks-Katz [9]

Injected Xe ions flow mg/s 2.38

95% ion current radius m 0.14

Ions injection axial velocity (uinj) km/s 39.0

Ions initial divergence angle deg 0.5

Ions injection
temperature eV 0.1

Reference electron
temperature (Te0) eV 3.0

Electron polytropic
cooling coefficient γ n/a 1.05

Background neutrals
density m−3 2.05·1018

Background uniform magnetic
induction field magnitude (B) G 0.5

Upper threshold for
the Hall parameter χ n/a 35

PIC time-step s 6.25·10−8

Simulation duration s 0.31·10−3

Time-averaging steps
for PIC sub-model n/a 100

Referring to Fig.2, the plume crosses the down-
stream boundary with different angles in A and B
scenarios. Therefore, they are not affected by the
same downstream boundary effects and this can
make the numerical diffusion assessment harder.
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Moreover, the distance traveled by the plume inside
the simulation domain would change, for a fixed
simulation domain, in scenario B, depending on α.
Therefore, in order to obtain a more fair compari-
son, the magnetized plume solution at a final time
instant of 0.31 ms (the same for all angles α) will be
considered, at which the plume has not yet reached
the lateral or downstream simulation boundary and
has covered a fixed distance of slightly more than
12 m along the centerline.

A structured non-uniform rectangular mesh is then
adopted, with a uniform spacing along x and y and
a linearly increasing one along z. The considered
mesh is shown in Fig.3, in the x − z plane (y = 0),
for both considered scenarios and for α = 30◦ (the
plume centerline is indicated by a red line). The
number of nodes along z is always 251, while the
z extension depends on the simulation case. As
shown in Fig. 3, while this is fixed to ∼ 20 m in sce-
nario B, in scenario A it depends on α and is chosen
so that the plume centerline travels the same dis-
tance as in the corresponding oblique plume sce-
nario (B) before reaching the boundary. The mesh
extension along y is, on the other hand, always
fixed to 2 m with 51 nodes. Regarding the mesh
size along x, it is crucial to prevent the plume from
reaching the xmax boundary in scenario B, before
the final simulation time instant. Therefore, the x
extension of the domain is 10 m, with 251 nodes,
in scenario B, while it is only 2 m, with 51 nodes,
in scenario A. The x and y mesh spacings are thus
equal to 4 cm in all simulation scenarios and α
cases.

Regarding the plume injection, this follows a Parks-
Katz Self-similar profile (SS) [10]. In B scenarios, a
rotated profile is employed. This means that the SS
solution is first obtained in the intrinsic plume refer-
ence axes and then interpolated into the employed
mesh. The considered tilt angle cases are α =
5◦, 10◦, 20◦, 30◦ (therefore, 4 α cases, each one sub-
ject to 2 simulation scenarios). The last value cor-
responds to a case that was already investigated in
[6]. In simulations with oblique injection and mesh-
aligned magnetic field (scenario A), Bz = B, and
the ion injection fluid velocity features the follow-
ing components in the simulation reference frame:
ux = uinj sinα, uy = 0 and uz = uinj cosα, where
ux, uz, are the two relevant components of the ion
fluid injection velocity, of magnitude uinj = 39 km/s.
The normal injected ion flux, on the other hand is
Γn = uzne0, with ne0 = 1.36 · 1016m−3 representing
the reference plasma density at x = y = X = Z = 0.
In scenario A, on the other hand, the injection ve-
locity is purely axial, uz = uinj, while the magnetic
field components are: Bx = −B sinα, By = 0 and
Bz = B cosα.

3.2 Reference simulations and general
plume characteristics

The plasma plume characteristics can be appreci-
ated, for an unmagnetized case (B = 0), in Fig.4
(a),(c),(e) and (g), in terms of the self-consistent
electric potential, electron density, ion current and
electron current densities, in the meridian plane
y = 0. The same properties are shown for an
oblique injection scenario featuring an injection an-
gle of 5◦, in subplots (b), (d), (f) and (h). A classical
ambipolar plume expansion with a monotonic po-
tential and density decrease and a globally current-
free plasma can be clearly identified. An upstream
boundary effect is visible due to the different bound-
ary effects between the straight and oblique injec-
tion scenarios, in the electron current density. How-
ever, this effect is limited to the lateral regions of the
plume, which we are not of interest in this study and
do not influence the internal region of the plume.

Results for the magnetized plume with the 4 consid-
ered tilt angles can be observed in the Y − Z plane
in Fig.5, for scenario A, chosen as a reference for
visualization, in terms of the electric current density
total magnitude and its component along Z, jZ .

Considering the typical magnitude of the geomag-
netic field (fractions of a Gauss) acting on elec-
tron and ions, it can be said that electrons are the
only magnetized species, having a Larmor radius
smaller than the plume radius by several orders of
magnitude. Heavy ions instead can be considered
as dimly magnetized, as their gyro-radii are much
larger than the plume characteristic size. This differ-
ence is relevant when it comes to justify the plume
dynamics, and the model adopted for each species,
and has, as a direct consequence, the appearance
of axial diamagnetic electric current loops, shown in
Fig.5. In fact, such loops clearly induce a magnetic
field directed out of the page, whereas the applied
magnetic field has a component directed into the
page. Therefore, the diamagnetic plasma response
already detected in [6] is confirmed also at angles
between 5◦ and 30◦.

As shown in [6], the axial electric current den-
sity has the macroscopic effect of deforming the
plasma plume cross section, which, sufficiently
downstream, becomes elliptical and more com-
pressed along the direction perpendicular to both
the applied magnetic field and the plume centerline.
This is induced by a local volumetric force acting on
the plume ions given by j × B, and, in this case,
by jZBX . Therefore, electric currents play a major
role in determining the plasma plume response to
the applied magnetic field, which has, in turn, a very
strong influence on them. For the above reasons,
we shall consider the electric current density, and
its axial component along the plume centerline as
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Figure 3: Sketch of the PIC/fluid mesh cross section, at y = 0, for the scenarios (a) A and (b) B. The meshes extend for
2 m in the y direction, while the x and z axis scales are not equal. The two meshes are shown for the α = 30◦ case. The
plume centerline in each scenario is indicated by a red line. The black lines represent fixed computational coordinates,
and, for the sake of clarity, only one every 5 along x and z are shown (therefore, in reality, more nodes are used).

the most relevant properties to evaluate numerical
diffusion effects.
From Fig.5 (b), (d), (f) and (h), it is noticeable that
jZ , and hence the integrated current IZ flowing in
the axial current loops, clearly change with α, as
well as the orientation of the separatrix between the
two electric current tubes. The latter rotates from
an initial direction nearly aligned with the Y axis
(at α = 5◦), to a direction closer to the X axis
(at α = 30◦). This trend would continue until the
separatrix becomes parallel to the X direction, for
α = 90◦ (here not considered). Regarding the inte-
grated electric current in the axial current loop, this
is provided in Tab.2, and it seems to first decrease
with α until 20◦, and then increase again, reaching a
larger value at α = 30◦. As shown in [6], the electric
current flowing axially should be very small in the
aligned plume case (α = 0◦), so that the trend is
non-trivial. An additional simulation for α = 1◦ case
has been carried out, featuring a lower value for IZ
(0.368 vs 0.563 A at 5◦). This proves the existence
of a complex trend of this axial current versus α.

3.3 Numerical diffusion assessment in
the rectangular mesh

In this section, as justified in Sec.3.2, the compar-
ison between scenarios A and B is presented in
terms of the electric current density total magni-
tude in the intrinsic plume plane Y,Z, and its axial
component jZ along the centerline. The latter is
compared at Z = 7 m.

For these comparisons, the oblique plume injection
simulation results have to:

1. be interpolated to the intrinsic plume axes;

2. be rotated in terms of physical vector compo-
nents to change the coordinate system;

3. and compared with the straight plume one, in
terms of contour plots.

Fig.6 shows such a comparison, for the 4 different α
values considered here. In this figure, the red lines
refer to the solution obtained in scenario B (unaf-
fected by numerical diffusion), while the black lines
to the solution obtained for scenario A. The projec-
tion of the latter onto the considered plane is shown
by a blue arrow in all plots.

Results clearly show that numerical diffusion effects,
if present, are quite small, and certainly smaller than
boundary effects. In fact, the main differences are
observed close to the simulation boundaries, where
imposed conditions for the two plume scenarios
are physically different. These effects grow with
the angle α, and so does the observed differences,
which are highest in the highest α case (30◦). A
grey-shaded region is shown in the j plots to help
identify validity regions, sufficiently distant from the
boundaries, where the residual differences could be
attributed to numerical diffusion. These results also
show that, in order to identify more precisely the nu-
merical diffusion effects, a different mesh topology
should be considered to have perfectly equivalent
boundary conditions, from a physical point of view.

A more quantitative assessment of the numerical
diffusion effects or of the observed differences, can
be obtained by comparing the axial current flowing
in either direction, at Z = 7 m (the currents flowing
in the positive and negative directions must be equal
in magnitude due to current continuity). This axial
current is computed by integrating jZ over the X−Y
cross section (see Fig.5, right column) in either the
positive or negative regions. As commented before,
this variable is associated to the total deformation
force acting on the plume ions, and is therefore par-
ticularly relevant [6]. The relative difference between
these axial currents, in the two simulations scenar-
ios, is reported in Tab. 2. This is generally small in
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Figure 4: Unmagnetized plasma plume case results at y = 0: (a) electric potential, (c) electron density, (e) ion current,
and (g) electron current. All properties are symmetric with respect to the plume axis X = Y = 0, so the X = 0 cross
sections have been omitted. (b), (d), (f) and (h) refer to an inclined plume of 5◦ and are shown in the x − z plane. The x
and z axis scales in the figure are not equal, thus the oblique plume appears slightly asymmetrical.
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Figure 5: Results for the electric current density j (left column) in the Y − Z plane, and its axial component jZ at Z = 7
m (right column) for different tilt angles α: (a) and (b) 5◦, (c) and (d) 10◦, (e) and (f) 20◦, (g) and (h) 30◦. Only results for
scenario A are shown, as scenario B results are nearly the same in the considered intrinsic reference frame {X,Y, Z}. A
white arrow indicates the projection of the magnetic field direction onto the considered plane. This field always belongs
to the X − Z plane. In the jZ subplots, a positive value of the current density means that it enters the page (just like the
magnetic field, which has a positive Z component). In j subplots, the magnetic field component along X is negative and
hence directed into the page.
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Figure 6: Comparison plots for the electron current density magnitude j (subplots (a), (c), (e) and (g)) and for its Z-
component jZ , at Z = 7 m (subplots (b), (d), (f) and (h)), for the 4 different magnetic field tilt angles α: (a)-(b) 5◦, (c)-(d)
10◦, (e)-(f) 20◦, (g)-(h) 30◦. Red dashed lines represent the scenario B solution, while black solid lines represent the solu-
tion in scenario A, theoretically affected by numerical diffusion. The magnetic field projection onto the considered plane is
shown by a blue arrow. A grey-shaded region is shown in the j plots to help identify validity regions.
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all tilt angle cases and may not be attributed entirely
to numerical diffusion effects, as the difference be-
tween boundary effects might still be playing a role
at the considered cross section. In any case, the
reported differences can be considered as an up-
per threshold for assessing the numerical diffusion
effects, which, for a maximum Hall parameter of 35,
do not produce a difference of more than a few per-
cent points in the axial current.

Table 2: Relative (percentage) error between the current
flowing in the axial current tubes at Z = 7 m, in scenarios
A and B. Reported values refer to the final simulation time,
t = 0.31 ms, (or timestep 5000), at which the plume has
covered a distance of ∼ 12.5 m.

Case IZ [A]
(scenario A)

IZ [A]
(scenario B) ∆IZ(%)

5◦ 0.567 0.559 1.4%

10◦ 0.393 0.398 1.3%

20◦ 0.329 0.340 3.3%

30◦ 0.411 0.417 1.4%

The above described analysis, nevertheless, has its
own limitations. First of all, it refers to a steady
state scenario, with no temporal terms. There-
fore numerical diffusion effects on je, if present,
cannot propagate in time. In addition, simulations
have been carried out for a maximum Hall param-
eter equal to 35 (obtained by setting a minimum
uniform neutral background density), for numerical
convergence reasons, i.e. in order to reduce the
numerical truncation error of the finite differences
scheme, while maintaining a reasonable mesh res-
olution. A higher value for the limiting value of χ
yields to higher magnetized electron effects and
hence a larger numerical diffusion. However, it was
shown in [6] that, as the maximum Hall parameter is
increased, the solution quickly reaches an asymp-
totical trend and saturates at values not much larger
than 100. Therefore, the solution for a non-limited
χ parameter would not diverge from the one shown
here.

This work, albeit limited in its application and gen-
erality, has however permitted to advance in devel-
oping appropriate techniques for evaluating numeri-
cal diffusion effects in realistic magnetized plasma
plume simulations on structured meshes, and to
evaluate as negligible, both qualitatively and numer-
ically, the numerical diffusion effects in a case of in-
terest (α = 30◦), which was analyzed in a previous
study [6].

4 CONCLUSIONS AND FUTURE WORK

This paper has presented a numerical diffusion
analysis in the context of a magnetized plasma

plume expansion. Appropriate structured and non-
uniform rectangular meshes have been adopted
in order to guarantee a mesh-aligned and non-
aligned magnetic field, as well as a partial miti-
gation of boundary effects in the bulk region of the
plasma plume. An oblique injection algorithm for
a self-similar plume profile was implemented in or-
der to obtain a tilted plume injection with respect
to the considered structured mesh directions. This
allowed to obtain two physically quasi-equivalent
scenarios presenting the same angle between the
plume centerline and the magnetic field: one theo-
retically affected by numerical diffusion (non-aligned
field case, straight plume injection) and another one
with no such effect (aligned field, oblique plume in-
jection).

In order to evaluate the numerical diffusion effects,
four tilt angles α between the plume centerline and
the magnetic field have been considered, ranging
from 5◦ to 30◦. The effects of the external magnetic
field have been identified mainly in terms of the
electric current density and its component along the
plume centerline, for both a qualitative and quanti-
tative comparison. It has been found that the mesh-
field misalignment does not generate a relevant nu-
merical diffusion and the solution is not corrupted
significantly by it. In fact, the main differences are
found in regions close to the simulation boundaries,
which can introduce relevant differential effects be-
tween the two considered scenarios and grow with
the tilt angle.

The EP2PLUS simulator is therefore capable of re-
producing a magnetized plume expansion on a non-
aligned structured mesh, with a sufficiently small
numerical diffusion. Nevertheless, this has been
verified only for a steady-state plasma plume sce-
nario, with an upper-limited Hall parameter, and
hence a limited magnetization (χ ∼ 35). Without this
artificial upper limit, the numerical diffusion effects
might be larger than those observed here, although
a previous study suggests that they saturate quickly
with χ, so that they are not expected to alter drasti-
cally the conclusions reached here.

Future work will focus on the following topics: (i) the
assumption of a lower neutral background density to
have greater electron magnetization effects, (ii) the
consideration of additional tilt angles between the
magnetic field and the plume axis, going from a
nearly parallel to a nearly perpendicular scenario,
and (iii) the adoption of a more extended mesh, with
a different geometry to further reduce the effects of
the simulation boundaries. Regarding the last men-
tioned topic, in order to limit the different boundary
effects at higher α values, an oblique plume injection
in both simulation scenarios can be considered, but
with a mesh tilted by the same angle as the plume
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in the non-aligned field simulation case. Thus, the
plume will cross both the upstream and downstream
boundaries with the same angle, and will be subject
to the same boundary effects. This would be ex-
tremely important when the latter are not negligible
(i.e. for α ≥ 30◦) and cannot be easily distinguished
from numerical diffusion errors.
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