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ABSTRACT:

The electron-electron collisional effect on the non-
stationary expansion of a plasma in a convergent-
divergent magnetic nozzle is studied. Under parax-
ial and fully magnetized plasmas approximations,
an Eulerian code has been adapted to solve Pois-
son’s equation coupled with the kinetic transport
equations for plasma species, i.e. a Vlasov equa-
tion for singly-charged ions and a Boltzmann equa-
tion with a Bhatnagar-Gross-Kook operator for elec-
trons. The study is focused on weakly collisional
plasma plumes, which have a collisional time scale
larger than the transit time in the nozzle of typi-
cal electrons. A kinetic analysis shows that phase-
space regions of isolated, doubly-trapped electrons
that are nearly empty in the collisionless case are
progressively populated due to the electron-electron
collisions. Such a higher density of trapped elec-
trons modifies the profile of the electrostatic poten-
tial, which keeps almost unaltered the density of free
electrons and decreases the density of the reflected
ones. As compared with the collisionless case, the
collisions decrease the length of the downstream
sheath and the parallel electron temperature while
increasing the normal one. Therefore the steady
plasma state is more isotropic. The simulations
show that collisions erase the time history of the
system and, unlike the collisionless case, the steady
state is unique.

1. INTRODUCTION

Many astrophysical scenarios, and also some en-
gineering devices such as magnetic nozzles, in-
volve the expansion of a plasma from a source
into the vacuum and in the presence of a magnetic
field. In many of them, the collision frequency is
so low as compared with other characteristic times
of the system, that the plasma expansion can be
taken as collisionless. However, in the very long
term, the effect in the steady state of such rare

collisions is unclear. This is particularly interest-
ing for the phase-space regions occupied by parti-
cles that are doubly-trapped between two axial co-
ordinates. In a collisionless plasma, these special
regions are populated during the transient phase
and plasma species injected from the source can-
not access them in the steady state. Collisions,
even if they are rare, can slowly populate them and
change the final steady state. Fluid models can-
not describe correctly this trapping phenomenon in
weakly collisional plasmas and a kinetic description
is necessary. Self-consistent solutions of the sta-
tionary Vlasov-Poisson system has been obtained
for a magnetic nozzle with slender geometry [1].
Since a stationary model cannot provide rigorously
the amount of particles trapped during the tran-
sient, the authors added an heuristic population and
found that the steady state solution was sensitive
to the particular choice. In a recent work, the non-
stationary expansion of a collisionsless plasma in
a paraxial magnetic nozzle was studied numerically
[2]. Vlasov simulations showed that both the elec-
tron trapping and the steady state of the plasma de-
pend on the transient phase. Therefore, it was con-
cluded that the final state of a collisionless plasma
expansion depends on the history of the system.
In this work, we add collisional effects and study the
plasma expansion though numerical simulations of
the Boltzmann equation. The purpose of the study is
twofold. In the first place, it reveals the impact of the
collisions on macroscopic quantities, such as elec-
tric potential, plasma densities and temperatures,
and also some kinetic features such as trapped par-
ticle population. In addition, non-stationary Boltz-
mann simulations can give insight into an interesting
theoretical question: do collisional effects make col-
lapse to the same state all the steady states of col-
lisionless plasma expansions in magnetic nozzles ?
The answer to this question clarifies whether or not,
in the long term, collisions erase completely the his-
tory of the plasma expansion and make the steady
state independent on the transient phase.

2. MAGNETIC NOZZLE MODEL

Besides collisions, the physical configuration of the
plasma expansion and the numerical method used
in this work are similar to the ones introduced in
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Ref. [2]. For this reason, this section presents briefly
the most important features of the model and pays
special attention to the differences introduced by the
collisions. Interested readers can find more details
in Appendix A and Ref. [2].

2.1. Plasma Model

An infinitely large tank placed at z < z0 < 0 is filled
with an electron-ion plasma. At z > z0 there is vac-
uum and an external magnetic field generated by a
current loop of radius RL placed at z = 0. Such a
magnetic field is stationary and non-uniform and it
reaches its maximum value BT at z = 0 (the noz-
zle throat T). Suddenly, the nozzle is started and
the plasma of the tank expands into the vacuum.
There are several possibilities for the forward distri-
bution functions of ions and electrons entering the
nozzle. For simplicity, we will assume here that they
are semi-Maxwellian,

fα(t, z =z0, v‖ > 0, v⊥) = χα(t)N∗
(
mα

2πT ∗α

)3/2

exp

(
−mαv

2

2T ∗α

)
, α = i, e (Eq. 1)

with subscript α = e and α = i referring to elec-
trons and ions. Therefore, we assume a fully ion-
ized plasma without neutrals. Parameters with a star
denote reference parameters such as particle den-
sity N∗ and temperature T ∗α. However, these are
not the actual densities and temperatures at z = z0,
because they also involve the backward distribution
functions that are computed self-consistently by the
code. For convenience, we write the velocity as
v =

√
v2‖ + v2⊥ with v‖ and v⊥ the velocity compo-

nent parallel and normal to the magnetic field lines.
Finally the paramenter χα(t) is χe = 1 for elec-
trons and χi(t) is adjusted dynamically for ions to
accomplish quasineutrality at the entrance z = z0.
We will follow the nomenclature of Ref. [2] and ax-
ial coordinate, time, velocities, magnetic field, elec-
trostatic potential, particle distribution functions, and
densities, are normalized according to z/λ∗De → z,
tω∗pe → t, v‖,⊥/λ

∗
Deω

∗
pe → v‖,⊥, B/BT → B,

eφ/kBT
∗
e → φ, fα/N∗ (me/kBT

∗
e )

3/2 → fα, where
λ∗De =

√
ε0kBT ∗e /N

∗e2 is the Debye length, ω∗pe =√
N∗e2/meε0 the electron plasma frequency, kB the

Boltzmann constant, me the electron mass, e the el-
ementary charge, and ε0 the vacuum permitivity.
The models assumes a slender and slowly-varying
magnetic field and the analysis is focus at the cen-
ter line of the nozzle. The normalized magnetic field
as a function of the axial distance at the axis of the
nozzle then reads

B(z) =
r3L

(r2L + z2)
3/2

1z, (Eq. 2)

where 1z is an unit vector along the z-axis and
rL ≡ RL/λ

∗
De. We will also assume that the mag-

netic field is very strong, i.e. the Larmor radius sat-
isfies ρLα ≡ βv⊥/|Zα|B << rL, and the plasma
particles are fully attached to the magnetic field
lines. Therefore, the normalized magnetic moment
µα = βαv

2
⊥/2B is conserved. Here βα ≡ mα/me

and Zα are the mass and the charge number of the
α-species. The effect of the induced magnetic field
will be also ignored. Under this set of hypotheses,
the gyrocenter distribution functions f̄α, i.e.the distri-
bution functions averaged over the fast gyrophase,
are governed by the Boltzmann equations

∂f̄α
∂t

+ v‖
∂f̄α
∂z

+ aα
∂f̄α
∂v‖

= Qα
(
f̄e, f̄i

)
, (Eq. 3)

where Qα is a collisional operator, and we intro-
duced the normalized acceleration

aα = − 1

βα

(
Zα

∂φ (t, z)

∂z
+ µ

dB (z)

dz

)
(Eq. 4)

with Zα the charge number. Such acceleration in-
volves the electric field E = E‖B/B = −∂φ/∂z,
which is given by the paraxial Poisson’s equation

B
∂

∂z

(
E‖

B

)
=
∑
α=e,i

Zαnα (Eq. 5)

and the densities computed from the distribution
functions as

nα(z) =

∫
fαdv =

2πB

βα

∫ +∞

−∞

∫ +∞

0

f̄αdv‖dµ.

(Eq. 6)
Particle collisions are modeled by the Bhatnagar-
Gross-Kook operator [3]

QBGKα =
1

τα

[
f̄Mα (nα, uα, Tα)− f̄α

]
(Eq. 7)

with τα a normalized collision time. Such a opera-
tor, which is not rigorous but useful to gain insight
into the physics of the expansion, pushes the actual
distribution function f̄α towards the function

f̄Mα (nα, uα, Tα) =nα

(
βα

2πTα

)3/2

exp

[
−
βα
(
v‖ − uα

)2
2Tα

− Bµ

Tα

]
,

(Eq. 8)

which is a Maxwellian distribution function with the
same density nα, mean velocity along the mag-
netic field line uα, and temperature Tα, as the ac-
tual distributions f̄α. The density is given by Eq.
6, and the mean velocity uα =

〈
v‖
〉
α

and tempera-
ture Tα = (T‖α+2T⊥α)/3 are found straightforwardly
after introducing the average or mean value of any
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quantity ψ as

〈ψ〉α =
1

nα

∫
ψf̄αdv

=
2πB

βαnα

∫ +∞

−∞

∫ +∞

0

ψf̄αdv‖dµ, (Eq. 9)

with T‖α = βα

〈
c2‖α

〉
α

, c‖α = v‖ − uα the peculiar

velocity, and T⊥α = B 〈µ〉α.

2.2. Setup of the Simulations

The VLAsov Simulator for MAgnetic Nozzles (VLAS-
MAN), explained in detail in Ref. [2], has been ex-
tended to include collisions and solve (Eq. 3) and
(Eq. 5). Unlike particle-in-cell simulators, which use
macroparticles, VLASMAN is an Eulerian code that
solves the kinetic equation on a finite grid of phase
space, i.e. z0 ≤ z ≤ zM , −vαmax ≤ v‖ ≤ vαmax and
0 ≤ µ ≤ µαmax. Consequently, it is computationally
demanding but provides a high precision in regions
where the distribution function is small, as it natu-
rally happens in a plasma expansion to the vacuum.
The main differences of the extended version of the
code include the implementation of the collision op-
erator (see details in Appendix A) and the µ-grid.
Since the magnetic moment grid is constructed in
a finite domain 0 ≤ µ ≤ µαmax, the truncation
value µmax should be high enough to ensure that
the distribution function is small at the boundaries.
Otherwise, the boundary condition f(t, z, v‖, µ >
µmax) = 0 imposed by the code would yield wrong
results. Our collision operator in (Eq. 7) involves the
Maxwellian distribution function with the exponen-
tial of −Bµ/Te [see (Eq. 8)]. For large z, the mag-
netic field is very small [see (Eq. 2)] and a high value
of µ is needed to capture correctly the Maxwellian.
For this reason, we set the computational box lim-
its to z0 = −10 and zM = 100 (smaller than the
one used in Ref. [2]), increased the value of µemax
up to 105, and implemented a nonuniform grid dis-
tribution in µ. For electrons, a total of 40 grid points
were distributed uniformly from 0 ≤ µ ≤ 5.6 and
41 non-equispaced points were used in the interval
5.6 < µ ≤ µemax. Ions are not problematic because
we ignored their collisions. Such strategy provides
enough resolution in the region of interest, where
most of the trapping process occurs, and also cap-
tures correctly the behavior of the Maxwellian distri-
bution function appearing in the collision operator.
In the simulations we set the following physical pa-
rameters T ∗e = T ∗i , βi = 100, rL = 20, Zi = 1,.
Such unphysical mass ratio helps us to save com-
putational resources. The boundary conditions of
Poisson’s equation are φ(z0) = 0 and

φM (t) = φ0 + (φF − φ0)

{
1

2
+

1

π
arctan [ω (t− t0)]

}
(Eq. 10)

Two cases were considered: (i) constant potential
with φ0 = φF = −2.75 and (ii) time-dependent
potential with φ0 = −5, φF = −2.75, t0 = 500,
and ω = 5. We remark that they present different
time histories but provide exactly the same bound-
ary condition in the long term, i.e. a potential value
of −2.75 that gives zero net current in the stationary
state according to Ref. [2]. The number of points in
z- and v‖-grids were Nz = 451 and Nv = 77, respec-
tively and we used vemax = 5 and vimax = 0.5.

3. SIMULATION RESULTS

3.1. Macroscopic Quantities

We here present four simulations. Two of them
are collisionless and have ΦM constant and vari-
able given by (Eq. 10), respectively. The other two
have exactly the same conditions, except that there
are electron-electron collisions with a collision time
equal to τe = 1000. This collision time is larger than
the typical residence time of reflected and free elec-
trons in the simulation box. The simulations were
run up to a time large enough to guarantee that the
system reached a stationary state. Such a condi-
tion was monitored by plotting the z-profile of certain
quantities that are z-independent in stationary con-
ditions, like for instance the ratio j/B, and also the
temporal evolution of the density of trapped particles
and the temperature at several axial coordinates.

Top panel in Fig. 1 shows the electrostatic potential
at the end of the simulation versus the inverse of the
magnetic field, which is proportional to the cross-
sectional area of the nozzle. The two collision-
less simulations with constant and time-dependent
φM , which correspond to solid red and dashed
green lines, converge to different steady states. For
φM given by law (Eq. 10) the amount of particles
trapped during the transient is larger and it yields
a lower value of the electrostatic potential. Interest-
ingly, the two simulations with collisions have exactly
the same steady state (dark dashed-dot and blue
dotted lines in Fig. 1 overlap). The electron-electron
collisions yield a lower value of the electrostatic po-
tential because more particles are trapped (see be-
low) and they also shorten the downstream sheath
as compared with the collisionless simulations (see
charge density in the bottom panel).
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Figure 1: Electrostatic potential (top) and charge
density (bottom) versus the inverse of the magnetic
field.

The electron parallel and perpendicular tempera-
tures versus 1/B for the four simulations are shown
in the top and bottom panels of Fig. 2. As expected,
the collisions make the distribution function more
isotropic because they decrease the parallel tem-
perature and increase the perpendicular one. In-
terestingly, the temperatures at zM are almost the
same with and without collisions but the z-profiles
are totally different. In the collisionless case the
parallel temperature is almost constant and drops
abruptly in the downstream sheath. For weakly colli-
sional plasmas the parallel electron temperature de-
creases almost exponentially with the inverse of the
magnetic field (note the logarithmic scale in the x-
axis).

10
0

10
1

10
2

1/B

0

0.5

1

10
0

10
1

10
2

1/B

0

0.5

1

Figure 2: Parallel (top) and perpendicular (bottom)
electron temperatures versus the axial coordinate.
See legend in Fig. 1.

There are three populations of electrons in the mag-
netic nozzle: (i) free electrons that have enough en-
ergy to leave the simulation box at zM , (ii) reflected

electrons that are injected and leave the simulation
box at z0, and (iii) doubly trapped electrons. The lat-
ter population is injected at z0 and during the tran-
sient or due to collisions gets trapped between two
axial positions. These three electron population are
denoted by subscripts F , R, and T . As shown in Fig.
3, collisions influence considerably the relative com-
position of the plasma. The ratio of the free electron
density to the total density is practically the same for
the four simulations (see middle panel). Therefore,
it is not affected by the collisions and the time his-
tory of φM . Such a density ratio, and the net current,
seems to be controlled by just the final value of ΦM .
The major effect of the collisions is to increase the
relative composition of the trapped electron popu-
lation and decrease the reflected one (see top and
bottom panels). The understanding of this feature
needs a kinetic analysis made in the next section.

10
0

10
1

10
2

0

0.5

n
e

T
/n

e

10
0

10
1

10
2

0

0.5

1

n
e

F
/n

e

10
0

10
1

10
2

1/B

0

0.5

1

n
e

R
/n

e

Figure 3: Trapped (top), free (middle), and reflected
(bottom) electron densities versus the axial coordi-
nate. See legend in Fig. 1

Figure. 4 shows the evolution of the electron den-
sities (top) and temperatures (bottom) at axial posi-
tion z = 90. As mentioned at the beginning of this
section, the system reaches a steady state after the
transient phase. The figure also confirms that the
simulation time was long enough, and the results
presented in this work correspond effectively with
steady states.
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Figure 4: Evolution of the electron densities (top)
and temperature (bottom) at z = 90. Simulation with
collision and constant φM

3.2. Electron Trapping

The characteristic equations of (Eq. 3) are

dz

dt
=v‖ (Eq. 11)

dv‖

dt
=aα (Eq. 12)

df̄α
dt

=QBGKα (Eq. 13)

From (Eq. 11) and (Eq. 12) one finds that the energy
E = βαv

2
‖/2 + Zαφ+ µB is governed by

dE

dt
= Zα

∂φ

∂t
(Eq. 14)

Therefore, in the steady state with ∂φ/∂t = 0, the
energy is conserved (dE/dt = 0). For this rea-
son, certain analyses are easier by changing from
v‖ to E by using v‖ = ±

√
2 (E − Zαφ− µB) /βα,

and using the parametrization f̄±α (t, z, E, µ) instead
of f̄α(t, z, v‖, µ). The ± signs in the superscript of
the distribution function indicate positive and nega-
tive axial velocities. The positive and negative dis-
tribution functions in the steady state should then
satisfy the equation

±

√
2 (E − Zαφ− µB)

βα

∂f̄±α
∂z

=
f̄±Mα − f̄±α

τα
(Eq. 15)

where f̄±Mα are the Maxwellian distribution function
with positive and negative axial velocity in terms of
z, µ, and E and we used dE/dt = dµ/dt = 0. Ac-
cording to (Eq. 15) and for a given energy level in
the steady state, f̄±α are z-independent piecewise
functions in the collisionless case. For weakly col-
lisional plasma (τα >> 1), f̄±α are almost constant
with z.
The population of trapped particles in the steady
state can be identified by plotting the distribution

function in a z − µ plane for a given value of the
energy at the end of the simulations. We remark
that, at a certain position and energy, the magnetic
moment should be smaller than

µmax(z, E) =
E − Zαφ(z)

B(z)
(Eq. 16)

and a particle is doubly-trapped in the region zmin ≤
z ≤ zmax if its magnetic moment µ satisfies µ =
µmax(zmin, E) = µmax(zmax, E). The curve µmax
versus z can exhibit a minimum at a certain value of
the magnetic moment, say µ∗.
Figure 5 shows the sum of the electron distribu-
tion functions f̄±e at the steady state in the z − µ
plane for a given energy level. For convenience,
the µmax − z curve is also presented. Top panels
correspond to collisionless simulations and energy
levels E = 2.2 [panel (a)] and E = 2.4 [panel (b)].
It is evident that there are trapped electrons, but
they just occupy a relatively narrow µ-band above
the minimum of the µmax-curve. Therefore, most of
the phase-space region that trapped electrons could
potentially occupy is empty. As shown in panels (c)
and (d), which present the same results but for a
simulation with collisions, the electron-electron col-
lisions change this picture considerably. We first
note that the µmax-curves for a given energy level
are not the same, because the collisions change
the densities and, therefore, the electrostatic poten-
tials in the steady state are different. Moreover, the
collisions fill the phase-space region with doubly-
trapped electrons, thus explaining the higher density
of the trapped electron population presented in Sec.
3.1.. The panels also corroborate a fact already an-
ticipated by (Eq. 15): f̄± are z-independent and al-
most z-independent in the collisionless and weakly
collisional cases, respectively.

Figure 5: Steady state electron distribution function
in the z − µ plane for a given energy. The top and
the low row correspond to collisionless and weakly
collisional plasmas, respectively, and left and right
columns to E = 2.2 and E = 2.4.
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Figure 6 shows in detail the profiles of the forward
and backward distribution function of the electrons
for z = 50 and E = 2.4 in the collionless and weakly
collisional simulations [panels (a) and (b) respec-
tively]. These two panels are obtained by making
a section at z = 50 of Fig. 5.b and 5.d. For conve-
nience, we also plotted the value of µmax for z = 50,
and the minimum of µmax curve for E = 2.4. The
distribution functions vanish for µ > µmax and the
trapped electron region correspond to µ∗ ≤ µ ≤
µmax. The panels include the forward and back-
ward Maxwellian distribution functions with density,
drift velocity, and temperature equal to the local val-
ues of the distribution function obtained in the sim-
ulation. These distributions f+Me and f−Me are ob-
tained by writting (Eq. 8) as a function of the en-
ergy (instead of v‖) and they are different because
the local value of ue is not zero. In the collision-
less simulation the distribution functions are far from
Maxwellian and they decreases abruptly to the right
of µ∗, i.e. only a narrow µ-range is filled with trapped
electrons [see panel (a)]. Even in the weakly colli-
sional case the distribution functions do not follow
a Maxwellian, although they are much closer in the
trapped region. Clearly, the collisions increased the
amount of trapped electrons.
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Figure 6: Forward and backward electron distribu-
tion functions versus mu for z = 50 and E = 2.4
in the steady state. The top and the low panel cor-
respond to collisionless and weakly collisional plas-
mas, respectively.

Figure 7 shows the distribution function of the elec-
trons in the v‖ − µ plane for z = 50 [panels (a) and
(c)] and z = 75 [panels (b) and (d)]. Similarly to
Fig. 5, panels (a)-(b) and (c)-(d) correspond to colli-
sionless and weakly collisional simulations, respec-
tively. The presence of collisions yields a long tail of
the distribution function for large µ values and nearly
zero axial velocity. Since B decreases with z, such
a tail is longer as we move from the throat of the
nozzle to zM .
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Figure 7: Steady state electron distribution function
in the v‖ − µ plane for a given axial coordinate. The
top and the bottom row correspond to collisionless
and weakly collisional plasmas, respectively, and
left and right columns to z = 50 and z = 75, re-
spectively.

4. CONCLUSIONS

The numerical simulations show that collisions, even
if they are rare, play a fundamental role in the steady
state of magnetized plasma expansions. The ax-
ial profiles of the electrostatic potential and elec-
tron temperature are modified considerably. For in-
stance, collisions make the electron parallel temper-
ature decay almost exponentially with the inverse
of the magnetic field. Moreover, collisions keep
invariant the relative density of free electrons but
modify the relative amount of trapped and reflected
electrons, respectively. The phase-space region of
doubly-trapped electrons is progressively filled by
the collisions until a final and unique steady state
is reached. Therefore, unlike collisionless plas-
mas, the simulations suggest that the steady state
is unique for weakly collisional plasmas. The equi-
librium distribution function is far from Maxwellian,
even though the Bhatnagar-Gross-Kook operator is
proportional to the difference between the actual
distribution function and a Maxwellian with the same
local macroscopic properties.

The conclusions of this work are based on a lim-
ited number of simulations and may be consolidated
by a deeper analysis by varying important physi-
cal and numerical parameters such as the collision
frequency, the simulation box size, and the down-
strean electrostatic potential. We also mention that
electron-neutral collisions, ignored in this work, may
be dominant for not fully ionized plasma. More re-
fined analysis will be presented in a forthcoming
work.
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A NUMERICAL SCHEME

The simulations have been carried out with an
updated version of the code named VLASMAN
(VLAsov Simulator for MAgnnetic Nozzle). A de-
tailed description of this code, including mesh in real
and velocity space and filtering algorithm to avoid
filamentation, can be found in Ref. [2]. We now ex-
plain the numerical implementation of the electron
collisions, which is the novel feature of this work.
For convenience, we write the Boltzmann equation
as

∂fα
∂t

= (S + F + C) fα (Eq. 17)

where the operators for streaming S, forces F ,
and collisions C are S f̄α = −v‖∂f̄α/∂z, F f̄α =

−aα∂f̄α/∂v‖, and Cf̄α =
(
f̄Mα − f̄α

)
/τα. Our

numerical scheme implements a splitting method.
Given the distribution functions at time t, the
scheme computes it at t + ∆t by using the follow-
ing formula [4]

f̄α (tm + ∆t) = C1/2S1/2FS1/2C1/2f̄α (tm)
(Eq. 18)

where for brevity we omitted the dependence with
z, v‖, and µ of the distribution functions, and C1/2,
S1/2, and F , are operators that propagate the dis-
tribution function, according to collisions, streaming
and forces, for time steps equal to ∆t/2, ∆t/2, and
∆t, respectively.
The collisional part in the splitting method, ∂f̄α/∂t =
Cf̄α, is discretized with a second-order accuracy in
∆t Crank-Nicolson approach [5]

C1/2f̄α(tm, z, v‖) =f̄α(tm, z, v‖)+

1

2

∆t

τα + ∆t/2

[
f̄Mα − f̄α(tm, z, v‖

]
(Eq. 19)

where we omitted again the dependence with µ be-
cause it enters as a parameter in the algorithm. The
distribution function f̄Mα is computed from Eq. 8
and its arguments, ne, ue, and Te, are the macro-
scopic values of f̄α(tm, z, v‖). For the inner part of

Eq. 18, i.e. streaming and force (S1/2FS1/2), we
used the well-known second order scheme [6]

S1/2f̄α(tm, z, v‖) = f̄α(tm, z − v‖∆t/2, v‖) (Eq. 20)

F f̄α(tm, z, v‖) = f̄α
(
z, v‖ − aα∆t

)
(Eq. 21)

At each time step, the electric field appearing in
aα is found by solving Poisson’s equation with the
densities computed from the distribution function
S1/2C1/2f̄ .
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