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ABSTRACT: 

The 2D wave-plasma interaction code 
(HELWAVE2D) which is specially designed for RF 
Plasma Thrusters is presented. The code is 
validated and compared against the 1D wave-
plasma code (HELWAVE1D) using different 
simulations based on the electromagnetic field 
response and the power absorption of the plasma. 
A 2D simulation that includes the plasma plume in 
the magnetic nozzle of a helicon thruster is shown 
as a sample of the capabilities of HELWAVE2D, 
which will enable the analysis of the power 
deposition and wave loss outside of the thruster 
chamber. 
 
1. INTRODUCTION 

In last decades the electrodeless thrusters using a 
radiofrequency (RF) plasma source have raised 
much interest in electric propulsion [1-3]. 
Compared with best known types of thrusters such 
as ion thrusters and Hall effect thrusters, the 
potential merits of electrodeless thrusters would be 
long lifetime, simplicity of design, throttlability and 
compactness [4-5]. Two typical types of 
electrodeless thrusters are the Electron Cyclotron 
Resonance Thruster (ECRT) and the Helicon 
Plasma Thruster (HPT).  Both of them are using 
radiofrequency waves to produce and heat a 
plasma in a cylindrical chamber [6]. The different 
frequency range used and the heating 
mechanisms are the principal distinction of these 
two thrusters. In ECRT, the energy deposition is 
based on the electron cyclotron resonance and 
therefore the radio frequency is mainly in the GHz 
range which can excite the microwave [7]. In 
comparison, a non-resonant helicon wave is mainly 
used to heat electrons in the HPT and the 
frequency is generally limited in the MHz range [8].  
 
A typical helicon plasma thruster (shown in Fig. 1) 
is constituted of two main parts: a helicon source, 
where the plasma is generated and heated, and an 
external divergent magnetic nozzle, where the 
plasma is accelerated [5]. Based on this physical 
structure, four physical processes dominate in the 
HPT. 

 
Figure 1. Sketch of the physical structure of a HPT 

 
The wave-plasma interaction takes place inside the 
source leading to the deposition of wave energy 
into the plasma and the multiple transport 
phenomena governing plasma dynamics there. 
Two other distinguished processes take place in 
the magnetic nozzle (MN): the supersonic plasma 
acceleration and its magnetic interaction with the 
thruster, and the detachment from the magnetic 
nozzle [8]. The four main processes are coupled 
and influence each other. Indeed, one of the 
motivations for this work is the study of how and 
what fraction of the RF wave propagates into the 
MN region in HPTs and ECRTs, which could 
constitute a source of power inefficiency in the 
system.  
 
The EP2 group is establishing a whole simulation 
system to describe these four processes and guide 
the design of Helicon Plasma Thrusters in terms of 
coupling and independence influence. The 
structure of this system is given in Fig. 2. In our 
previous work, the following model and code has 
been developed: 

• The 2D (axial-radial) fluid model of the 
plasma source named HELFLU 2D to 
study plasma dynamics and transport [5]. 

• The 2D magnetic nozzle model DIMAGNO  
has been established to investigate the 
magnetic nozzle [9]. Moreover, DIMAGNO 
can be coupled with HELFLU 2D to 
describe the whole fluid dynamics in the 
HPT [10]. 

• Based on two fluid models, a PIC/fluid 
hybrid code in the plasma source and 
plasma plume region is being established 
in order to understand details in the HPT 
[11].  

SP2016 3124913 



 

 2 

 

 
Figure 2. The model and simulation structure of HPT 

 
• For the wave-plasma interaction, 1D 

cylindrical model called HELWAVE1D has 
been introduced in Ref. [12] to study the 
wave propagation and power deposition. 

• Because of the non-uniformity of plasma 
density and magnetic field in the HPT, and 
the propagation of the plasma in the MN, 
the 1D wave-plasma code is not enough to 
describe the phenomena precisely. Hence, 
developing the 2D plasma-wave coupling 
model is necessary.  

In this paper, the 2D wave code named 
HELWAVE2D is presented. This code builds upon 
the preliminary work of Gómez [19].   
 
Wave-plasma interaction in the helicon source has 
been studied extensively in the past. In spite of 
this, the mechanisms of power absorption in HPT 
devices are not fully clear yet. Several codes both 
1D and 2D have been developed by many 
researchers in order to study this problem. Chen 
and Arnush developed the 1D wave code HELIC 
and compared with experiment results [13]. Also, 
Shamrai and Cho used 1D model for the helicon 
source of the finite length to study the conversion 
of helicon and TG mode and the plasma resistance 
for different density profiles, respectively [14-15]. 
The 1D plasma kinetic code UFEM is described by 
Kamenski and the thickness of antenna is taken 
into account [16]. The 2D code using the finite 
different method is developed by Guangye Chen 
and has been used to study the radially localized 
helicon wave [17].   
 
All codes we mentioned are based on the helicon 
source and study a purely cylindrical plasma 
uniform in the axial direction. The expansion of 
plasma plume outside the exit can nonetheless 
have an important role on wave propagation and 
absorption. Thus, the research question to be 

answered by HELWAVE2D is to determine the 
extent and the influence of wave propagation and 
absorption into the MN region. 
 
According to this consideration, the near region of 
plasma plume can be taken into account in our 
model.  Section 2 will introduce the model of 
HELWAVE2D and geometry in details and 1D 
code HELWAVE1D using to validate 2D code will 
be introduced briefly. The results and discussion 
will be carried out in the Section 3. Section 3.5 
presents preliminary results of a 2D simulation that 
includes the plasma in the MN region, using the 
plasma profiles obtained from the DIMAGNO code, 
and Section 4 presents the conclusion. 
 
2. THEORY AND MODEL 

2.1. 2D wave-plasma model 

 
Figure 3. Geometric structure 

 
In order to simulate the plasma-wave interaction in 
the helicon plasma thruster, the 2D cylindrical 
model is introduced here. We consider a cylindrical 
cavity of length 𝐿 in the thruster and it includes two 
main parts: the plasma source of length 𝐿𝑠 and the 
near region of plasma plume 𝐿𝑝 which is shown in 
Fig. 3. The plasma has a fixed radius 𝑟𝑝 is in the 
source part and an increasing plasma radius 𝑟𝑝 in 
the region of plasma plume. Hence, the plasma 
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density 𝑛 in the thruster is considered as a function 
of (𝑟, 𝑧) , 𝑛 = 𝑛(𝑟, 𝑧) . An rf antenna is wrapped 
around the plasma source and is located at 𝑟 = 𝑟𝑎. 
The plasma is confined radially by the applied axial 
magnetic field 𝐵0(𝑟, 𝑧), created by a set of external 
coils. The whole set is immersed in a larger 
conducting vessel (i.e. a Faraday cage, the 
vacuum chamber, etc.) of length 𝐿  and radius 𝑟𝑤 
with 𝑟𝑤 > 𝑟𝑎.  
 
The Maxwell equations which govern the plasma-
wave response of frequency 𝜔  are given in the 
frequency domain 

∇ × 𝑬 = 𝑖𝜔𝑩  
∇ × 𝑩 = 𝜇0(−𝑖𝜔𝑫 + 𝒋𝒂) (1) 

where: 𝑬  and 𝑩  represent only the RF-related 
electromagnetic field, 𝒋𝒂  is the external current 
density from the antenna. 𝑫  is the electric 
displacement field. Fourier expansion both in time 
and azimuthal direction has been applied as 
exp[𝑖(𝑚𝑚 − 𝜔𝜔)] and 𝑚 is integer. Furthermore, all 
magnitudes are expressed in the complex form. 
Therefore, the Maxwell equations can be written as 

𝑖𝑚
𝑟
𝐸𝑧 −

𝜕
𝜕𝑧
𝐸𝜃 − 𝑖𝜔𝐵𝑟 = 0 (2) 

𝜕
𝜕𝑧
𝐸𝑟 −

𝜕
𝜕𝑟
𝐸𝑧 − 𝑖𝜔𝐵𝜃 = 0 (3) 

1
𝑟
𝜕
𝜕𝑟

(𝑟𝐸𝜃) −
𝑖𝑚
𝑟
𝐸𝑟 − 𝑖𝜔𝐵𝑧 = 0 (4) 

𝑖𝑚
𝑟
𝐵𝑧 −

𝜕
𝜕𝑧
𝐵𝜃 + 𝑖𝜔𝜇0𝐷𝑟 = 𝜇0𝑗𝑟 (5) 

𝜕
𝜕𝑧
𝐵𝑟 −

𝜕
𝜕𝑟
𝐵𝑧 + 𝑖𝜔𝜇0𝐷𝜃 = 𝜇0𝑗𝜃 (6) 

1
𝑟
𝜕
𝜕𝑟

(𝑟𝐵𝜃) −
𝑖𝑚
𝑟
𝐵𝑟 + 𝑖𝜔𝜇0𝐷𝑧 = 𝜇0𝑗𝑧 (7) 

As is known to all, the displacement field is defined 
as  

𝑫 = 𝜖̿ ∙ 𝑬 (8) 
where 𝜖̿ is the dielectric tensor which has all the 
information including plasmas, the surrounding 
dielectric tube and the vacuum region. Considering 
the background magnetic field in the HPT is not 
purely axial, we assume 𝛼  is the angle between 
the local magnetic field 𝐵0 = 𝐵0(𝑟, 𝑧) and the axis  
1𝑧 . Hence, the dielectric tensor in Eq. 8 can be 
written as [18-19] 

 

(9) 

where 𝜖0 is the permittivity in vacuum. For a cold, 
weakly-collisional plasma, the component of 
dielectric tensor takes the form in Ref. [18] 

k1 = 1 −�
𝜔𝑝𝑝
2 �𝜔 + 𝑖𝜈𝑝�

𝜔 ��𝜔 + 𝑖𝜐𝑝�
2 − 𝜔𝑐𝑝

2 �
,

𝑝

 

k2 = −�
𝑒𝑝𝜔𝑐𝑝𝜔𝑝𝑝

2

𝜔 ��𝜔 + 𝑖𝜐𝑝�
2 − 𝜔𝑐𝑝

2 �
,

𝑝

 
(10) 

k3 = 1 −�
𝜔𝑝𝑝
2

𝜔�𝜔 + 𝑖𝜐𝑝�
2 ,

𝑝

 

where 𝜔𝑐𝑝  and 𝜔𝑝𝑝  are the cyclotron and 
electrostatic frequencies (of species 𝑗 = 𝑖, 𝑒), 𝜈𝑝  is 
the collision frequency, and 𝑒𝑝  is the sign of the 
electric charge.  
 
Regarding the geometry of the antenna, the 
general expression of a thin antenna current 
density is 

𝒋𝑎(𝒓, 𝜔) = 𝐼𝑎𝛿(𝑟 − 𝑟𝑎) �𝟏𝑧𝑠𝑧
(𝑚, 𝑧)

𝟏𝜃𝑠𝜃(𝑚, 𝑧)� (11) 

where 𝐼𝑎  is the antenna current, 𝑠𝑧  and 𝑠𝜃  are 
functions defining the geometry of antenna. The 
different type of antennas can be calculated in this 
model with using different geometric functions.  
 
In order to solve the Maxwell equations, the finite 
difference method is taken into account. The mesh 
grid is established in the (𝑟, 𝑧) plane. Thanks to the 
structure of the equations the staggered 
rectangular grid is considered as an appropriate 
discrete way to solve the problem [17, 20].  
 
The ideally conducting walls surrounding the 
chamber yield the boundary conditions. The 
tangential electric fields vanish at the wall. It can 
be described as 

𝐸𝑟(𝑟, 0) = 𝐸𝜃(𝑟, 0) = 0 (12) 
𝐸𝑟(𝑟, 𝐿) = 𝐸𝜃(𝑟, 𝐿) = 0 (13) 
𝐸𝜃(𝑟𝑤 , 0) = 𝐸𝑧(𝑟𝑤 , 0) = 0 (14) 

In addition, the smooth condition is applied in the 
axis when 𝑟 = 0 . To analyse equations, this 
condition depends on the different value of 𝑚, so 
we have [17] 

𝐸𝑧 = 𝑟𝐸𝜃 = 0    for  (𝑚 ≠ 0) (15) 
𝑟𝐸𝜃 = 𝐵𝜃 = 0   for  (𝑚 = 0) (16) 

 
By means of the finite difference method and 
boundary conditions, the Maxwell equations are 
transformed to a linear equations system of a 
general form 𝑨𝑨 = 𝒃. All the fields can be obtained 
with solving this equation system.  
 
2.2.  1D wave-plasma model 

A 1D cylindrical RF field solver is employed to 
validate the 2D wave-plasma interaction code in 
this paper. The theoretical model has been 
introduced by Shamrai [14] and Cho [15] in detail. 
In our previous work [12], we developed this model 
to simulate the wave-plasma process in HPT. 
Here, only a brief introduction is given.  
 
In the 1D wave-plasma model, stricter assumptions 
are taken into account because of its own 
limitation. The background magnetic field is 
assumed to be purely uniform in the axial direction. 
The plasma plume region is not included and only 
fixed plasma radius 𝑟𝑝 is carried out. Moreover, the 
plasma density is limited to vary in the radial 
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direction only. Therefore, the dielectric tensor has 
its principal directions along the cylindrical 
reference frame axes: 

𝜖̿ = 𝜖0 �
𝑘1 𝑖𝑘2 0
−𝑖𝑘2 𝑘1 0

0 0 𝑘3
� (17) 

 
The major distinction with respect to the 2D code is 
that the solution is assumed to be periodic in 𝑧 and 
it is Fourier-expanded also in the 𝑧 direction:    

 

(18) 

 

(19) 

where 𝑘𝑙 = 𝑙𝑙 𝐿⁄  is the parallel wavenumber; 𝑚 is 
an integer and 𝑙 is a positive integer. 
 
Then, we introduce dimensionless variables, 

k� 𝑙 =
𝑙𝑙𝑙
𝐿𝜔

,     �̂� =
𝑟𝜔
𝑙

, 𝑩� =
𝑩𝑟𝑎
𝜇0𝐼𝑎

,

𝑬� =
𝑬𝑟𝑎
𝜇0𝐼𝑎𝑙

, 𝒋̂ =
𝒋𝑟𝑎𝑙
𝐼𝑎𝜔

 
(20) 

Substituting the field expressions and external 
current into Maxwell equations four differential 
equations and two algebraic linear equations are 
easily derived. 
𝑑𝐸�𝜙
𝑑�̂� = �

𝜖2𝑚
𝜖1�̂�

−
1
�̂�� 𝐸

�𝜙 +
𝑘�𝑙𝑚
𝜖1�̂�

𝐵�𝜙 + �1 −
𝑚2

�̂�2𝜖1
�𝐵�𝑧 (21) 

𝑑𝐸�𝑧
𝑑�̂� =

𝜖2𝑘�𝑙
𝜖1

𝐸�𝜙 + �
𝑘�𝑙2

𝜖1
− 1�𝐵�𝜙 −

𝑘�𝑙𝑚
𝜖1�̂�

𝐵�𝑧 (22) 

𝑑𝐵�𝜙
𝑑�̂� =

𝑘�𝑙𝑚
�̂� 𝐸�𝜙 + �𝜖3 −

𝑚2

�̂�2 �𝐸
�𝑧 −

1
�̂� 𝐵
�𝜙 (23) 

𝑑𝐵�𝑧
𝑑�̂� = �

𝜖22

𝜖1
+ 𝑘�𝑙2 − 𝜖1�𝐸�𝜙 −

𝑘�𝑙𝑚
�̂� 𝐸�𝑧 

+
𝜖2𝑘�𝑙
𝜖1

𝐵�𝜙 −
𝜖2𝑚
𝜖1�̂�

𝐵�𝑧 
(24) 

𝐸�𝑟 =
𝜖2
𝜖1
𝐸�𝜙 +

𝑘�𝑙
𝜖1
𝐵�𝜙 −

𝑚
�̂�𝜖1

𝐵�𝑧 (25) 

𝐵�𝑟 =
𝑚
�̂�
𝐸�𝑧 − 𝑘�𝑙𝐸�𝜙 (26) 

where 𝐸�𝜙 = −𝑖𝐸�𝜃 , 𝐵�𝜙 = 𝑖𝐵�𝜃  and superscripts 𝑙,𝑚 
have been omitted from the variables. 
 
This set of equations can be solved numerically as 
an ordinary differential problem in radially uniform 
and non-uniform plasma density cases. And for 
radially uniform plasma density case, the equations 
can also be treated analytically [14-15]. 
 
2.3.  Power absorption 

In this part, the power absorption in plasmas is 

described. According to the Joule heating law, the 
time-averaged power density absorbed by the 
plasma at a given location (𝑟,𝑚, 𝑧) is 

𝑝𝑎𝑏𝑠(𝑟,𝑚, 𝑧) =
1
2
𝑅𝑒(𝑬∗ ∙ 𝜎� ∙ 𝑬) (27) 

where 𝜎� = −𝑖𝜔𝜖 ̿is the plasma conductivity tensor.  
 
Next, averaging over 𝑚 and 𝑧 the radial distribution 
of power density can be defined as   

𝑝𝑎𝑏𝑠,𝑟(𝑟) = 2𝑙� 𝑝𝑎𝑏𝑠(𝑟, 𝑧)𝑑𝑧
𝐿

0
 (28) 

 
The total absorbed power by plasmas is the 
integration in the whole plasma volume 
𝑃𝑡𝑡𝑡 = ∫ 𝑝𝑎𝑏𝑠(𝑟,𝑚, 𝑧)𝑑𝑑𝑉 = ∫ 𝑝𝑎𝑏𝑠,𝑟(𝑟)𝑟𝑑𝑟𝑟𝑝

0 . (29) 
 
Therefore, the plasma resistance 𝑅 can be 
calculated once 𝑃𝑡𝑡𝑡 is determined 

𝑅 =
2𝑃𝑡𝑡𝑡
𝐼𝑎2

 (30) 

The plasma resistance is a vital parameter to 
measure the efficiency of the antenna-plasma 
coupling. Maximizing the resistance is proposed as 
a main optimization criterion for the HPT. 
 
3. RESULTS AND DISCUSSION  

In this section, the validation and characterization 
of 2D wave-plasma code are carried out. The 
validation and accuracy of this code will be 
discussed. The 1D wave-plasma code which has 
been checked extensively in the past is used to 
validate the 2D code.  
 
The same simulation is set up for both codes, and 
therefore it is restricted to the type of simulations 
that the 1D code can tackle. According to the 
Fourier expansion of 1D and 2D model, we have 
the relation 

�𝑗𝜃2(𝑟, 𝑧,𝑚)𝑒𝑒𝑝(𝑖𝑚𝑚)
𝑚

= ��𝑗𝜃1(𝑟,𝑚, 𝑙)𝑠𝑖𝑛 �
𝑙𝑙
𝐿
𝑧�

𝑚

𝑒𝑒𝑝(𝑖𝑚𝑚)
𝑙

 
(31) 

�𝑗𝑧2(𝑟, 𝑧,𝑚)𝑒𝑒𝑝(𝑖𝑚𝑚)
𝑚

= ��𝑗𝑧1(𝑟,𝑚, 𝑙)𝑙𝑐𝑠 �
𝑙𝑙
𝐿
𝑧�

𝑚

𝑒𝑒𝑝(𝑖𝑚𝑚)
𝑙

 
(32) 

where the superscript 1 and 2 express the current 
density in the 1D and 2D model, respectively. 
Selecting a given (𝑙,𝑚) mode, Eq. 31 and 32 can 
be simplified to     

𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 𝚥�̂�1𝑠𝑖𝑛 �
𝑙𝑙
𝐿
𝑧� 𝛿(𝑟 − 𝑟𝑎) (33) 

𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 𝚥�̂�1𝑙𝑐𝑠 �
𝑙𝑙
𝐿
𝑧� 𝛿(𝑟 − 𝑟𝑎) (34) 

where 𝚥̂  represents the magnitude of current 
density.  
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In order to rule out the influence antenna shape, 
two simple virtual antennas are used to test the 
code. Since the plasma response is linear, we 
consider current only in one component, 𝑗𝜃  or 𝑗𝑧 , 
and only one (𝑙,𝑚) mode at a time. All types of 
antenna can be seen as the sum of these two 
simple antennas with multiplying coefficients. 
Therefore, the expression of current density for 
these two antennas can be written as 
1. Azimuthal antenna: 

𝚥�̂�1 = 𝐼𝑎,   𝚥�̂�1 = 0   (35) 

𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 𝐼𝑎𝑠𝑖𝑛 �
𝑙𝑙
𝐿
𝑧� 𝛿(𝑟 − 𝑟𝑎), 

 𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 0   
(36) 

2. Axial antenna:  
𝚥�̂�1 = 0,   𝚥�̂�1 = 𝐼𝑎   (37) 

𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 0, 

𝚥�̂�2(𝑧)𝛿(𝑟 − 𝑟𝑎) = 𝐼𝑎𝑙𝑐𝑠 �
𝑙𝑙
𝐿
𝑧� 𝛿(𝑟 − 𝑟𝑎)     

(38) 

 
In order to test the code completely, three typical 
situations will be investigated, including the pure 
vacuum case (without plasma), the uniform plasma 
case (plasma density 𝑛0is a constant) and the non-
uniform plasma case (plasma density 𝑛0 = 𝑛0(𝑟)). 
Because of the similar result obtained with these 
two antennas in the validating simulations, only the 
axial antenna case and for a particular mode is 
shown in the present paper. 
 
A typical 50W helicon thruster geometry and 
plasma properties are considered as a nominal 
simulation case to carry out in both 1D and 2D 
codes [5, 12]. The gas used is argon and the main 
parameters are summarized in Table 1.  
 

Table 1 Summary of input data for the plasma-
wave interaction simulations 

Parameter  Value 

𝑟𝑝 Plasma radius 0.01m 

𝐿 Plasma and cage 
axial length 0.1m 

𝑟𝑤 External cage 
radius 0.02m 

𝐵0 Applied magnetic 
field 150G 

𝑇𝑒 
Plasma 

temperature 10eV 

𝑛0 Plasma density 3.8 1018m-3 

𝜈𝑒 
Plasma collision 

frequency 8.96 106s-1 

𝑓𝑅𝑅 Frequency of the 
RF emission 13.56MHz 

𝑟𝑎 Antenna loop 
radius 0.012m 

𝐼0 Antenna current 1A 

 
3.1.  Discussion of code convergence 

A general principle for the numerical simulation in 
this problem is the mesh size must be smaller than 
the wavelength. Hence, the convergence of the 
HELWAVE2D code in different mesh sizes is 
discussed. Three different situations are calculated 
with different node numbers to validate the 
convergence of HELWAVE2D code. 
 
Fig. 4 shows the radial profile of the component of 
EM fields with the variation of node numbers in the 
pure vacuum case. The curve convergences when 
the node number  (𝑛𝑟 ,𝑛𝑧) is larger than (100,50). 
In this situation the wave field is dominated by 
transverse electric (TE) and transverse magnetic 
(TM) modes. The wavelength in vacuum is /𝜔  , 
much larger than the mesh size we use, therefore 
the speed of convergence is fast. 
 

 
a. 𝐼𝑚(𝐸𝑧) 

 
b. 𝐼𝑚(𝐵𝑟) 

Figure 4.  Convergence of wave field profiles in the pure 
vacuum case at 𝑧 = 𝐿 4⁄ , 𝑚 = 0 and (𝑙,𝑚) = (1,1). Fig a 

and b are 𝐼𝑚(𝐸𝑧) and 𝐼𝑚(𝐵𝑟), respectively.  (𝑛𝑟 ,𝑛𝑧) 
represents the node number in 𝑟 and 𝑧 direction, 

respectively. 
 
The convergence in the uniform plasma case at 
different magnetic fields is demonstrated in Fig. 5 
and 6. At𝐵0 = 150𝐺 , the profiles converge very 
quickly. However, the convergence is slow and 
profiles are still divergent at 𝐵0 = 600  . This is 
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because the wavelength at 𝐵0 = 600 is quite small. 
According to the helicon plasma theory, two 
general modes named helicon modes and 
Trivelpiece–Gould (TG) mode propagates in the 
uniform plasma [14]. The helicon mode has a large 
wavelength. In comparison, the TG mode is a short 
wave. Increasing the magnetic field, plasmas go to 
the TG wave regime and the wavelength become 
smaller [12]. Therefore, the finer mesh grid should 
be taken into account in this case.  
 
 

 
a. 𝑅𝑒(𝐸𝑧) 

 
b. 𝑅𝑒(𝐵𝑟) 

Figure 5.  Convergence of wave field profiles in the 
uniform plasma case at 𝑧 = 𝐿 4⁄ , 𝑚 = 0 and (𝑙,𝑚) =

(1,1). The magnetic field 𝐵0 is 150G.  Fig. a and b are 
𝑅𝑒(𝐸𝑧) and 𝑅𝑒(𝐵𝑟), respectively.  (𝑛𝑟 ,𝑛𝑧) represents the 

node number in 𝑟 and 𝑧 direction, respectively. 
 

 
a. 𝑅𝑒(𝐸𝑧) 

 
b. 𝑅𝑒(𝐵𝑟) 

Figure 6 Convergence of wave field profiles in the 
uniform plasma case at 𝑧 = 𝐿 4⁄ , 𝑚 = 0 and (𝑙,𝑚) =

(1,1). The magnetic field 𝐵0 is 600G.  Fig a and b are 
𝑅𝑒(𝐸𝑧) and 𝑅𝑒(𝐵𝑟), respectively.  (𝑛𝑟 ,𝑛𝑧) represents the 

node number in 𝑟 and 𝑧 direction, respectively. 
 
3.2.  Comparison in the vacuum case 

After the discussion of convergence, the validation 
of HELWAVE2D code is considered. HELWAVE1D 
code which has been proved in our previous work 
is chosen to compare.  
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b. 𝐼𝑚(𝐵𝑟) 

Figure 7.  Comparison between HELWAVE1D and 
HELWAVE2D of wave field profiles in the pure vacuum 
case at  𝑧 = 𝐿 3⁄ , 𝑚 = 0 and (𝑙,𝑚) = (2,1). Fig a and b 

are 𝐼𝑚(𝐸𝑟) and 𝐼𝑚(𝐵𝑟), respectively.   
 

 
a. HELWAVE1D  

 
b. HELWAVE2D  

Figure 8.  Comparison in the pure vacuum case of 2D 
wave fields in both r and z direction between 

HELWAVE1D and HELWAVE2D code  at 𝑚 = 0 and 
(𝑙,𝑚) = (2,1). Fig a and b are 𝐼𝑚(𝐸𝑧) and 𝑅𝑒(𝐵𝜃), 

respectively.   
 
In this section, the comparison between 
HELWAVE1D code and HELWAVE2D code in the 
vacuum case is carried out. The radial distribution 
of wave fields is compared in Fig. 7. The results 
calculated by two codes are consistent. The 2D 

plot of the component of EM field in both r and z 
direction shown in Fig. 8 further confirms the 
consistency between the two codes.  
 
3.3.  Comparison in the uniform plasma case 

Fig. 9 shows the validation in the uniform plasma 
at 𝐵0 = 150𝐺 . The real part of 𝐸𝑟  and 𝐵𝑟  is 
compared between two codes. The harmonic 
behaviour of wave fields is observed. The 
consistency is not changed whether having 
plasmas or without plasmas. 
 

 
a. 𝑅𝑒(𝐸𝑟) 

 
b. 𝑅𝑒(𝐵𝑟) 

Figure 9.  Comparison between HELWAVE1D and 
HELWAVE2D of wave field profiles in the uniform 

plasma case at  𝑧 = 𝐿 3⁄ , 𝑚 = 0 and (𝑙,𝑚) = (2,1). The 
magnetic field 𝐵0 is 150G. Fig a and b are 𝑅𝑒(𝐸𝑟) and 

𝑅𝑒(𝐵𝑟), respectively. 
 
Comparing the 2D plot in Fig. 10, the harmonic 
behaviour is not only in the radial direction, but 
also in the axial directions. Both of two codes show 
it clearly. The reason of this phenomenon is the 
influence of both helicon mode and TG mode and 
the cosine shape of current density.   
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a. HELWAVE1D  b. HELWAVE2D  

  
c. HELWAVE1D d. HELWAVE2D 

Figure 10.  Comparison in the uniform plasma case of 2D wave fields in both r and z direction between HELWAVE1D 
and HELWAVE2D code  at 𝑚 = 0 and (𝑙,𝑚) = (2,1). The magnetic field 𝐵0 is 150G. 

 
In order to confirm the consistency between two 
codes in more detail, the power deposition in 
plasmas is compared. The distribution of power 
absorption in the radial direction is given in Fig. 11. 
It is well consistent. The total power absorbed by 
plasmas and the plasma resistance is shown in 
Tab. 2. It further proved that the HELWAVE2D has 
a good accuracy and the error is less than 1%.     
 

 
Figure 11.  Comparison of the distribution of power 
absorption in r direction between HELWAVE1D and 
HELWAVE2D code  in the uniform plasma case at  

(𝑙,𝑚) = (2,1). The magnetic field 𝐵0 is 150G. 
 

Table 2 Comparison of Total power and resistance 

 Total Power 
(W) Resistance (Ω)   

HELWAVE1D 1.192 × 10−4 2.384 × 10−4 

HELWAVE2D 1.197 × 10−4 2.394 × 10−4 
 
3.4. Comparison in the radially non-uniform 

plasma case 

Generally, the plasma density is not uniform in the 
HPT. Therefore, the non-uniform plasma case is 
necessary to be discussed. To investigate this 
situation, the density profile is assumed to be given 
by  

𝑛(𝑟) = 𝑛0 �1 − �
𝑟
𝑟𝑝
�
𝑠

�
𝑡

 (39) 

Here, (s, t) = (2,1) and (s, t) = (2,2) is employed to 
form density profiles. It is shown in Fig. 12.      
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Figure 12.  The density profiles 

 
Similarly, the radial profile of wave fields and 2D 
plot is applied to validate the 2D code. Fig. 13- 14 
are the results for (s, t) = (2,1) and Fig. 15 -16 for 
(s, t) = (2,1) . For these two different density 
profiles, the results from HELWAVE2D are well 
consistent with ones from HELWAVE1D. It shows 
that the HELWAVE2D code is suitable for 
calculating complex situations. 
 

 
a. 𝑅𝑒(𝐸𝑧) 

 
b. 𝑅𝑒(𝐵𝜃) 

Figure 13.  Comparison between HELWAVE1D and 
HELWAVE2D of wave field profiles in the non-uniform 

plasma case at  𝑧 = 𝐿 3⁄ , 𝑚 = 0 and (s, t) =
(2,1) , (𝑙,𝑚) = (2,1). The magnetic field 𝐵0 is 150G. Fig 

a and b are 𝑅𝑒(𝐸𝑧) and 𝑅𝑒(𝐵𝜃), respectively. 
 

 
a. HELWAVE1D 

 
b. HELWAVE2D 

Figure 14.  Comparison in the non-uniform plasma case 
of 2D wave fields in both r and z direction between 
HELWAVE1D and HELWAVE2D code  at  (s, t) =

(2,1) , (𝑙,𝑚) = (2,1) and 𝑚 = 0. The magnetic field 𝐵0 is 
150G. 

 
 

 
a. 𝑅𝑒(𝐸𝑧) 
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b. 𝑅𝑒(𝐵𝜃) 

Figure 15.  Comparison between HELWAVE1D and 
HELWAVE2D of wave field profiles in the non-uniform 

plasma case at  𝑧 = 𝐿 3⁄ , 𝑚 = 0 and  (𝑙,𝑚) =
(2,1), (s, t) = (2,2). The magnetic field 𝐵0 is 150G. Fig 

a and b are 𝑅𝑒(𝐸𝑧) and 𝑅𝑒(𝐵𝜃), respectively. 
 

 
a. HELWAVE1D 

 
b. HELWAVE2D 

Figure 16.  Comparison in the non-uniform plasma case 
of 2D wave fields in both r and z direction between 
HELWAVE1D and HELWAVE2D code  at  (s, t) =

(2,1) , (𝑙,𝑚) = (2,1) and 𝑚 = 0. The magnetic field 𝐵0 is 
150G. 

 
 
The distribution of power absorption for two 
different density profiles in the radial direction is 
shown in Fig. 17. The power absorption 

concentrates near the boundary and few power 
deposits in the bulk region. The density profile has 
significant influence on the power deposition. The 
profile (𝑠, 𝜔) = (2,2)  absorbs more power than 
(𝑠, 𝜔) = (2,1) . Tab. 3 gives the total power and 
plasma resistance for these two profiles. The error 
between 1D and 2D code is less than 1%.  
 

 
a. (s, t) = (2,1)  

 
b. (s, t) = (2,2) 

Figure 17.  Comparison of the distribution of power 
absorption in r direction between HELWAVE1D and 

HELWAVE2D code  in the non-uniform plasma case for  
(𝑙,𝑚) = (2,1). The magnetic field 𝐵0 is 150G. Fig a is 

(s, t) = (2,1) and Fig b is (s, t) = (2,2). 
 
Table 3 Comparison of Total power and resistance 

 

(𝑠, 𝜔) = (2,1)   (𝑠, 𝜔) = (2,2) 
Total 

Power 
(W) 

Resistance 
(Ω)   

Total 
Power 

(W) 

Resistance 
(Ω)   

1D 3.709
× 10−3 

 7.418
× 10−3 0.0204 0.0408 

2D 3.712
× 10−3 

7.424
× 10−3 0.0205 0.0410 

 
3.5. A specific simulation case 

In this section, a preliminary simulation case 
including the near region of the plasma plume in 
the MN is carried out by HELWAVE2D to illustrate 
the capabilities of the code. The plasma density 
and magnetic field are obtained from the MN code 
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DIMAGNO. A Nagoya III type antenna is used in 
this case. The length of the plasma source 𝐿𝑠  is 
0.05m and the plasma plume part is 𝐿𝑝 = 0.1m.  
 
Fig. 17 shows the distribution of plasma density in 
this simulation. The red line is the boundary of 
plasmas and the black box shows the antenna 
positions. Solid lines depict the direction of the 
magnetic field in the MN region.  
 

 
Figure 17. The 2D distribution of plasma density. The 
red line is boundary of plasmas. The black box shows 
the position of antenna. Solid lines are magnetic lines. 

 
To reduce the direct influence of the conducting 
wall boundary condition used in this simulation, the 
last 3 cm around the perimeter of the simulation 
box are discarded and not shown in the plots. 
Future work will study non-reflective boundary 
conditions to better describe the actual situation in 
a space plasma thruster. The distribution of the 
component of magnetic field 𝐵𝑧 in the chamber is 
given in Fig. 18. It is shown that the wave mainly 
propagates in the source region, where it is 
strongest. However, the wave can be seen to 
propagate also into the MN region. 
 

 
Figure 18. The 2D distribution of wave field 𝐵𝑧. The red 
line is boundary of plasmas. The black box shows the 

position of antenna. 
 
Interestingly, the power absorption density in the 
whole chamber concentrates fundamentally in the 

source region (Fig. 19). This does not preclude, 
however, that the antenna is radiating to infinity 
and that this power is not absorbed in the MN 
region: further studies will concentrate in studying 
the reflection of the wave by the plasma back into 
the source region as the density and magnetic field 
strength (and consequently, the dielectric tensor) 
change as the plasma expands. Clearly, an 
efficient RF thruster will require little or no radiation 
to empty space and maximum absorption within 
the source region. 
 

 
Figure 19.  The 2D distribution of power density. The red 

line is boundary of plasmas. The black box shows the 
position of antenna. 

 
4. CONCLUSION 

A 2D wave-plasma interaction code named 
HELWAVE2D has been developed in order to 
study the wave propagation and power deposition 
in the Helicon Plasma Thrusters (HPT). The non-
uniformity both in the plasma density and magnetic 
field in radial and axial direction is taken into 
account. The cold plasma dielectric tensor is 
employed. As a distinguishing factor from other 
helicon wave codes, the near region of plasma 
plume is included in the model. The plasma 
boundary can be changed along the chamber 
length. Based on this consideration, the finite 
different method is applied to solve this problem 
The Maxwell equations are investigated in the 
frequency domain and the Fourier expansion is 
applied in the azimuthal direction and time. A 
staggered mesh approach which has a good 
second-order accuracy and low computational cost 
is employed to discretize the equations.  
 
In order to validate the code in different situations, 
the convergence in different conditions has been 
discussed. Obviously, the mesh size should be 
much smaller than the wavelength. According to 
the helicon plasma theory, the helicon mode and 
Trivelpiece–Gould (TG) modes are the two 
dominated mode. The mesh size should be finer 
when the TG wave (a short wave) mainly 
propagates in the plasma region. Moreover, the 
comparison to the HELWAVE1D code has been 
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carried out. Three different cases including pure 
vacuum case, uniform plasma case and non-
uniform plasma case have been checked to 
validate the 2D code. The two codes have good 
consistency and the error has been proved to be 
less than 1%.  
 
A preliminary simulation case including the 
magnetic nozzle is carried out. It shows that the 
wave can propagate to the downstream. Further 
work will concentrate on analyzing wave 
propagation and absorption outside of the plasma 
source region and in studying different boundary 
conditions.  
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