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The stationary structure of a weakly collisional plasma column, confined by an axial magnetic field

and a cylindrical vessel, is studied for the high-density case, when the diamagnetic azimuthal cur-

rent is large enough to demagnetize partially the plasma. The plasma response is characterized

mainly by two dimensionless parameters: the ratios of the electron gyroradius and the electron

skin-depth to the plasma radius, and each of them measures the independent influence of the

applied magnetic field and the plasma density on the plasma response. The strong magnetic

confinement regime, characterized by very small wall losses, is limited to the small gyroradius

and large skin-depth ranges. In the high-density case, when the electron skin-depth is smaller

than the electron gyroradius, the skin-depth turns out to be the magnetic screening length, so

that the bulk of the plasma behaves as unmagnetized. VC 2011 American Institute of Physics.

[doi:10.1063/1.3646923]

I. INTRODUCTION

A plasma contained in a cylindrical vessel and affected

by an axial magnetic field is a classical confinement configu-

ration. The first detailed analysis of the problem dates back

to the radial diffusive model of Tonks,1 who showed the for-

mation and central role of the azimuthal plasma current.

Later, Forrest and Franklin2 and Ewald et al.3 included ion

inertia effects for a weakly collisional plasma. In the last

years, the problem has been revisited by several authors.

Sternberg et al.4 have highlighted that, for a magnetized

plasma, the electron force balance involves the expanding

pressure gradient and the confining magnetic force caused by

the plasma current, so that the Boltzmann relation does not

apply to electrons. Our contribution5 has been to carry out a

detailed asymptotic and parametric analysis of the problem,

which has shown that: (1) the inertial layer linking the bulk

diffusive region to the Debye sheath is initiated by electron-

inertia effects that tend to limit the growth of the electron

azimuthal current; (2) ion-inertia effects are limited to a sub-

region within that layer; and (3) the change from the

magnetic to the electric force as main confining force on

electrons takes place within the ion-inertia sublayer, when

the ion Mach number is about 0.7. In addition, we showed

the existence of a second distinguished magnetized regime

when electron collisionality is very small, and we provided

simple scaling laws for particle and energy fluxes to the wall

(which measure the magnetic confinement level of the

plasma column).

In our analysis, the main magnetized regime is charac-

terized by the distinguished limits

kd0 � ‘e0 � R � cs=�e; (1)

b0 � 1; (2)

where R is the radius of the plasma column,

kd0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0Te=e2n0

p
is the Debye length, with Te the electron

temperature and n0 the plasma density at the axis;

‘e0 ¼
ffiffiffiffiffiffiffiffiffiffi
Teme

p
=eB0 is the electron gyroradius, with B0 the

externally applied magnetic field; cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the

plasma sound speed and �e is the electron collision fre-

quency; and b0 ¼ l0n0Te=B2
0 is half the ratio between ther-

mal and magnetic pressures. Conditions (1)-(2) assure that

the plasma is magnetized, weakly collisional, and quasineu-

tral except in the thin Debye sheath adjacent to the wall.

It is well known—for instance from the MHD equilib-

rium of a h-pinch6—that the azimuthal plasma current is dia-

magnetic and induces a magnetic field that opposes the

applied one. The induced field is negligible in the low-

density or zero-beta limit, Eq. (2), but otherwise it makes the

total magnetic field to have a minimum at the center of the

plasma column.6,7 Nonzero-b0 effects are of interest to high-

density plasmas. For instance, helicon thrusters, in order to

be competitive, require8–12 a moderate magnetic field

[�0.01–0.05 T], a high plasma temperature (�20–30 eV),

and a relatively high density (�1019m�3), so that values of

b0 about 0.5 can be reached.

This paper attempts to characterize the nonzero-beta

regime of a cylindrical plasma satisfying conditions (1).

Specific goals of the study are, first, to determine the changes

caused by b0 in the radial plasma structure and in the mag-

netic confinement of the plasma column, and, second, the

different parametric regimes of the plasma response. Inter-

estingly, the collisionless electron skin-depth, generally

related to time-dependent problems, such as inductive

plasma discharges13,14 or hydromagnetic solitary waves,15

will turn out to be a characteristic length of both the plasma

spatial profile and the confinement regime. Finally, the

competition between the ambipolar electric field and the

total magnetic field in confining the plasma column4,5,7 is

commented.

II. MODEL FORMULATION

In order to tackle with nonzero-beta effects, the

Ampere’s law must be added to the zero-beta, cylindricala)Electronic mail: eduardo.ahedo@upm.es.
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model of Ref. 5. Neglecting terms that we showed there to

be small, the relevant set of equations for the quasineutral

plasma column are

1

r

d

dr
ðrneurÞ ¼ ne�w; (3)

0 ¼ � 1

ne

d

dr
ðTeneÞ þ e

d/
dr
� euheBþ me

u2
he

r
; (4)

miur
dur

dr
¼ �e

d/
dr
� mi�iur; (5)

meur
duhe

dr
¼ eurB� �emeuhe � me

uheur

r
; (6)

dB

dr
¼ l0eneuhe; (7)

where ne is the density of the quasineutral plasma;

ur¼ ure¼ uri is the radial velocity of both ions and electrons,

consistent with a one-dimensional model and a dielectric

wall; uhe is the electron azimuthal velocity; B is the local

magnetic field; u is the ambipolar electric potential;

�i¼ �ionþ �in is the ion total collision frequency, with con-

tributions of the ionization frequency and the ion-neutral col-

lision frequency; �e¼ �ionþ �enþ �ei is the electron total

collision frequency, with contributions of �ion and the

electron-neutral and electron-ion collision frequencies; and

�w is the frequency for plasma losses at the wall. This loss

frequency is indeed an eigenvalue of the problem and must

satisfy the plasma balance condition,16 which states that, in

the stationary response, plasma losses at the wall are equal to

the volumetric plasma production (i.e., ! �ion) plus any

axial differential transport [! (�w� �ion) in this one-

dimensional model]. Equations (3)–(7) do not include the

ion azimuthal velocity, which was shown to be negligible in

practical cases,5 uhi=uhe�me�i=(mi�e). Also the ion pressure

has been neglected and hereafter we will take Te, �e, and �i

as known constants. These assumptions simplify the discus-

sion without affecting the core and aims of the present study.

Manipulating Eqs. (3)–(5) allows us to solve for the

derivatives of ur and ne,

mi
c2

s

ur
� ur

� �
dur

dr
¼ euheBþ mi �iur þ �w

c2
s

ur

� �

� mic
2
s þ meu2

he

r
; (8)

ur
dne

dr
¼ ne �w �

ur

r
� dur

dr

� �
; (9)

and then to solve Eq. (5) for the derivative of /. Now, the set

of Eqs. (5)–(9) constitute a standard first-order system of dif-

ferential equations, which presents singularities at r¼ 0,

ur¼ 0, and ur¼ cs. The two first ones take place at the

plasma axis and they are avoided by just eliminating

unbounded modes there [see boundary condition (12) in

Ref. 5]. The third one is the classical sonic singularity and

matches with the Bohm condition at the edge S of the Debye

sheath. In the asymptotic analysis consistent with Eq. (1), the

Debye sheath is a discontinuity between the quasineutral

plasma and the wall W, so that we can take rS¼R in the qua-

sineutral scale. Therefore, the six boundary conditions for

the five plasma equations and the eigenvalue �w are ne¼ n0,

ur¼ 0, uhe¼ 0, and /¼ 0 at the plasma axis (r¼ 0), and

ur¼ cs and B¼B0 at the sheath edge S (i.e., r ’ R).

Equations (5)–(9) are non-dimensionalized as in Ref. 5,

and this process identifies the set of free parameters that

determine the plasma response. Here, Eq. (7) introduces b0

as a new free parameter and the dimensionless plasma

balance equation takes the functional form

�wR

cs
¼ �̂w

‘e0

R
;
�ke

R
;
R�i

cs
; b0

� �
; (10)

where �ke ¼ cs=�e is a reduced (by the square of the electron-

to-ion-mass ratio) collisional mean-free path for electrons. It

was shown in Ref. 5 that the ion-collision parameter R�i=cs

has a minor role in the response and the scaling laws for the

magnetized regime, so discussions here will assume implic-

itly that R�i=cs � 1.

The electron skin-depth de0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=ðe2l0n0Þ

p
satisfies

b0 ¼ ‘2
e0=d2

e0. Therefore, de0=R can be used as free parameter

instead of b0. Indeed, since

‘e0 / B�1
0 ; de0 / n

�1=2
0 ; (11)

the pair of parameters (‘e0=R, de0=R) is clearly more appro-

priate than the pair (‘e0=R, b0) for studying the independent

effects of the applied magnetic field and the density on the

plasma response. Since n0 is present only in b0 (or in de0=R),

the nonzero-beta case brings with it all the influence of the

plasma density on the dimensionless response of the plasma

column. Zimmerman et al.,7 who include Ampere’s law and

present particular solutions with the induced magnetic field,

miss somehow b0 among their model parameters (notice that

their b0 and v are indeed comparable to ours R=‘e0 and
�ke=‘e0, respectively, and none of them include the product

l0n0, present in b0).

III. PLASMA RESPONSE

A. Zero-beta limit

We briefly summarize here results of Ref. 5 that are of

interest for the nonzero-beta study. For b0 ! 0, Eq. (7)

yields B(r)¼B0. Then, the asymptotically exact solution of

the diffusive bulk region is

ne

n0

¼ J0 a0

r

R

� �
;

neuhe

n0ce
¼ ‘e0

R
a0J1 a0

r

R

� �
;

ur

cs
¼ uhe

ce

‘e0

�ke

;
(12)

with J0 and J1 Bessel functions and a0 ’ 2:405 the first zero of

J0. Notice that ur with cs and uhe are normalized with

cs and ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
respectively. The transition to the inertial

layer takes place when uhe¼O(ce). Within this layer, of thick-

ness O(‘e0) roughly, electron inertia hinders further increments

of uhe. Then, in a shorter sublayer [see Eq. (31) of Ref. 5], ion

inertia brings ur=cs from Oð‘e0=�keÞ to 1, and the ambipolar

electric force surpass the magnetic force at ur=cs ’ 2�1=2.
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The plasma flux to the wall (also constant across the

inertial and Debye layers) is neScs with

neS

n0

’ 1:25
‘2

e0

R�ke

: (13)

This illustrates the excellent confinement provided by the

applied magnetic field; for instance, experimental measure-

ments by Tysk et al.17 yield neS=n0� 1%. Equation (13) has

to be compared with

neS

n0

¼ e�1=2 ’ 0:61; (14)

for an unmagnetized, weakly collisional plasma, which is

confined only electrostatically, by the ambipolar electric

field set up by the presence of the wall.

B. Nonzero beta regimes

For b0 � 1, the small induced magnetic field can be

obtained by solving Eq. (7) with the zero-beta solution (12)

on the right-hand side,

dB

dr
’ b0B0

a0

R
J1

a0r

R

� �
: (15)

Straightforward integration yields

1� BðrÞ=B0 ’ b0 J0ða0r=RÞ; ðb0 � 1Þ; (16)

and the minimum value of the magnetic field is

B 0ð Þ ’ 1� b0ð ÞB0, at the plasma column axis.

When b0 is no longer small, Eq. (7) must be solved to-

gether with the rest of plasma equations but Eq. (16) already

suggests that the central part of the plasma column is demag-

netized. Let us take the case of a plasma with ‘e0=R� 1 and

analyze the plasma response as its density at the axis is

increased, that is as de0=R is decreased or b0 is increased.

Figure 1 plots the radial profiles of plasma magnitudes for

‘e0=R¼ 0.1 and different values of b0 in the range between 0

and 2.5, that is 1> de0=R> 0.032. Figure 1(a) shows how

the total magnetic field decreases as b0 increases. The central

plasma region becomes totally demagnetized for b0� 0.5,

and magnetization is limited to a thin layer near the wall

when b0> 1. Figure 1(b) depicts the density profile, illustrat-

ing how magnetic confinement deteriorates as b0 increases.

Figure 1(c) plots ur: the gentler profiles as b0 increases are

due to a larger electrostatic field in the central region. As the

dashed lines of Figs. 1(b) and 1(c) corroborate, the behavior

of a plasma with ‘e0=R� 1 and b0 large approaches that of

the unmagnetized case ‘e0=R¼1, except in a thin demag-

netization layer. The profiles of uhe in Fig. 1(d) are the con-

sequence of two facts: (1) uhe provides the resistive force

that opposes the azimuthal magnetic force, Eq. (6), and (2)

the larger n0 is, the lower is the value of uhe required to gen-

erate the current required to screen the applied magnetic

field, Eq. (7). Figure 1(e) shows that the profiles of

jhe¼�eneuhe change significantly with b0, and they reflect

the fact that jhe is the product of variables with different

trends as b0 is varied.

Therefore, for b�O(1), the magnetized plasma and jhe

are limited to a thin quasineutral layer adjacent to the Debye

sheath. The characteristic thickness of that layer is the elec-

tron skin-depth, de0, as the plots suggest and we confirm next

with the plasma equations. For ‘e0=R� 1 and b0�O(1), the

dominant form, near the sheath edge of Eq. (6) is

meduhe=dr ’ eB. This yields uheS� (eB0=me)Dr, with Dr the

layer thickness. Then, Eq. (7) yields Dr� de0 and

uheS � ceb
�1=2
0 : (17)

A characterization of the combined effects of ‘e0=R and

de0=R on the plasma response is provided by the parametric

curves of Figs. 2 and 3. The normalized (or dimensionless)

FIG. 1. Plasma profiles for ‘e0=R¼ 0.1 and b0¼ 0, 0.4, 0.5, 1, and 3 (solid

lines), corresponding to de0=R ’ 1, 0.16, 0.14, 0.10, and 0.058. Dashed

lines correspond to the unmagnetized case ‘e0=R¼1. Other parameters for

all curves are �ke=R ¼ 1 and R�i=cs! 0.
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plasma flux to the wall is plotted in Fig. 2(a). Figures 2(b)

and 2(c) plot the electron azimuthal velocity and current at

the sheath edge, which are also a measure of the plasma

magnetization level. There are three regions in the curves of

Fig. 2(a): (1) for ‘e0=R small enough, the plasma is magneti-

cally confined with neS=n0 � 1; (2) for ‘e0=R large, the

plasma is unmagnetized and confined only electrostatically,

with neS=n0 ’ 0:6; (3) for intermediate values of ‘e0=R, the

transition between those distinguished regimes takes place.

As de0=R decreases from about 1, the range of ‘e0=R corre-

sponding to magnetic confinement is reduced.

Figure 3(a) plots the normalized plasma flux to the wall

versus ‘e0=de0 � b1=2
0 , in the range de0=R< 1 of interest

here. This figure shows that the magnetic confinement re-

gime ends quite abruptly at ‘e0=de0 ’ 0:7, i.e., at b0 ’ 0:5.

Figure 3(b) shows that this limit corresponds approximately

to the case of the total magnetic field at the plasma axis

becoming negligible. From b0 ’ 0:5, up there is a transition

regime that ends around ‘e0=de0 � 2, i.e., at b0 � 4 when the

plasma flux to the wall corresponds again to electrostatic

confinement. For b0> 4, the plasma column is magnetized

only in a thin layer around the wall, of thickness �de0, with

no effect on plasma confinement. The location of magnetic

and electrostatic confinement regimes in the parametric

plane (‘e0=R, de0=R) is illustrated in Fig. 4, where constant

flux-to-the-wall curves are plotted. The two selected curves,

neS=n0¼ 0.05 and 0.5, could serve as approximate

boundaries of the magnetic, electrostatic, and intermediate

confinement regimes. Finally, notice that the above analysis

has been centered in the weakly collisional limit, when the

Hall parameter, �ke=‘e0, is very large. Collisional effects,

which tend to reduce magnetic confinement, were already

discussed in Ref. 5.

C. Force balance

The sum of Eqs. (4) and (5), together with the Ampere’s

law (7) yields the radial momentum equation of the plasma

in the form

mineur
dur

dr
¼� d

dr
Teneþ

B2

2l0

� �
�mine�iurþmene

u2
he

r
; (18)

FIG. 2. Plasma response versus ‘e0=R for de0=R¼ 10, 1, 0.3, 0.1, and 0.05;

other parameters are �ke=R ¼ 1 and R�i=cs! 0. (a) Normalized plasma den-

sity at the sheath edge, which coincides with the normalized plasma flux to

the wall. (b)–(c) Normalized azimuthal velocity and current of electrons at

the edge of and within the Debye sheath.

FIG. 3. Plasma response versus ‘e0=de0 � b1=2
0 for de0=R¼ 1, 0.3, 0.1, and

0.05; other parameters are �ke=R ¼ 1 and R�i=cs! 0. (a) Normalized plasma

density at the sheath edge, which coincides with the normalized plasma flux

to the wall. (b) Total magnetic field at the plasma axis relative to the applied

magnetic field.

FIG. 4. Curves of constant plasma flux to the wall: neS=n0¼ 0.5 and 0.05, in

the parametric plane (‘e0=R,de0=R). Other parameters are �ke=R ¼ 1 and

R�i=cs! 0.
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where the magnetic pressure appears explicitly as complement-

ing the thermal pressure. For ‘e0=R� 1 and 0 < b0 � 1, the

plasma response in the bulk region corresponds to the known

h-pinch or constant-pressure equilibrium6

Tene þ B2=ð2l0Þ ¼ const: (19)

Then, in the inertial layer, ion convection becomes signifi-

cant, and, finally, the magnetic force is negligible in the

Debye sheath. However, for b0¼O(1), when induced mag-

netic effects are large, the above constant pressure law holds

nowhere because of the ion inertia term is relevant already in

the bulk region. Apart from showing the similarity with the

basic h-pinch equilibrium, expressing the magnetic force

term, jheB, as the gradient of the magnetic pressure does not

present any advantage when solving the present problem.

For b0 small, most of the contribution to the magnetic pres-

sure comes from the applied field, which is constant and has

a zero contribution to the pressure gradient. Indeed, the mag-

netic pressure gradient term of Eq. (18), which is propor-

tional to (dB=dr)=b0, appears as a mathematically

indeterminate expression of the form 0=0 in the asymptotic

limit b0! 0; therefore, the equivalent form jheB, which does

not present that mathematical issue, is preferable.

The electron force balance, given by Eq. (4), can be

expressed as

fp þ fc ¼ fe þ fm � f ; (20)

with fp¼�Te dln ne=dr, fc ¼ meu2
he=r, fe¼�edu=dr, and

fm¼ euheB. Each term in Eq. (20) is positive and represents a

force contribution on an “average” electron. The pressure

gradient, fp, and the centrifugal force, fc, are expansion

forces, grouped in the left-hand side of Eq. (20); the electric

force, fe, and the magnetic force, fm, confine the electrons.

Notice from Eq. (5) that, when ion resistivity and ion pres-

sure are negligible, fe is the only force on an “average” ion,

and accelerates it towards the wall.

Figure 5 plots fc=f : 1� fp=f and fm=f¼ 1� fe=f at dif-

ferent spatial locations and different values of b0, for a

plasma with ‘e0=R¼ 0.10. This representation facilitates a

quick assessment of the relevance of each of the four forces

to the balance of Eq. (20). First, the thermal pressure gradi-

ent is by far the main contribution to the electron expansion,

i.e., f ’ fp; the centrifugal contribution fc=f is relevant

only in the collisionless (i.e., R� �ke), intermediate-

magnetization regime of Ref. 5. Then, the solid lines of

Fig. 5 illustrate on the competition between electric and

magnetic forces in confining electrons, the dominant force

changing both with the radial location and the parametric
point in the plane (‘e0=R, de0=R). Starting with the parametric

influence, the magnetic force is stronger, on the average, the

lower are ‘e0=R and b0, and it is marginal at any r for b0

large, even when ‘e0=R� 1. With respect to the dominant

force at different radial locations, the electric force domi-

nates always in the region ur=cs �> 0:7 independently of ‘e0=R
and b0. In addition, for ‘e0=R� 1, the electric force

becomes dominant in the central region for moderate values

of b0. At the sheath edge limit ur=cs! 1, one has fm=f! 0,

that is fm=fe ! 0. The magnetic force at the sheath edge is

fmS¼ euheSB0, with uheS plotted in Fig. 2(b). Thus, the van-

ishing of the magnetic-to-electric force ratio is due to the

known singular behavior of the ambipolar electric field there,

i.e., feS!1.

IV. CONCLUSIONS

The strong diamagnetic current and the induced mag-

netic field that arise in a magnetized cylindrical plasma when

the thermal-to-magnetic pressure ratio is not small cause

important changes in the plasma behavior. For a zero-

Debye-length and weakly collisional plasma, the problem is

characterized by two dimensionless parameters, ‘e0=R and

either de0=R or b0. These parameters depend on the applied

magnetic field and the plasma density at the axis. The strong

magnetic confinement regime, characterized in a previous

work for b0¼ 0, is found here to be limited to ‘e0=R� 1

and b0< 0.5. For b0> 0.5, the central region of the column

FIG. 5. Relative strength of each force contribution to the electron force

balance, Eq. (20), for three values of b0. Other parameters are ‘e0=R¼ 0.10,
�ke=R ¼ 1, and R�i=cs! 0. Notice that fp=f¼ 1� fc=f, fe=f¼ 1� fm=f, and ur

is used as abscissa instead of r.
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is demagnetized, which allows the development of the elec-

tric force and ion acceleration there, and increases the

plasma flux to the wall. For b0> 3 – 4 roughly, the plasma is

unmagnetized except in a thin layer near the wall, but the

confinement is electrostatic. Interestingly, the electron skin-

depth is the magnetic screening length of this stationary,

large-beta, plasma column.

To summarize, a magnetically confined plasma, crucial

to have small recombination and energy losses at the vessel

walls, requires the electron gyroradius, based on the applied

magnetic field, be smaller than three typical lengths: the

plasma radius, a (reduced) collisional mean free path for

electrons, and the electron skin depth. The two last lengths

depend on plasma density and temperature.
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