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Abstract
This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a
plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a
PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain
is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the
relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the
former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the
latter non-neutral regions, the electron density and electric potential are obtained by solving the
coupled electron momentum balance and Poisson equations. Boundary conditions for both the
electric current and potential are finally obtained with a plasma sheath sub-code and an
equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume–
spacecraft interaction scenario, and the physics and capabilities of the model are finally
discussed.

Keywords: plasma plumes, PIC, fluid, hybrid, EP2PLUS

1. Introduction

As the use of electric thrusters onboard modern spacecraft
(S/C) continues to increase, understanding and predicting any
integration issues early in the design process becomes
essential. Electric thrusters, like the gridded ion thruster (GIT)
or the Hall-effect thruster (HET) [1, 2], produce energetic
plasma plumes that interact with the local electric and
magnetic fields, and can induce electric charging, produce
mechanical erosion/contamination and exert force/torque on
any object they interact with [3, 4], as shown in figure 1.
While minimizing this interaction on different key compo-
nents, such as the solar array and onboard sensors, is crucial
in modern S/C designs, plasma plumes can also be used in
exotic applications like the ion beam shepherd [5–8], where a
space debris object is gradually repositioned to a different
orbit through the ion push of an electric thruster plume, which
is directed towards it by a ‘shepherd’ S/C. The study of
similar plasma jets is also relevant in other research fields,
such as plasma material processing [9] and astro-
physics [10, 11].

Plasma plumes from GITs and HETs are rarefied, with
peak densities in the order of –10 1016 18 m−3 [1, 2, 12, 13], and
thus weakly collisional. In addition, they are characterized by
very different dynamics for ions and electrons, with the latter
being 4–5 orders of magnitude lighter, and responding much
more quickly to external perturbations. As a consequence,
mass and momentum are mostly due to ions, while the self-
consistent electric fields depend mostly on the electrons
dynamics, and are strongly affected by the presence of
externally applied magnetic fields, so that analyses must
distinguish between magnetized and unmagnetized plasma
plumes. In general, a plasma plume features a ‘near region’
(extending up to a few thruster radii from its exit surface) and
a ‘far-region’ [12, 13]. In the former, the plasma is markedly
non-homogeneous, with non-negligible 3D effects due to (1)
particle collisions, such as charge-exchange (CEX) collisions
[14, 15] between ions and neutrals, (2) plume quasineu-
tralization, and (3) the applied electric and magnetic fields. In
the far-region, on the other hand, a smooth, more rarefied,
single-peaked plume profile generally forms, and the above
effects become negligible with respect to the plume kinetic
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energy. The subsequent expansion of the plasma is here
mainly governed by the residual thermal pressure, and the
self-consistent ambipolar electric field. This paper focuses on
unmagnetized plumes and presents a model covering both the
plume near and far regions.

The above described plume physics can be modeled
following different approaches, going from multi-fluid mod-
els to fully kinetic ones. Table 1 lists relevant plume models
and codes. Multi-fluid models operate directly with the rele-
vant macroscopic variables and feature at least one fluid per
existing species. The main issue they present comes from the
weak plasma collisionality and the consequent lack of ther-
modynamic equilibrium. Deviations from the Maxwellian
distribution function may recommend modeling a given
species as two or more fluids (distinguishing, for instance,
between slow and fast ions). More importantly perhaps, fluid
approaches raise uncertainties on the closure of the fluid
equations and the correct expression for the pressure tensors,
the heat flux vectors, and the resistive forces. The problem is
usually more relevant for electrons, since often ion pressure is
negligible compared to electron pressure. The simplest fluid
models close electron fluid equations at the level of the
momentum equation, postulating an isothermal or polytropic
equation of state (e.g. a generalized Boltzmann relation).
Examples are the collisionless, two-fluid models of
[12, 13, 16, 17] and [18], which approximate well the plume
far-region, as shown by comparison with both experiments
[16, 18, 19] and more complex kinetic simulations [20]. A
better suited multi-fluid model covering the near-region is that
of [21], which includes collisional effects, several fluids per
ion species, and a Fourier law for the heat flux of the mag-
netized electrons.

At the other end of the modeling approaches are the fully
kinetic models [22], in which the velocity distribution func-
tions are obtained by solving the Boltzmann equation in a 6D
phase-space (position and velocity). In general, these models
are totally unaffordable, except for very simplified config-
urations. Full particle-in-cell (PIC) models [23, 24] can be
considered as a very coarse approximation to the fully kinetic
models. They follow an alternative Lagrangian–Eulerian
approach, in which electron and ion populations are modeled
as sets of macro-particles subject to the action of electric and
magnetic fields and occasional collisions. Macroscopic mag-
nitudes are computed at the nodes of dedicated meshes
extending along the physical domain. A drawback of the full-
PIC models is the very small time step and cell size, as

dictated by the electron small inertia and fast dynamics. Even
with good parallelization, they typically require weeks or
months to faithfully reproduce ion dynamics in a plasma
thruster. The computational cost is even more severe for
thruster plumes and their interaction with the S/C, which is
an inherently 3D problem, featuring plasma density variations
of several orders of magnitude, and requiring simulation
domains of a few meters in all directions. Moreover, the
statistical PIC noise tends to grow as the plasma expands and
the number of macro-particles per cell diminishes, and this
growth can be mitigated only with the use of complex
population control algorithms.

An intermediate approach between full-PIC and multi-
fluid models is the hybrid model [27–29, 31, 34, 35, 38–43],
in which heavy particles are PIC-modeled, while electrons are
treated as one or more fluids. This latter option allows us to
overcome the severe constraints dictated by the electron
dynamics, and to increase the computational time step by 3–4
orders of magnitude. Furthermore, while full-PIC codes are
inherently non-neutral electrically and must solve the electric
field from the Poisson equation, hybrid codes can assume
quasineutrality in part of, or in the whole, simulation domain,
thus allowing larger cell sizes and further reducing the com-
putational time. Of course, a drawback of hybrid codes is the
limited accuracy in simulating the electron dynamics (the
most common fluid closure being the isothermal or polytropic
electrons) but, at present, and at least for most research pur-
poses, they constitute the best compromise in terms of acc-
uracy, complexity and computational cost for plasma thruster
and plume simulations.

This paper presents a flexible 3D hybrid PIC/fluid model
and code of the interaction of a rarefied plasma plume with a
S/C and/or any nearby object. A preliminary version of the
code, named EP2PLUS (Extensible Parallel Plasma Plume
Simulator), has already been presented in [42]. The main
features are as follows. First, multiple macro-particle popu-
lations are considered in order to address not only the particle
mass and charge, but also different ranges of energy, in a
computationally optimal manner. Second, both direct simu-
lation Monte Carlo (DSMC) and deterministic schemes are
implemented, depending on the type of collision to be mod-
eled. Third, population control algorithms are implemented in
each cell in order to improve the macro-particles number and
weight and thus reduce the statistical noise inherent in PIC
formulations [44–46]. Fourth, while standard volumetric
weighting is used in inner cells, more accurate surface
weighting is implemented at the material boundary cells
[47, 48]. Fifth, a dynamic splitting algorithm for quasineutral
and non neutral regions is applied to compute the electric field
in the highly inhomogeneous density regions of the domain.
Sixth, Bohm condition forcing algorithms are implemented in
quasineutral material boundaries in order to correctly compute
the ion fluxes to the walls [47, 48]. Seventh, an equivalent
electric circuit is used to deal efficiently with the different
conductive walls of the S/C and the thruster, and eighth, a
weakly-collisional electron fluid model is proposed, which
overcomes the limitations of the typical Boltzmann relation
while simultaneously yielding electron currents, and therefore

Figure 1. Schematic representation of the plasma–plume interaction
with the emitting S/C and with an object immersed in it.
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allowing the simulation of the current neutralization at the
thruster exit. Finally, the presented model is validated by
applying it to a typical S/C–plume interaction scenario, and
its physics and capabilities are discussed.

Regarding the paper structure, section 2 presents the
features of the PIC model, while section 3 describes the
electron fluid model. The quasineutral fluid closure is pre-
sented in section 4, while the approach followed for solving
non-neutral plasma regions is reported in section 5. Section 6
summarizes the model, and, finally, section 7 presents and
discusses the results of the S/C–plume interaction.

2. The PIC model for heavy species

In the PIC model, the distribution functions of the heavy
species are discretized in both position and velocity, follow-
ing a Lagrangian approach with Dirac delta functions [49]:

å d d» - -
=

( ) ( ( )) ( ( )) ( )r v r r v vF t t t, , , 1
p

N

p p
1

where rp and vp are the position and velocity vectors of the pth

macro-particle. In order to reduce the computational cost of the
simulation, at the cost of a higher statistical noise, a limited
number N of macro-particles is used, each of them representing a
very large number W of elementary particles, referred to as the
macro-particle weight. The motion of each macro-particle in the
electromagnetic field is solved by integrating the corresponding
Newton equation, while its collisions with other macro-particles
and with the material surfaces of the domain are simulated as
instantaneous events (the real interaction time is indeed much
shorter than the integration time step). The distribution functions
are then weighted to the nodes of a dedicated PIC mesh in order
to obtain Eulerian weighted properties at specific positions, used
by the fluid closure model to obtain self-consistent fields. This
hybrid Lagrangian–Eulerian approach allows us to reduce the
number of elementary operations to be carried out at every time
step to ( )O N , versus the ( )O N 2 number of operations of
molecular dynamics codes [49].

2.1. General features

As shown in table 1, hybrid codes can make use of either
unstructured or structured meshes. In this work, a structured
mesh is used, given its higher computational efficiency in
terms of macro-particle sorting algorithms, at the cost of a
lower flexibility when dealing with complex object geome-
tries. In a structured mesh, each position vector is identified
by a set of three computational coordinates x h z( ), , , which
have a bijective relation with the corresponding physical
coordinates ( )x y z, , , as shown in figure 2. If Nξ, Nη, Nζ are
the numbers of nodes along the three coordinate directions,
then the computational coordinates vary respectively in the
ranges -x[ ]N0, 1 , -h[ ]N0, 1 and -z[ ]N0, 1 . A typical cell
features a side of approximately 1 cm, whereas the Debye
length varies from fractions of mm, to tens of cm. Regarding
the number of nodes, this is around 106, i.e. the simulation

Figure 2. (a) Physical and computational domains associated with
the PIC mesh. For the sake of clarity, a 2D x z, plane slice of the
domain is shown.

Table 1. Relevant plasma plume codes and their capabilities.

Code name or author References Publication date Model type Structured mesh Non neutral Electron fluid closure

Parks [16] 1979 2D fluid yes no Boltzmann
Korsun [18, 25] 1997 2D fluid yes no Boltzmann
Oh [26] 1999 3D hybrid yes no Boltzmann
Ashkenazy [17] 2001 2D fluid yes no Boltzmann
SPIS [27–29] 2001 3D hybrid no yes Boltzmann
CNES [30] 2002 2D hybrid yes yes Boltzmann
AQUILA [31, 32] 2003 3D hybrid no no polytropic
DRACO [33] 2004 3D full-pic yes yes n/a
Taccogna [34] 2011 3D hybrid yes no polytropic
USC [23, 24] 2014 3D full-pic yes yes n/a
SUGAR [35, 36] 2014 3D hybrid no no Boltzmann
EASYPLUME [12, 13] 2015 2D fluid yes no polytropic
Greifswald [37] 2014 3D full-pic yes yes n/a
university [38] 2015 2D hybrid yes yes polytropic
Hall2De [21] 2015 2D fluid yes no heat flux
New Mexico State university [39] 2015 3D hybrid yes no heat flux
SM/MURF [40] 2016 3D hybrid no1 yes polytropic

1

Both structured and unstructured meshes can be used.
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domain typically features 100 nodes along each coordinate
direction.

In order to maintain the stability of the integration
scheme, the PIC time step Dt is selected so that the fastest
macro-particles do not cross more than one cell per time step
[50]. The particle mover is based on Boris’ CYLRAD algo-
rithm [51], a generalization of the second order leap frog
integration, and hence with the velocity and position of the
macro-particles referring to interleaved time points (separated
by Dt 2). In the following, k represents the current PIC time
step, so that macro-particle positions are known at time k,
while velocities are known at time -k 1 2.

Macro-particles are grouped into L different populations,
each of them stored in a dedicated computational list in terms
of their atomic mass m, their charge number Z, and their
origin or characteristic kinetic energy. The division of macro-
particles of the same type and charge in terms of this last
property is used to achieve better statistics and can also enable
the use of different Dt for fast and slow particles as a means
to accelerate the simulation. The clearest example is that of
the CEX collision, in which the ‘slow ions’ and ‘fast neutrals’
produced by this event are stored in dedicated populations,
independent of the ‘fast ions’ and ‘slow neutrals’.

Once the macro-particles of each population have been
moved, they are assigned or sorted to the corresponding cells. In
a structured mesh, the corresponding cell indices are efficiently
obtained as the integer part of the macro-particle computational
coordinates. A first order cloud-in-cell shape [52] is then con-
sidered to weight the macro-particle to each mesh node. The
particle density of a generic population is then obtained as:

å x h z=
D

- ¢ - ¢ - ¢
=

( ∣ ∣)( ∣ ∣)( ∣ ∣) ( )n
V

W
1

1 1 1 , 2
p

N

p p p p
1

where DV is the volume associated with the PIC mesh node
(which, for inner nodes of a Cartesian mesh, coincides with the
physical cell volume), N is the number of macro-particles of the
considered population belonging to adjacent cells, and
x h z¢ ¢ ¢( ), ,p p p are the computational coordinates of the pth macro-
particle, relative to the considered node.

2.2. Macro-particle collisions

Although the plasma plume is only weakly collisional, it is
still affected by a large variety of collisional processes,
especially in the near-region. For our intended applications
the most relevant ones are:

■ Ionization collisions: +  ++A e A e2 , + A e ++A
+ e3 , and +  ++ ++A e A e2 .

■ Symmetric and pure CEX collisions: ++( ) ( )A Afast slow
 ++( ) ( )A Aslow fast and + ++ ( ) ( )A Afast slow

+++ ( ) ( )A Aslow fast .

Regarding the former, higher ionization degrees are
irrelevant in most plasma plumes, given their increasing
ionization energies and hence decreasing reaction rates.
Regarding the CEX collisions, the ones considered are the
resonant-symmetric reactions, with no momentum exchange.

Such reactions are the dominant collisions in a plasma plume
and have the highest cross sections, as shown in [13–15] and
[53]. The assumption of a zero momentum exchange is a
good approximation for resonant CEX, also accepted in more
complex ion–neutral collision models, like that of [53], in
which the collision outcome is either a pure CEX or an elastic
momentum exchange collision (MEX).

MEX collisions have generally little importance in a plasma
plume. Ion–ion MEX collisions, due to Coulomb interaction,
modify the affected particle relative velocity (for an ion species
emitted by a plasma thruster, this amounts to fractions of eV in
terms of energy), which is much smaller than their absolute
velocity (thousands of eV), so that their effect is clearly negli-
gible. MEX collisions between ions and neutrals, or between
ions of different charge, on the other hand, can produce larger
effects. However, their importance with respect to that of the
CEX is still small, as shown in [54] and [55], especially when it
comes to determining the backscattering ion flux towards the
satellite, almost entirely constituted by slow CEX ions.

Although excitation collisions are an important factor of
energy loss inside a plasma thruster, their effect in the
dynamics of a plasma plume is also negligible. From a PIC
point of view, these collisions create a macro-particle
belonging to a different excited population, with possibly
different collision cross sections, but with the same charge
number Z. This is clearly a second order effect, since only the
collision properties (but not the trajectory) of those few
macro-particles that suffer an excitation collision are affected.
Finally, recombination collisions are also neglected, given
their low frequency in a cold rarefied plasma plume.

In the following, the cell-wise algorithms for the con-
sidered collisions are presented.

2.2.1. Ionization collisions. The approach considered here is
similar to that of HP-HALL [44], and takes into account the
different weights of the neutral and ion populations. In order
to describe the general approach, we illustrate the particular
case of +  ++A e A e2 . First, all neutral macro-particles
(i.e. the input population) are sampled to have their weight
reduced due to ionization (deterministic sampling). Then, the
ionization rate ( )R T01 e is evaluated at the cell center with the
Drawin model [56], with the knowledge of the electron
temperature Te (the Drawin model and the Bell model [57] are
used respectively for the other reactions +  +++A e A e3
and +  ++ ++A e A e2 ).

The mass of new singly-charged ions, Dmi, to be
generated in the cell of physical volume Vc during time Dt is

D = D( ) ( )m n n mR T V t, 3i e n 01 e c

where ne and nn are the electron and neutral densities at the
cell center. Then, the average number of new ion macro-
particles is D = D ( )N m mWi gen , rounded appropriately,
where Wgen is the generation weight associated with both
the cell and the output ion population (refer to section 2.5).
The position of the new ion macro-particles is uniformly
distributed within the cell, and their velocity is sampled from
a Maxwellian distribution, with the mean velocity and
temperature equal to those of the neutrals. Finally, the
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weights of all the neutral macro-particles in the cell are
updated by reducing them proportionally to their values, with
a total reduction in the cell of -Dm mi .

2.2.2. CEX collisions. Given the two input populations (e.g.
fast ions and slow neutrals), the first step is to sample the
macro-particles that undergo a CEX collision. A DSMC
approach has been implemented; existing macro-particle pairs
are checked for collision (each pair constituted by one ion and
one neutral macro-particle), and a specific pair collides if a
random number U is lower than its collision probability pc,pair:

s
=

- - D( ( ) ) ( )p
v n v t

N

1 exp
, 4c,pair

r n r

n

where σ is the collision cross section, vr the relative velocity
between the macro-particles of the pair, nn the elementary
number density of the neutral population, Nn the number of
neutral macro-particles inside the cell, and Dt must not be
larger than the expected collision time. Given the high number
of pairs to be checked (N Ni n), a more efficient DSMC version
[49] has been adopted that limits this number to p N Nc,max i n,
with s= (∣ ( )∣ )p p v vc,max c,pair r r max representing the maximum
expected collision probability for the pair. The random number
U is then compared to the ratio p pc,pair c,max, thus resulting in a
more efficient macro-particle sampling (e.g. less probability
checks, with a higher collision acceptance probability).

The functional dependence of the CEX cross section
s ( )vr can be found in appendix A.1. After the sampling step,
new macro-particles have to be generated in the slow ion and
fast neutral populations. Referring to figure 3, these are
uniformly distributed within the cell and have the generation
weight of the corresponding cell and output population.

Regarding their velocities, these are sampled from a local
Maxwellian distribution with the mean velocity and temper-
ature given by the corresponding input population. This
means that the slow ions feature a fluid velocity and
temperature equal to that of the slow neutrals, while the fast
neutrals have the same fluid properties of the fast ions.

Finally, the input populations are updated pair by pair,
meaning that the weight of the heavier macro-particle is

updated by subtracting the weight of the lighter macro-
particle, which is removed from the simulation. An
acceptance–rejection scheme prevents the algorithm from
producing very small residual macro-particles when the input
weights are very similar, while preserving mass on average.

2.3. The surface interaction and particle injection

Macro-particles can interact with boundary faces in boundary
cells, representing material, injection or sink surfaces. The use
of a structured mesh allows us to identify any cell-face with a
set of three indices, which are used to fill a 3D matrix con-
taining the corresponding surface types, each one identified
by a specific integer value. Table 2 summarizes the surface
types considered here.

By monitoring the variations of the integer part of the
macro-particle computational coordinates, a crossing-detec-
tion algorithm verifies if it has crossed a boundary face. If this
happens, the macro-particle is sorted for surface interaction,
consisting of applying the effect of surface interaction on it,
and adding its contribution to surface-weighting in that face.

2.3.1. Effects on macro-particles. The effects depend on the
surface type. First, if the macro-particle crosses a sink
boundary-face, such as a vacuum boundary, the macro-
particle is simply removed from the domain.

Second, at injection boundary faces, like the exit surface of
a plasma thruster, macro-particles are stochastically generated
with the algorithms of [49]. These consider an injected particle
flux ginj and a probability distribution function for injection

µ -
-

^

⎛
⎝⎜

⎞
⎠⎟( )

∣ ∣
( )v

v u
f v

m

T
exp

2
, 5inj

inj
2

inj

where uinj and Tinj are the injection fluid velocity and
temperature, and v⊥ is the cell-face perpendicular component
of the macro-particle velocity. The injected macro-particle
position is uniformly distributed across the injection face, and
the number of injected particles depends on ginj and on the
generation weight Wgen of the injection cell. In order to
simulate a continuous injection, each injected macro-particle is
advanced, along its velocity direction, a random fraction of the
PIC time step. With regards to macro-particles (ions or
neutrals) crossing an injection face from within the plasma,
they are simply re-injected as additional neutrals by the above
described algorithm.

When crossing a material boundary face, ion macro-
particles recombine into neutrals, while neutral macro-
particles suffer either a specular or a diffuse reflection with

Figure 3. CEX DSMC sampling (left) and generation (right). The
sampled ion macro-particles are removed from the simulation, and
the weights of the sampled neutrals are reduced by the corresponding
amount.

Table 2. Existing surface types. Macro-particles are injected
according to given injection profiles from the injection cells.

Element type Effect on ions Effect on neutrals

Transparent none none
Particle sink removal removal
Injection stochastic injection stochastic injection
Material wall recombination reflection

5
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a defined probability. While the neutral specular reflection is
simply simulated by inverting the normal velocity component
of the macro-particle, the neutral re-injection due to both ion
recombination or neutral diffuse reflection is carried out
independently for each impacting population. The mean re-
injection energy is

a a= + -¯ ( ) ¯ ( )E T E2 1 , 6reinj W W W imp

where TW is the wall temperature (in energy units), aW is a
wall accommodation coefficient, and Ēimp is the time-
averaged wall-impact kinetic energy (per elementary particle)
for the impacting population.

Regarding the angular distribution of the emission, a
thermal cosine emission law is assumed for the injection
probability distribution function, which is equivalent to using
equation (5), with =u 0inj , and = ¯T E2 inj reinj. Just like the
injection and collisions, the re-injected neutral macro-
particles feature the generation weight Wgen of the corresp-
onding cell.

For those material interfaces immersed in a quasineutral
region (see section 5), the sheath potential fall must be taken
into account in order to determine Ēimp (equation (6)) and the
energy flux to the wall of ion macro-particles. If fS is the
sheath edge potential, fW is the wall potential, and Ê S and
E S the kinetic energies (per elementary particle) normal and

parallel to the sheath edge, ion macro-particles reach the wall
if

f f= + - >^ ^ ( )E E eZ 0,W S S W

and with an impact energy (per elementary particle)
= +^ E E Eimp W S. Otherwise they are treated as specularly

reflected from the sheath edge.

2.3.2. Surface-weighting. Extended surface weighting
algorithms were introduced in [48] and [47] and provide
more accurate results for macroscopic variables than
volumetric weighting at boundary faces and nodes. Simple
surface weighted density and particle flux vectors are defined
as:

å=
D D = ^∣ ∣

( )n
t S

W

v

1
, 7

p

N
p

p
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1 ,
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å= =
D D = ^

( )
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( )g u
v

n
t S

W

v

1
, 8

p

N
p p

p
sw sw

1 ,
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where v̂ p, is the pth macro-particle perpendicular velocity
(with respect to the cell-face), Nhit is the number of hitting
(from the plasma) or emitted (towards the plasma) macro-
particles in the current time step, andDS is the boundary face
area. Since few particles typically cross a boundary face in a
single time step, the extended time-averaged version

=
D - +

D

-

¯
( ) ¯

( )( )
( )

n
k n n

k

1
9k

k

sw
avg sw

1
sw

avg

is used for the density, and similarly for other variables, with
Dkavg the averaging number of time steps, and k and -k 1
meaning two consecutive time steps. These time-averaged

surface-weighted ion and plasma properties are finally
interpolated from cell-faces to mesh nodes at the material
boundaries.

2.4. The Bohm condition forcing

In most or all quasineutral material boundary faces (refer to
section 5) there is a ‘negative’ sheath with f f<W S, thus
attracting ions. For a collisionless and unmagnetized sheath, a
stable solution exists if ions fulfill the kinetic Bohm condition
[47, 48, 58], at the sheath edge
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where L is the total number of particle populations and Fs is
the distribution function of the sth population at the sheath
edge (integrated over parallel velocities). The surface-
weighted PIC version of the Bohm condition is
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where ms is the elementary mass of the sth population.
Observe that the evaluation of P with this surface weighting
scheme allows us to avoid the singularity existing for

=v̂ 0p, , since all macro-particles crossing the boundary
faces necessarily have a non-zero normal velocity.

It is also well known that the electric field perpendicular
to the wall changes quickly near the sheath edge. Ahedo and
Parra [47] showed that the Bohm condition was far from
being satisfied for typical cell sizes in a quasineutral PIC code
and proposed the Bohm condition forcing algorithm [47, 48]
as the most efficient way to fulfill equation (10). The algo-
rithm can be understood as a virtual transition layer between
the boundary simulation domain and the sheath (much thinner
than the cell size and much thicker than the Debye length)
that adapts the electric potential to satisfy the Bohm condition
by acting on ne. Whenever <P 0 in equation (11), the
algorithm introduces a potential fall df, which increases the
perpendicular velocity v̂ p, in order to have P 0. Ahedo
et al [47] showed that the correction delta-phi required to
satisfy the Bohm condition decreases over time.

2.5. The PIC population control

In PIC codes, controlling the macro-particle number and
weight is fundamental for low statistical noise, accurate col-
lision algorithms and optimal computational cost. The goals
of population control algorithms are therefore to (1) ensure
that the number of macro-particles per cell is within a desired
interval [ ]N N,min max , and (2) to minimize the weight disper-
sion within each cell. Possible actions to achieving them are:

■ Use of a non-uniform physical mesh adapted to the local
species density. Larger cells improve the velocity-space
resolution at the cost of a lower physical-space
resolution.
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■ Active control of generated macro-particle number or
weight in collision and surface interaction algorithms.
This approach is conditional upon the existence of
sufficient collisional and surface interaction events in or
near the PIC cells where the population must be
controlled.

■ Use of a weight re-normalization algorithm, which either
splits or groups existing macro-particles, while conser-
ving both their overall momentum and energy [59, 60].

At present, the first two solutions have been imple-
mented. An example of the first one was illustrated in [42]
where a conical mesh dramatically reduced the numerical
noise downstream of a plasma plume. The second approach is
described here.

Sections 2.2 and 2.3 already mentioned the use of a
generation weight = ( )rW Wgen gen , for each cell and particle
population. A dedicated algorithm updates such a generation
weight in all cells by monitoring the current number of
macro-particles per cell Nc, and the average weight of the
existing macro-particles W̄ in the cell. Let Ntg be a targeted
number of macro-particles per cell within the interval
[ ]N N,min max . Then, if at least one macro-particle has been
generated or injected in the considered cell in the latest time
step, the generation weight is simply updated as

= ¯ ¯W WN Ngen c tg. Thus the generation weight represents the
target value that a renormalization algorithm should consider,
in splitting or merging macro-particles, in order to achieve the
targeted number of macro-particles per cell. The use of an
average number of macro-particles in the cell allows us to
reduce the oscillations in the generation weight, thus resulting
in a more reliable and robust algorithm.

3. The electron fluid model

The fluid model for electrons, complemented with the Poisson
equation for the electric potential f, allows us to compute
their density ne, temperature Te, and current density

= -j uene e e. As pointed out in section 1, since electrons are
weakly-collisional, local thermodynamic equilibrium cannot
be invoked and the closure of the fluid equations is delicate. If
collisions are introduced through standard resistive terms, the
main concern is in the expressions of the pressure tensor e

(in the momentum equation) and of the heat flux (in the
energy equation), in the collisionless limit. Both should be
derived from a kinetic approach, and several attempts are
under progress in this regard, both for magnetized and
unmagnetized plumes [23, 61–63, 71] and even for aniso-
tropic plasmas [64], showing a combination of near-iso-
thermal and polytropic behaviors.

A key point is that, if an auxiliary kinetic model is used
(and collisionality is weak), a closure of the fluid equations at
the level of the momentum equation is the most convenient.
Thus, the proposed electron fluid model consists of the fol-
lowing equations:
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where the charge and electric current densities satisfy
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In addition, ns and us are the fluid velocity of the sth heavy
species population, obtained from the PIC model, ue is the
electron fluid velocity, *ne is the quasineutral electron density,
and n se is the electron momentum transfer collision frequency
with population s (refer to appendix A.2 for more details).

For the purposes of the present paper, we will limit the
electron fluid model to an unmagnetized plume ( =B 0) and
to the simple polytropic electron closure:

 = = =
g-⎛

⎝⎜
⎞
⎠⎟( ) ( )p p n n T T T

n

n
with , , 17e e e e e e e e0

e

e0

1

where γ is the constant polytropic coefficient, and ne0, Te0 are
the electron density and temperature at the plume location
where we have set f = 0. Such a polytropic cooling
approximation allows us to reproduce the major features of a
plume expansion in terms of plasma density, as demonstrated
by experiments [19, 65–70], fully kinetic simulations [71],
and comparisons between polytropic fluid and full-PIC
models [72].

Thus, equation (13) becomes

f
n
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are the total electron collision frequency and a driving current
density (it shall appear as a forcing term in the final differ-
ential equation), respectively. Solving the momentum
equation for j, the generalized Ohm law is finally obtained:

s
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e
H , 20e

e d

where s n= e n me
2

e e e is the electron conductivity,

f= - ( )H h e 21e e

is the electron Bernoulli function, and
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is the barotropic function, satisfying  = h p ne e e. Notice
that we have set =h H, 0e e at the location where f = 0.

Introducing equation (20) into equation (12), an elliptic
differential equation for He is obtained:

s
s

r
 +   = -  +

¶
¶

⎛
⎝⎜

⎞
⎠⎟· · ( )jH H

e

t
ln . 23c2

e e e
e

d

Therefore, the fluid model reduces basically to solving two
coupled elliptic equations: the above one for He and the
Poisson equation for f. Typical boundary conditions set
either these magnitudes or the derivatives perpendicular to the
walls. In the case of the Bernoulli function, the perpendicular
derivative is indeed a condition on the electric current density:

s
¶
¶

= -
^

^( ) ·j j
H e

1
1 ,e

e
d

where 1̂ is the unit vector normal to a considered boundary
and directed towards the plasma.

4. The quasineutral closure

Let us consider first the zero Debye length limit, for which the
whole plume can be considered quasineutral. The mathema-
tical structure of the electron problem simplifies. First of all,
the Poisson equation reduces to

* r= =( ) ( )n n i.e. 0 , 24e e c

which determines the electron density and, subsequently, the
electron temperature * *= ( )T T ne e e , the barotropic function
* *= ( )h h ne e e , the conductivity * *s s= ( )ne e e , and the driving

current * *= ( )j j nd d e . Notice that all these quantities are
functions of the PIC model solution. The uncoupled equation
for the Bernoulli function then simplifies to:

*
*

*s
s

 +   = - · · ( )jH H
e

ln . 252
e e e

e
d

Once the solution for He is obtained, j is given by the gen-
eralized Ohm equation, equation (20), and the electric
potential from equation (21), that is:

f =
- ( )h H

e
. 26e e

Notice that the widely-used isothermal and polytropic
models, leading to Boltzmann-like relations, correspond to
setting ºH 0e in equation (26), which is the solution in the
collisionless limit *s  ¥e of equation (25). Furthermore, in
this limit, the electric current in the generalized Ohm law,
equation (20), is indefinite, which is the most severe limitation
of the Boltzmann relation/polytropic models. The present
weakly-collisional model overcomes that limitation by com-
puting the contribution of s H ee e to the net electric current.
The simulations of section 7 will show that this contribution is
central to studying the plasma plume neutralization (at the exit
of GITs or HETs, for instance), and the plume–S/C interaction.

4.1. The sheath model

In the quasineutral closure, infinitely-thin Debye sheaths are
postulated between the quasineutral solution and the walls in
order to accommodate potentials and electric currents there.
Thus, at such boundaries, we must distinguish between the
wall potential fW, and the potential at the sheath edge fS (of
the quasineutral solution). The sheath model then establishes
a relation between these two potentials and the perpendicular
current density to the wall = = +^·jj j j1W i,W e,W (posi-
tive if emitted by the wall, for 1̂ oriented towards the
plasma).

In the most common case of a ‘negative’ sheath, it is
f f<W S, in order to confine electrons. The well-known
solution for a negative planar (and collisionless) sheath,
assuming a Maxwellian-like electron distribution at its edge,
relates fW and jW through:

f f
p

= -
-⎛
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e
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en

m
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2
, 27W S
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e

e

where the ion current density, the electron density ne and
temperature Te refer to the sheath edge.

In the case of a dielectric wall, the net-current free con-
dition =j 0W yields fW locally. This is also the case for
current-emitting walls (by thermoemission, photoemission,
thermionic emission) where jW is known locally from the PIC
model solution (or from known wall heating/illumination
conditions). Note that the approach considered by some full-
PIC models of accumulating a local surface charge density
[72, 73] has not been considered here. In fact, while enabling
the simulation of the short wall charging transient, such an
approach would need an implicit solver, because, in this
hybrid code context, the electron current to the wall depends
explicitly on the unknown wall potential.

For conductive walls (being emissive or not), the pro-
blem is more complex, since the boundary condition is non-
local. Typically, from the knowledge of the electric potential
fW, we compute the total electric current to a conductive wall
(or object) as

å= - D ( )I j S, 28W W

where the summation extends over the material boundary
faces of the conductive object, and jW satisfies equation (27).

Furthermore, conductive walls can present locally posi-
tive sheaths, i.e. locations with f f>W S. In these locations,
the current density is approximated by

p- ( )j j en T m2 .W i,W e e e

For a positive planar sheath, the electron current thus
equals the thermal flux in the plasma, and the PIC model must
take into account the deceleration and the eventual reflection
of the low energy ions within the sheath, as already discussed
in section 2.3.1.

4.2. The equivalent circuit solver

The presence, in a typical plume–SC interaction, of several
conductive walls with non-local boundary conditions,
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complicates the integration of the time-dependent equations. As
with other existing plume–S/C interaction codes [27], an effi-
cient way to overcome that difficulty is to add an equivalent
electric circuit linking the different walls of the problem and the
plasma. Figure 4 illustrates this numerical scheme. Each con-
ductive object l is assumed to be an iso-potential node, receiving
a current from the plasma I lW, (indeed, equation (28)) and con-
nected to another iso-potential node m by means of both a
resistance Rlm, and a forced voltage bias Vlm.

One of the nodes (the S/C node in figure 4) is considered
as independent and its potential relative to the plasma refer-
ence point (with f = 0) is first computed as the time evol-
ution of the voltage of an equivalent capacitor C,

f
= ( )

t

I

C

d

d
, 291

where the charging current I is obtained as the sum of the
plasma currents to the circuit nodes = åI Il lW, . In the steady
state, I must be zero and f1 is the floating potential of the S/
C. Kirchhoff laws then yield:

For the case in figure 4, there are two dependent nodes and two
connections. Equation (30) thus determine the two unknown
dependent node potentials and internode currents. Values of Rlm,
Vlm and C are selected based on either real electrical properties
of the S/C parts or to facilitate numerical convergence.

5. Treatment of non-neutral regions

Once the quasineutral solution for the electron density *ne , the
electric potential *f , and the electron temperature *Te are known
at the instant ( )t k , the simulation domain is dynamically split into

quasineutral and non-neutral subdomains, and the solution at
time ( )t k is recomputed in the non-neutral subdomain.

First of all, the quasineutral subdomain, constituted by
quasineutral nodes and boundary faces, must be defined. We
will consider that cells and boundary faces are quasineutral if
their level of non-neutrality is below a maximum value, called
emax (a value of 0.032 is considered later in the simulations,
which corresponds to a relative charge density of 1‰). For
inner cell nodes, non-neutrality is measured by

*
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*
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e
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and the cell node is part of the non-neutral subdomain when
e e>n max. For material boundary faces, non-neutrality is
measured by the ratio between the local Debye length and the
cell size Dl (in the direction normal to the surface):
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1
. 32f

0 e
2

e

Now it must be decided whether a discontinuity sheath is
postulated at the boundary of the simulation domain (which we
will call S) or this boundary is already the wall W. Numerical
convergence between these two cases demands the addition of
an intermediate case. Therefore, three cases are considered:

■ if e 1f : the boundary face is non-neutral, the sheath is
directly simulated inside the plasma domain, and the
boundary face is the wall, i.e. f f=S W,

■ if e ef max: the boundary face is quasineutral, the sheath
is treated separately as a discontinuity, and the potential
at S is the quasineutral sheath edge potential *fS,

■ if e e< < 1max f , a partial sheath is added outside the
plasma domain, with a potential drop given by:

*f f
e
e

f f- =
-
-

-( ) ( )1

1
, 33S W

f

max
S W

where *fS and fW are known, respectively, from the
quasineutral solution and the current wall potential.

We point out that for computational purposes, equations (31)
and (32) are always estimated at the mesh nodes. Once the
non-neutral subdomain is defined, the Poisson equation,
equation (14), and equation (23) for the Bernoulli function
should be integrated simultaneously to determine f and the
electron fluid magnitudes at these mesh nodes. This is
particularly costly computationally, so a different approach is
proposed here. First, we assume that r¶ ¶  · jtc d (i.e. we
focus on quasi-steady solutions) and we propose to obtain He

from equation (25) with the substitutions

* *s s - - ( )( ) ( )j j, . 34k k
e e

1
d d

1

Figure 4. Scheme of the equivalent circuit, for a simulation featuring
three different conductive objects.
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Then, from equations (21) and (22), one has (for the generic
polytropic case)

f
g
g

f
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- + g-⎡
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H e
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, 35e
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e
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which, substituted into the Poisson equation, yields a
nonlinear equation for f,

*
f f = -( ) ( )

e
n H n, . 360 2

e e e

The numerical procedure to solve this equation is explained in
appendix B.

6. The overall simulation loop

A generic step of the overall simulation loop is shown in
figure 5 for a general non-neutral simulation. The particle
push represents several PIC algorithms and generates updated
fluid properties at times +k 1 (quasineutral electron density
*ne , and heavy particle densities ns) and +k 1 2 (heavy

particle fluid velocities us, and surface weighted variables at
material boundaries). The quasineutral electron density and
the surface weighted P variable are then fed to the Bohm
condition-forcing algorithm, which corrects, if need be, the
value of the electron density at the quasineutral material
boundaries, thus completing the PIC sub-step.

Then, boundary conditions for the fluid closure at this new
time +k 1 need to be updated. First, the sheath solver updates
the electron current density je,W at conductive walls, and the
dielectric wall potential fW,d both at time k, since its inputs (wall
potential, sheath edge potential, electron density, temperature,
and ion current) are known at this time step. The electron current
density is then extrapolated to time +k 1 2 and passed together

with the ion current density to the wall ji,W (at time +k 1 2) to
the equivalent circuit solver. This obtains the electric current

+( )I l
k

W,
1 2 to the conductive objects and updates their potentials to

time +k 1, with a second-order leap-frog scheme. The sheath
solver also extrapolates the dielectric wall potential and the total
electric current density to the wall = +j j jW e,W i,W to time
+k 1, as needed by the fluid closure algorithms.

This is then fed, together with the quasineutral electron
density *ne , conductivity *se , and driving current density *jd , all
at time +k 1, to the quasineutral solver, which solves for the
quasineutral electric potential *f , the Bernoulli function *He ,
and the electric current density *j at time +k 1. The non-
neutral solver then receives, as input, the quasineutral
potential *f , the wall potential fW, and the quasineutral
density *ne at time +k 1, and assumes the latest step values
for se and jd. Its outputs are the electric potential f, electron
temperature Te, density ne and Bernoulli function He at the
time step +k 1. These, together with the updated wall
potentials at time +k 1, are fed back to the PIC model and
the next time step is finally initiated.

The exact time consistency described above allows us to
achieve a second-order accuracy in the time integration. How-
ever, a commonly used approach, that helps reduce the numerical
noise and is considered in the simulations of section 7, is to use
time-averaged properties at the material boundaries (as already
mentioned in section 2.3.2), with a number of averaging steps in
the order of 50–100 (D =k 100avg in the presented simulations).

7. Simulations

7.1. Definition of the simulation geometry and settings

The plume–S/C interaction scenario considered for the model
validation features a cubic S/C with an ion thruster, a hollow

Figure 5. The hybrid-particle code simulation loop at time step +k 1 (from time ( )t k to time +( )t k 1 ).
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cathode neutralizer, and two solar arrays, as shown in
figures 6(a) and (b), while the corresponding equivalent cir-
cuit is shown in figure 4.

Three conductive objects are considered: the satellite
ground (including cubic body, thruster case and the back-face

of the solar arrays), the neutralizer keeper external surface,
and the most external grid of the thruster. The resistances
between the S/C ground and acceleration grid and neutralizer
keeper are assumed to be zero ( = =R R 012 13 ). The front face
of the solar arrays, as shown in figure 6(a), is modeled as a

Figure 6. Simulation domain for the S/C–plume interaction scenario: (a) x−z cross-section, and (b) x−y cross-section, both through the
satellite center. The PIC mesh is Cartesian, with a number of nodes along x, y, and z of ´ ´101 101 121 (2 cm side cells). The white dot on
the thruster symmetry axis is the reference point for the electron properties, the electric potential, and the Bernoulli function. Two additional
points on the thruster side and on the neutralizer axis are considered for the computation of the ion energy distribution function (IEDF).

Table 3. Considered parameters for the plasma–plume satellite interaction simulation. Applied voltages refer to the S/C ground. All
considered objects are conductive, except for the front surface of the solar arrays, which is dielectric.

Simulation parameter Units Values

Neutralizer keeper voltage V +13
Acceleration grid voltage V −180
Thruster mass flow rate sccms 27.13
Thruster mass utilization efficiency % 90.0
Doubly to singly charged ion current ratio % 9.1
Injected +Xe profile (thruster) n/a SSM ( =R 14 cm0 , and a = 20.50 deg)
Injected ++Xe profile (thruster) n/a SSM ( =R 14 cm0 , and a = 300 deg)
Injected +Xe energy (thruster) eV 1040
Injected ++Xe energy (thruster) eV 2080
Injected +Xe temperature (thruster) eV 0.1
Injected ++Xe temperature (thruster) eV 0.2
Injected neutrals profile (thruster) n/a Flat
Injected neutrals velocity (thruster) m/s 247 (sonic)
Injected neutrals temperature (thruster) eV 0.05
Neutralizer mass flow rate sccms 3.59
Injected neutrals profile (neutralizer) n/a Flat
Injected neutrals velocity (neutralizer) m/s 247 (sonic)
Injected neutrals temperature (neutralizer) eV 0.05
Neutralizer ion flow percentage % 5.0
Injected + ++Xe , Xe profile (neutralizer) n/a Thermal, Gaussian ( =R 40 cm)
Injected +Xe temperature (neutralizer) eV 0.2
Injected ++Xe temperature (neutralizer) eV 0.4
Electron temperature at thruster exit eV 3.5
Electron polytropic cooling coefficient n/a [ ]1.0, 1.3
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dielectric object (i.e. the wall potential is determined locally
from the current equilibrium).

The values of some simulation parameters are summar-
ized in table 3. The considered thruster simulates the NASAʼs
NSTAR ion thruster [74, 75], while the applied voltages to
the acceleration grid and neutralizer keeper are kept constant
to, respectively, = -V 18012 and = +V 13V13 . The negative
grid potential prevents most of the electrons from back-
streaming towards it, while the neutralizer keeper is biased
positive with respect to the S/C ground [75].

The injection areas for both the thruster and neutralizer
are circular with radii of respectively 14 and 4 cm. Neutrals
are injected axially with sonic conditions and with a flat
density profile from both the thruster and neutralizer injection
cells. Regarding the thruster ions, these are injected following
a self-similar profile [13, 17], with an outermost streamline
divergence angle a = 20.50 deg (at the radius =R 140 cm
from the thruster centerline). This divergence profile corre-
sponds to a divergence efficiency of 0.98, as considered in
[75]. An already developed divergence angle is considered
because the mesh is not fine enough to simulate the effects of
beamlet injection and coalescence into a single beam, so that
the injection surface is actually simulated as a quasineutral
surface, with a thin sheath (across which the potential drops
from its value at the quasineutral plasma to that of the
acceleration grid). Regarding the neutralizer ions, past studies
[76] have shown that a significant ion current is also emitted.
Here, we have considered that 5% of the total mass flow of
the neutralizer is emitted in the form of singly or doubly
charged ions from a thermal reservoir (with a temperature of
0.2 and 0.4 eV respectively). Finally, a ratio between the
doubly and singly charged ion current of 9.1% [77] has been
considered for both the thruster and the neutralizer emissions.

Regarding the electron thermodynamics, a peak electron
temperature of 3.5 eV, consistent with existing experimental
measurements for similar thrusters [78], is assumed at a node
located 6 cm downstream from the thruster exit (which
represents the reference plasma point for the potential, Ber-
noulli function and electron enthalpy), while four different
values for γ are considered: 1.0 (isothermal), 1.1 (reference
case), 1.2 and 1.3.

Regarding the applied fluid closure, the simulations are
run with the sole quasineutral solver between t=0 and t=1
ms, and, starting from t=1 ms, the non-neutral solver is
activated. The requested time for a slow CEX ion (with an
energy content of 5 eV) to cross the entire simulation domain
is around 1 ms, so that the considered simulation time is
expected to be sufficient to reach stationary conditions.

The boundary conditions for the computation of the
Bernoulli function He, for this simulation setup, are:

■ Current free condition =^·j 1 0 at the external
boundaries and at the dielectric walls of the solar array
front surface, thus yielding:

s
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1 .e

e
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■ Fixed electric current f= ( )j jW W W to the other
conductive walls:
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■ Dirichlet conditions =H conste , at the emissive surface
of the neutralizer, equivalent to leaving a free electron
current to balance the electron current lost to the
boundaries, and generated inside the domain (e.g. due
to ionization).

Regarding the electric potential, the boundary conditions
(already discussed above) are:

■ Dielectric or conductive wall potential f f= W at the
non-neutral material boundary nodes.

■ Transition conditions f f= S (refer to equation (33)) at
the transition material boundary nodes.

■ Quasineutral electric potential *f f= at all quasineutral
nodes (including those on the external boundary).

■ f = 0 at the reference node for the electron properties
(6 cm downstream from the thruster exit area, on
its axis).

■ Neumann conditions on f at the non-neutral external
boundary nodes:

f¶
¶

=
1̂

0.

7.2. Discussion of the simulation results

The simulation results for the reference simulation case
(g = 1.1) are shown in figures 7(a)–(h). The electric potential
is shown in figure 7(a). The S/C is floating at a potential of
−38 V with respect to the plasma plume near the thruster exit
(the reference potential point is shown by a white dot), so that
the iso-potential lines adapt to this value close to the cubic
S/C body through spatially resolved plasma sheaths. The
effect of the CEX ions is clearly visible on the left of the main
plasma plume, while the neutralizer creates a plasma bridge
with the thruster (necessary for the plume current neu-
tralization) and substantially alters the symmetry of the
plasma response.

The electron density is shown in figure 7(b), and closely
follows the evolution of the electric potential, with densities
rapidly dropping to zero as the very negative S/C surfaces are
approached. On the lateral sides of the thruster, the electron
density nearly coincides with the CEX ion density and shows
values between 1012 m−3 and 1013 m−3, a result which is
consistent with the simulation results and experimental mea-
surements of past studies of the same thruster, such as those
of [79, 80], and [81].

The electric current density is shown in figure 7(c). A
virtually current-free plasma plume is achieved just –30 40 cm
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Figure 7. Simulation results for the reference case with g = 1.1: (a) electric potential (reference point is shown with a white dot), (b) electron
density, (c) electric current density and streamlines, (d) relative contribution of s H ee e , (e) non neutrality ratio or en

2, (f) difference on the
electric potential between the non-neutral and quasineutral solvers, (g) total ion current density to the S/C front walls, and (h) average ion
wall-impact energy on the S/C front walls. Subplots (a)–(f) refer to the y=0 cross section, while subplots (g) and (h) refer to the front
surfaces of the thruster case, neutralizer, S/C cubic body and solar arrays.
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downstream from the thruster exit, which is consistent with
the assumption that the far-region plasma is essentially cur-
rent free. All electric current streamlines originate at the
thruster exit (due to the emitted ions) and reach the neutralizer
emission surface (due to emitted electrons) just as expected
(no electric current sources exist inside the domain). The total
electric current is given by Ohm’s law, equation (20), and
presents two different contributions: the product s H ee e

and the driving current jd. The clearly dominating term is the
former, as shown in figure 7(d), showing its relative magni-
tude (normalized with the electric current density) and
streamlines. In fact, although the absolute potential correction
He is almost negligible (the plasma is lowly collisional) and in
the order of a few mV, the electron conductivity is quite high,
presenting values around W-3000 1m−1 at the thruster exit
(slowly decreasing along the plume centerline due to the
expansion), and two local peaks of approximately W-1000 1

m−1 at the neutralizer exit, where ions are emitted and the
quasineutral plasma density is locally large, and around the
plume core, where the ratio between the CEX ion and
the neutral densities reaches a local maximum. The only
region in which the driving term jd is comparable in magni-
tude to s H ee e is the central region of the main plasma
plume, where it accounts for approximately half of the total
electric current density.

Regarding the simulation domain sub-division into qua-
sineutral and non-neutral regions, this is shown in figure 7(e),
showing the normalized charge density (en

2 in equation (31)).
The white regions correspond to the quasineutral subdomain,
featuring a normalized charge density (in absolute value)
lower than 1‰. Regarding the S/C walls, these are all non-
neutral, with the injection areas of the thruster and neutralizer
being the only quasineutral boundary surfaces. The difference
in potential due to the solution of the non-neutral regions
(with the Poisson solver) is finally shown in figure 7(f). The
largest differences between the non-neutral and neutral solver
solutions are found close to the S/C surfaces and reach values
around 10 V (with the non neutral solution being more
negative).

An important capability of a S/C–plasma interaction tool
is to predict the ion current flux to the S/C walls, and the ion
mean wall-impact energy (to evaluate the effects of sputtering
and deposition). Figure 7(g) shows the ion current density
reaching the S/C front surfaces (the absolute value of ji,W). A
maximum ion current density of up to 10 mA m−2 is reached
at the corners of the thruster case and on one side (the one
closer to the thruster) of the neutralizer keeper. The average
current density to the S/C cubic body is around 0.5 mA m2.
The current density to the solar array, on the other hand, is
generally lower than 0.1 mA m2. Figure 7(h) finally shows the
average wall-impact kinetic energy of the ions hitting the S/C
walls. This is in the order of 30–35 eV at the S/C cubic body
front surface, and lower than 30 eV at the solar arrays. These
values depend mostly on the floating potential of the S/C
with respect to the plasma plume denser region (where most
of the CEX ions are generated).

The 3D streamlines of the electron current density (which
are not the electron trajectories) are then shown in figure 8. The
farthest (from the neutralizer) conical plume streamlines are
neutralized by electrons that circle around the dense region of
the plume. This behavior can be justified by the fact that elec-
trons tend to follow the minimum resistance path. So, instead of
neutralizing the plume by directly crossing the thruster front face
at right angles (which would yield large collision losses with the
emitted ions and neutrals), they take advantage of the high
conductivity peripheral plasma populated by CEX ions (which
feature a very low neutral density). A final observation is that all
electron streamlines originate from the emission surface of the
neutralizer keeper, because  »· j 0e inside this lowly colli-
sional plasma (ionization effects are almost negligible).

The ion energy distribution function [82] at the three test
points of figure 6(a) is shown in figure 9(a). Close to the
thruster exit (black solid line), three well-defined populations
of ions can be identified: the emitted doubly charged ions
(with energies around 2080 eV), the emitted singly charged
ions (with energies around 1040 eV), and the slow CEX ions
(including both singly and doubly charged ions), which fea-
ture energies that are generally below 3eV. On the thruster
side (dotted blue line), on the other hand, only CEX ions are
present, and the singly and doubly charged ion populations
can be distinguished again in terms of energy content. In fact,
the energy of these ions depends directly on the potential
difference between the location where they are generated
(dense plume region, with f Î -[ ]0, 5 V) and the considered
point potential (f » -20 V). Finally, at the neutralizer axis,
the emitted singly and doubly charged ions can be clearly
distinguished from CEX ions generated in the plume: the two

Figure 8. 3D electron streamlines emanating from the neutralizer and
merging with the ion plume. The farther (from the neutralizer) the
ion streamline to be neutralized, the darker the color of the
corresponding electron streamline. Please note that the electron
streamlines do not represent the electron trajectories.
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well-defined peaks at energies of approximately 15 and 30 eV
are indeed caused by the acceleration of the emitted ions due
to the ambipolar electric field at the neutralizer exit (char-
acterized by a steep potential drop). Finally, a zoom of the ion
energy distribution function at the thruster axis is shown in
figure 9(b), which also provides the separate contributions of
singly and doubly charged ions. The disparity of energies and
distributions of the different ion populations shown in
figures 9(a) and (b) clearly makes the use of multiple fluids
for the ion species challenging.

The electron thermodynamics affects both the equili-
brium S/C potential and the total current (due to ions and

electrons) to the S/C walls (including thruster grid, neu-
tralizer and solar arrays), as shown in figures 10(a) and (b).
After a short transient, the electric potential of the S/C
reaches a stationary value, which means that the total current
to the S/C node (I in figure 4) approaches zero or fluctuates
dimly around it. Moreover, the floating potential is quite
stable for all γ cases (the chosen value for the charging
capacity C is 20 nF).

The larger the polytropic coefficient, the less negative the
S/C floats, as suggested by the limit to which the electric
potential tends when the electron density goes to zero, which
is g g- -( ( ))T e 1e0 , as shown in [12, 13]. Clearly, since the

Figure 9. (a) Ion energy distribution function at three different locations, shown in figure 6(a): thruster axis (black solid line), neutralizer axis
(red dashed line), and 40 cm off the thruster axis, opposite to the neutralizer position (blue dotted line). (b) Zoom of the slow CEX ions
distribution function at the thruster axis: total (solid line), singly charged (dashed line), and doubly charged (dotted line) contributions. All
results are instantaneous and not time averaged.

Figure 10. Time averaged evolutions (over 100 steps) of (a) S/C potential and (b) electron and ion current to the S/C walls (including
thruster grid and case, neutralizer and solar arrays) for the different γ cases: isothermal (black dashed line), g = 1.1 (blue solid line), g = 1.2
(green dash-dot line), and g = 1.3 (red dotted line). A vertical dash-dot line indicates when the non-neutral solver is activated (t=1 ms).
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collected electron current is affected by this limit, the floating
potential of the S/C also adapts to it. Moreover, the closer the
electrons are to isothermal, the larger the collected ion and
electron currents because of the larger electric fields that are
capable of deviating a larger fraction of slow ions towards the
S/C. The transition from the (only) quasineutral solution to a
non neutral one is also clear in figure 10(b), where a sudden
increase of up to 20% in the collected ion/electron current is
registered when activating the non-neutral solver (at t=1
ms). Therefore, solving the finite non-neutral plasma sheaths
that surround the S/C has a non-negligible influence on the
ion flux impinging the S/C.

8. Conclusions

This paper has presented a highly flexible 3D hybrid model to
study the current neutralization and the interaction of a
plasma plume with any nearby object, featuring:

■ A weakly-collisional electron model admitting a poly-
tropic fitting for the electron pressure tensor, which
allows us to obtain both the corrected electric potential
(due to collisional effects) and the electric current density
in the plume.

■ An adaptive algorithm that splits the simulation domain
into quasineutral and non-neutral regions and handles a
smooth transition between them. While, in the former,
the fluid closure relies on the sole electron momentum
balance equation, in the latter, this is coupled with the
Poisson equation.

■ A correct transition between quasineutral material
boundaries, where the Bohm condition is applied, and
non-neutral spatially-resolved plasma sheaths.

■ Use of both volumetric and surface weighting algorithms
for, respectively, the inner mesh nodes and the boundary
faces.

■ Treatment of CEX collisions with a DSMC approach,
which also allows us to track the fast neutrals.

■ Macro-particle population control, based on a generation
macro-particle weight, to limit the statistical noise of the
PIC algorithms.

A benchmark simulation has then allowed us to validate the
code, showing that results for the CEX ion density are
definitely consistent with the available data in the literature.
Moreover, it has highlighted that both the electron thermo-
dynamics and the non-neutral plasma regions play a non-
negligible role in determining the ion flux impinging the S/C.
Regarding the former, the closer the electrons are to
isothermal, the higher this flux and the average wall-impact
energy, and the lower the S/C floating potential. A significant
backscattered CEX ion flux increase is systematically found
when switching from a quasineutral solution to a non-
neutral one.

Future developments of the model and code should tackle
the following aspects:

■ New heavy particle collisions, such as the momentum
exchange collisions between ions and neutrals (MEX).

■ A new wall type characterized by the sputtering of both
neutral and charged material particles.

■ A more effective population control to deal with plume
expansion effects. This should feature, on top of the
already existing control, a particle renormalization
algorithm.

■ An extension of the electron model to magnetized plasma
plumes in order to study the distortion effects caused by
any applied external magnetic field (such as the
geomagnetic field) on the plume expansion.
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Appendix A. Models for collisions

A.1. CEX cross section

The CEX cross section for both types of CEX reactions
(singly and doubly charged ions with neutrals) is provided,
for xenon gas, by the Miller model [15]:

s = -
⎛
⎝⎜

⎞
⎠⎟( ) · ( )v C C

mv
log

1 2

1eV
, 37r 1 2 10

r
2

where the argument of the logarithm represents the relative
kinetic energy of the impacting elementary particles, expres-
sed in eV. The constants depend on the type of reaction:

■ +  ++ +( ) ( ) ( ) ( )Xe fast Xe slow Xe slow Xe fast :
= ÅC 87.31

2, = ÅC 13.62
2

■ +  +++ ++( ) ( ) ( ) ( )Xe fast Xe slow Xe slow Xe fast :
= ÅC 45.71

2, = ÅC 8.9 .2
2

A.2. Electron collision frequency

In order to compute the electron momentum transfer collision
frequency with the sth particle population n se , only elastic
collisions are taken into account. The electron–ion collision
frequencies are then obtained as [83]:


n

p
=

L ( )n Z e

m T

2 ln

12
, 38s

s s
e

1 2 2 4

3 2
0
2

e
1 2

e
3 2

where ns is the sth population number density, and the para-
meter L »ln 10. For the neutrals, on the other hand, the
collision frequency is computed by integrating the elastic
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collision cross section s ( )vse e over a Maxwellian electron
distribution function [84, 85]:

òn
p

s= -
¥ ⎛

⎝⎜
⎞
⎠⎟( ) ( )n

T

m
x x

x
x

2

9
exp

2
d , 39s s se

e

e 0

5
e

2

where =x v ce e represents the normalized electron velocity
with respect to the electron thermal velocity =c T me e e ,
and s ( )xse depends on the sth population atomic type, and
follows the model of [86] (for xenon). It can be noticed that
equations (13), (38) and (39) are only valid if the electron
thermal velocity ce is much larger than the fluid velocities of
both the heavy particle population us and of the electrons ue.

Appendix B. Solving the non-linear Poisson
equation

Since the electron density is an explicit function
f= ( )n n H,e e e , of both the known Bernoulli function and

unknown potential, equation (14) becomes a non-linear diff-
erential equation in f. In numerical form, if fl is the unknown
potential at the l th mesh node, then the l th non-linear system
equation can be written as:

*


å f f= + - =
Î

( ( )) ( )f A
e

n n H, 0, 40l
m

lm m l l l l
mesh 0

e, e, e,

where the summation extends to all mesh nodes, *n le, is the
known quasineutral electron density at node l, and Alm is the
( )l m, element of the sparse coefficients matrix.

Equation (40) can be solved iteratively with a Newton–
Raphson method by linearizing it around the current solution
for the electric potential f( )k , with k now representing the
iteration step. The initial estimate f( )0 is given by either the
quasineutral electric potential *f (at the very first simulation
step), or by the previous time step solution (at other simula-
tion steps). The linearization proceeds by evaluating the
Jacobian matrix of the non-linear system, at the iteration step
k, as:

f
=

¶
¶ f f=

⎤
⎦⎥ ( )( )

( )

J
f

, 41lm
k l

m k

and then obtaining the electric potential correction fD ( )k by
solving the linearized system:

å fD = -
Î

( )( ) ( ) ( )J f . 42
m

lm
k

m
k

l
k

mesh

The new electric potential, for the next iteration step +k 1, is
updated as f f f= + D+( ) ( ) ( )

l
k

l
k

l
k1 and used to update the

Jacobian matrix. This iterative scheme is repeated until a conv-
ergence criterion is met, i.e. until the maximum absolute value of
the non linear function f is below a userʼs defined tolerance.
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