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Several plasma thruster concepts, as well as ion engine chambers, use magnetic cusps to protect
walls and to throttle electron flow to anodes. We present a kinetic model of the plasma in the vicinity
of one cusp. Electrons, strongly confined by the electrostatic presheath and sheath, are assumed
isotropic. Collisionless ions are either magnetically guided or completely nonmagnetized, thus
bracketing conditions of interest. For magnetized ions, electrostatic and magnetic mirror forces
compete, and the resulting self-consistent potential is found by imposing quasineutrality. A similar
competition occurs for nonmagnetized ions, this time as a result of the convergence of equipotential
lines. Analytical solutions are found for monoenergetic ions, and these are generalized to the case
of an initially Maxwellian population, for which some numerical iteration is required. The presheath
potential drop is in all cases of the order of 0.6–0.75 times the electron temperature, and ions enter
the sheath at a sonic velocity, according to Bohm’s criterion. Contrary to intuition, the cusp does not
reduce the ion flux �per unit area� to the wall, only the size of the wall area section that carries this
flux by virtue of its connection to the distant plasma. These kinetic results are verified by checking
the conservation of relevant moments of the ion distribution, including two new quantities that
generalize the average magnetic moment and the total ion enthalpy by accounting for the nonzero
ion heat fluxes. © 2011 American Institute of Physics. �doi:10.1063/1.3554650�

I. INTRODUCTION

This work is motivated by the current research work on
the divergent cusped-field thruster �DCFT�1–5 and the related
concepts cylindrical hall thruster �CHT�6,7 and HEMP.8,9 In
these devices, particularly in DCF and HEMP, strong linear
magnetic cusps are provided, running azimuthally at one or
more axial locations. In DCFT and CHT there is also a cen-
tral axisymmetric cusp, which in the case of the DCFT leads
to the central anode location. Azimuthally running magnetic
cusps are also characteristic of most Kaufman-type ion en-
gine ionization chambers, and they tend to be collocated with
the ring anode.10

Figure 1�a� shows the magnetic configuration of the
DCFT thruster. Notice the strong fields present near the ring
cusps �order of 0.4 T� and in front of the anode �about 0.5 T�.
In the CHT designs, these fields tend to be lower �less than
0.1 T�, although still stronger than typically seen in Hall
thrusters. The surface probe data in Figs. 1�b� and 1�c� will
be discussed below.

The intended roles of these cusped-field configurations
are �a� to magnetically shield the thruster wall so as to mini-
mize bombardment and erosion, and �b� to provide a restric-
tion to the flow of electrons to the anode, thus improving
current efficiency and enhancing ionization. This electron-
throttling role is similar to that played by the radial B� field in
Hall thrusters, except that in that case the restriction occurs
due to the large cross-field impedance �often limited by tur-
bulence�, while in a cusped-field configuration the restriction
may be aided by magnetic mirroring effects.

Because of the ion engine applications, as well as other
applications related to ion sources, there has been a fair

amount of theoretical work aimed at predicting the rate of
ion impingement on cusp-protected walls and the rate of
electron energy loss to anodes. This is surveyed for example
in Ref. 10. A commonly quoted semiempirical rule11,12 is that
the width of the ion loss channel at the cusp is a few times
the so-called hybrid gyro radius

�H = ��e�i, �1�

where �e=mec̄e /eB, with a similar definition for �i, are the
electron and ion gyro radii, and c̄e is the electron mean ther-
mal speed. Some theoretical substantiation for this was pro-
vided by the diffusive fluid model of Ref. 13, although the
factor relating �H to the loss width was also found to depend
on geometrical factors specific to each discharge.

A less detailed model, in which the ion velocity was
derived from order-of-magnitude arguments only, was pro-
posed in Ref. 10, resulting in the prediction that the ion flux
at the sheath entrance in front of the cusp should be reduced
as the magnetic field ratio between the cusp and the “saddle
point,” away from the wall, is increased. This particular re-
sult is in apparent conflict with simple presheath consider-
ations that will be discussed in more detail in this paper: if,
as required for sheath formation, ions must enter the sheath
near the velocity �kTe /mi, the potential drop from the core
plasma must be of the order of kTe /2e, and since the elec-
trons are well confined, and therefore near Maxwell–
Boltzmann equilibrium, the ratio of plasma densities �sheath
edge/core� must be of the order of exp�−1 /2�. Thus, both ion
velocity and density should be as they would in an ordinary
presheath with no magnetic effects, and the main role of the
magnetic cusp would be to limit the width of the wall region
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that receives this flux because points too far from the cusp
axis are not connected by a magnetic line to the dense
plasma far from the wall. This is supported by the experi-
mental data of Ref. 12, for both, a ring cusp and a point-
cusp, that show density and potential drops of the order of
1/2 along the cusp centerlines, as well as a strong flux reduc-
tion outside a narrow channel about these lines. Our own
recent experimental data on the ion wall flux in a DCF
thruster,5 shown in Fig. 1�b�, also appear to confirm this lack
of a strong reduction of ion flux at the cusps, as well as its
suppression between cusps.

In this paper we formulate the problem in its basic ki-
netic form, which yields a tractable model if collisions and
cross-drifts are ignored. It is found that the ion dynamics,
averaged in the cross-section of the magnetic channel, is very
similar in the limiting cases of strong and weak magnetiza-
tion �as long as electrons remain strongly magnetized�. We
present the basic formulation for magnetized ions in Sec. II,
obtain analytical results for a monoenergetic population in
Sec. II A and generalize this to ions that connect to a
Maxwellian plasma in Sec. II B. In Sec. III we consider the
leading moments of the ion distribution, and prove two new
conservation laws that, for a stationary and quasi-1D flow,
extend the double-adiabatic laws of Chu, Goldberger, and
Low �CGL�14 when heat fluxes are not neglected. These laws
are then used to verify the results of the kinetic model, and
excellent agreement is obtained. Sec. IV discusses the non-
magnetized ion case and its mapping into the magnetized
case.

II. KINETIC MODEL FOR STRONGLY MAGNETIZED
IONS

A small Debye length collisionless plasma flows from
z�0 toward a wall placed at z=0, with its electrons and ions
guided by a convergent, quasi-one-dimensional �1D� mag-
netic field B�z� with dB /dz�0. The cross-sectional area of
the convergent magnetic nozzle is A�z�, with

BA = BSAS,

where the subscript S refers to the sheath edge, or, within the
model assumptions, to the wall. The cross-section A��AS

marks the approximate bounds of the highly magnetized re-
gion. Beyond this limit, the plasma is weakly perturbed and
its density n� and temperatures Te ,Ti� are assumed known.

The presence of the wall creates an axial electric field
Ez=−d� /dz that attracts ions toward the wall. Since the
plasma response depends directly on B, and B�z� is mono-
tonic, we take B as our independent variable. The presheath
ends when d� /dz→−�, and the sheath is seen as a discon-
tinuity in the quasineutral scale, i.e., zS�0. Electrons are
strongly confined away from the wall, both electrostatically
and magnetically. Then, if collisions are negligible, the elec-
tron distribution function, fe, over most of velocity space is
the same as that in the distant plasma. This excludes only
those velocities away from the wall that cannot be gained by
an electron with a turning point near the wall, but for normal
sheath strengths, the error is quite small. If this distant

FIG. 1. �Left� Magnetic map for DCF thruster �Ref. 1�. �Right-top� Ion current density at the walls, from surface probes �Ref. 5�. �Right-bottom� Potential near
the wall, also from surface probing �Ref. 5�.
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plasma is taken to be fully equilibrated and isotropic, with
temperature Te, one consequence is the applicability of the
Boltzmann relation

ne��� = n� exp�e�/kTe� , �2�

where the electron temperature is constant and equal to its
upstream value. This means that the average kinetic energy
of all electrons found at a point P��� with ��0 is indepen-
dent of the potential, a counterintuitive result. Each electron
does lose kinetic energy in moving to a lower potential, but
the population at this lower potential excludes some lower
energy electrons that are turned back at intermediate points;
both effects cancel each other.

The isotropy of the electron distribution in the distant,
unmagnetized region is a natural assumption. However, if
due to details of the plasma origin, it were not isotropic,
although possibly still bi-Maxwellian, with separate tempera-
tures in the parallel and perpendicular directions, the present
analysis would need revision.

The ion density ni�B ,�� is to be obtained from the ion
velocity distribution function f i at the location where � and
B occur. The quasineutrality condition

ne��� = ni�B,�� �3�

is then an implicit equation for ��B�.
For a collisionless plasma, f i is just a function of the ion

constants of motion. A magnetized ion gyrates tightly around
a magnetic line, while its gyro center translates along the
line. The constants of the motion are then the ion energy E
and the magnetic moment �

E =
mi

2
�w�

2 + w�
2 � + e� , �4a�

� =
miw�

2

2B
, �4b�

with w� and w� the velocity components parallel and perpen-
dicular to B� , respectively. In terms of E and �, these com-
ponents are

w��E,B,�� = 	� 2

mi
�E − e��B� − �B� , �5a�

	w��B,��	 = �2�B/mi. �5b�

Ions with w� �0 may reach the wall and be neutralized, or
may first reach a turning point �w� =0� due to the magnetic
mirror forces. Given E, B, and a potential distribution ��B�
�to be determined�, no ions exist with � greater than a certain
limit

�m�B,E� =
E − e��B�

B
. �6�

For small B, � is near zero, and �m�E /B, but near the wall,
where d� /dB→−�, �m increases steeply with B. Thus
�m�B ,E� has a minimum:

�T�E� = min
�m�B,E�, ∀ B� at B = BT�E� . �7�

All ions of energy E with w� �0 that have ���T�E� are
collected at the wall, so that w� �0 ions exist only for
���T. Those with �T�E�����m�B ,E� have a turning
point along their axial trajectory. On the low-B side from the
location B=BT�E�, these ions could have w� �0 or w� �0,
since their turning point is between them and the wall. Con-
versely, on the high-B side �B�BT�, no ions will exist, be-
cause the trajectories connect the wall with a turning point.
This discussion is illustrated in Fig. 2, where we also illus-
trate the shape of the ion distribution for a single energy �and

FIG. 2. �a� Parametric regions in the plane �B ,�� for ions of given energy E;
the dashed line is the location of the minimum �T for different E. �b�
Parametric regions in the plane �E ,�� at a given location B; the curve �m

changes with B. In �a� and �b�: region 1 is for ions to be collected, region 2
is for confined ions and regions 3 are devoid of ions. �c� Shape of the ion
distribution function at one �B ,�� location, and for one particular energy;
the limiting angle is 
T=sin−1��T /�m, which is 90° at B=BT and 180° at
B=0.
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hence a single w magnitude at a point�: an incomplete spheri-
cal shell that evolves from a full sphere far from the wall to
a forward half-sphere at BT, to finally a limited forward cap
at the sheath edge.

The differential volume in the velocity space in terms of
E and �, with symmetry about the magnetic line, is easily
found to be dEd�2�B / �mi

2	w�	�, so that

ni =
2�B

mi
2 � � f i�E,��

	w�	
dEd� , �8�

where f i�E ,�� is the ion distribution function in the three-
dimensional velocity space. Then, the mean value of any
quantity ��E ,�� is

�� =
1

ni

2�B

mi
2 � � ��E,��

f i�E,��
	w�	

dEd� . �9�

Examples of � are the axial velocity w�, as given by Eq.
�5a�, and the perpendicular kinetic energy, given as �B by
Eq. �4b�. Specific results will depend on the distribution f i

over the occupied portions of the �E ,�� map.

A. Solution for monoenergetic, initially isotropic ions

This case admits an analytical solution and provides
guidance for more realistic cases. If all ions have the same
energy E=Ei�,

f i =
min�

4�
� mi

2Ei�
�1/2

�E − Ei�� , �10�

where the normalization ensures ni=n� where the full energy
is kinetic �far from the wall�. At locations with negative po-
tential, f i is still given by Eq. �10� provided ion trajectories
connect to the distant plasma, but it is zero otherwise. Over-
all, therefore, f i is not isotropic in the cusp.

The � integration can be done directly. Notice that
�T�E� and BT�E� are constants. Also, Eq. �5a� can be written
as

w� = 	�2B

mi
��m − �� �11�

and so, for any limits �1, �2,

�
�1

�2 d�

	w�	
= 2�mi

2B
���m − �2 − ��m − �1� . �12�

For B�BT, the limits are �1=0, �2=�T, and ions are
counted only once, since all are traveling toward the wall.
Substituting Eqs. �10� and �12� into Eq. �8�,

ni =
n�

2
��1 −

e�

E
−�1 −

e� + �TB

E
�, for B � BT.

�13�

For B�BT, the � range must be split. For 0����T, ions
are counted once, but for �T����m, a factor of two is
needed to account for returning ions. The result is

ni =
n�

2
��1 −

e�

E
+�1 −

e� + �TB

E
�, for B � BT.

�14�

The neutrality condition, Eq. �3�, now reads

2 exp� e�

kTe
� =�1 −

e�

E
+ sign�BT

− B��1 −
e� + �TB

E
,

which can be solved for B��� �both signs�, as

�TB

E
= 4��1 −

e�

E
− ee�/kTe�ee�/kTe. �15�

At the sheath edge ��=�S , B=BS�, we must have dB /d�
=0, which yields an implicit equation for e�S /kTe as a func-
tion of E /kTe:

kTe

2E
=�1 −

e�S

E
��1 −

e�S

E
− 2ee�S/kTe� . �16�

The reverse solution is explicit. Calling, for short
�S=−e�S /kTe�0,

E

kTe
=

4�Se−2�S + 1 − 2�S 	 2e−�S�4�S
2e−2�S + 1 − 2�S

2�1 − 4e−2�S�
.

�17�

With �S known, Eq. �15�, expressed at S, determines the
critical magnetic moment �T. The corresponding B=BT is
that which makes �m�B�=�T. This completes the determina-
tion of ��B�.

We turn now to computing the macroscopic variables.
The ion flux �i=nivi with vi= w��, is due exclusively to ions
with ���T. Since the � integration is simply
�0

�Tw�	w�	−1d�=�T, we obtain

�i =
n��T

�8miE
B , �18�

showing the expected proportionality to B.
Even though all ions have the same total energy E, and,

at one location, the same kinetic energy, the fact that their
magnetic moments span a finite range implies a spread in
both, their parallel and perpendicular kinetic energies �see
Fig. 2�c��. With the usual definitions for temperatures,
kTi� = mic�

2� �with c� =w� −vi� and kTi�= miw�
2 /2�=B��, we

must have

E = 1
2mivi

2 + 1
2kTi� + kTi� + e� �19�

and so it is sufficient to calculate one of the temperatures, say
Ti�. Using Eqs. �9�–�11�, we obtain

kTi�

E
=

1

4

�B/E�3/2

�ni/n�� � �d�

�m − �
, �20�

where the limits of integration depend on whether B is less or
more than BT: for B�BT, the limits are 0����T, whereas
for B�BT, we must add the contribution of ions with
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�T����m and a factor of 2 must be included. The result
for Ti� is

kTi�

E
=

1

3

�B/E�3/2

�ni/n��

���m
3/2 + sign�BT − B���m +

�T

2
���m − �T� .

�21�

When B approaches zero, it can be verified that both Ti� and
Ti� approach Ti�=2E /3.

Due to the lack of symmetry of f i with respect to the
peculiar velocity c�, heat fluxes associated with axial trans-
port of parallel and perpendicular random kinetic energy may
occur �despite the lack of collisions�. We define

qi� = nimic�
3/2� , �22�

qi� = nimiw�
2 c�/2� . �23�

As with the calculation of the particle flux �i, these are odd
moments in c�, and so the � integrations need to retain only
the 0����T part. After some algebra, we obtain

q̂i� �
qi�

n�kTecs0
= 0, �24�

q̂i� �
qi�

n�cs0kTe
=

B̂2�̂T
2

25/2Ê1/2
− �̂iT̂i�. �25�

Figure 3 shows the relevant plasma parameters. Variables in
Fig. 3 and in Eq. �25� are normalized as

B̂ =
B

BS
, � = −

e�

kTe
, T̂ =

T

Te
, Ê =

E

kTe
, �̂ =

�BS

kTe
,

�26�

n̂ =
n

n�

, v̂ =
v

cs0
, �̂ =

�

n�cs0
, q̂ =

q

n�cs0kTe
,

where cs0=�kTe /mi is the cold-ion Bohm velocity, or iso-
thermal speed of sound.

An important result is that, for all values of E /kTe, the
presheath potential remains in a narrow range, from
−e�S /kTe=0.5 when E /kTe=0 to −e�S /kTe=ln 2 when
E /kTe�1, with a shallow maximum of 0.7512 when
E /kTe=0.7588. Notice also in Fig. 3 the decay of Ti� as the
wall is approached, and conversely, the increase in Ti�, par-
ticularly when E /kTe is small. As one might expect given
this positive gradient of Ti�, the heat flux qi� is seen to be
negative �away from the wall�; but it must be kept in mind
that this heat flux is a consequence of the collisionless dis-
tortions of f i, and consequently the mean-free-path argument
for a proportionality to the negative temperature gradient
does not apply. The heat flux qi�, giving the random transport
of parallel random velocity, is found to be exactly zero in this
model; this is in spite of a clear lack of symmetry of the ion
distribution about the mean parallel velocity, and no expla-
nation has been identified for this behavior.

B. Ions that are Maxwellian far from the wall

Since the distribution f i is a function of the constants of
the motion, we have in this case

f i = n�� mi

2�kTi�
�3/2

e−�E/kTi��, �27�

whenever an ion trajectory connects to the distant Maxwell-
ian plasma. Where that connection does not happen, but a
magnetic connection exists to the wall, we have f i=0. The
discussion in Sec. II still applies, and the integrations with
respect to � for the various moments are subject to the same
considerations at each energy E as those discussed in Sec.
II A for the single-energy case.

It will be recalled that for the even moments �such as ni,
Ti�, Ti��, the single-energy results depend on whether B is
less or more than BT�E�, the location at which the turning
point magnetic moment �m reaches its minimum value
�T�E� for the given energy. Examination of Fig. 2 shows that
if we now fix a value of B /BS and vary the energy E, the

FIG. 3. Spatial profiles �in terms of B� of main magnitudes for a monoen-

ergetic population of ions. Lines are for T̂i��Ti� /Te=0.1 �solid�,
1 �dashed�, and 10 �dash-and-dot�.
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correspondences of Table I occur, where ET�B� is the inverse
function of BT�E�. For the odd moments �such as �i, qi�, and
qi�� the � range is 0����T�E�, as before.

The calculations of Sec. II A can be extended to the
Maxwellian case using Eqs. �8� and �9� with the distribution
of Eq. �27� and integration ranges of Table I. We next apply
these ideas to the ion density calculation, with the result,
using Eqs. �13� and �14�,

ni�B�
n�

=
1

���kTi��3/2�
0

�

e−�E/kTi����E − e�

+ sign�E − ET�B���E − e� − �T�E�B�dE . �28�

The difficulty that now arises is that the calculation of �T�E�,
as the minimum of �m= �E−e�� /B��� requires knowledge
of the ��B� function, which itself is to be found by imposing
quasineutrality, i.e., Eq. �3�. This cannot be done analytically,
but a numerical iteration process can be used to solve the

problem. On fixed grids of B̂ and Ê, the normalized potential

��B̂�=−e� /kTe is initialized using results from the monoen-

ergetic case. For each Ê, the quantity �̂m�Ê , B̂� is computed

versus B̂, and its minimum, �̂T�Ê� is determined, together

with the location B̂= B̂T�Ê� where it occurs. This also deter-

mines the dividing energy ÊT�B̂�, and the integrations of Eq.

�28� can now be performed to find n̂i�B̂�. Imposing neutrality,

Eq. �2� yields a new ��B̂� profile, and this is repeated to
convergence; under-relaxation is actually required, especially
at low values of Ti� /Te.

Once �T�E� and ET�B� are known, all the relevant mo-
ments can be computed. The profiles of density, temperatures
and heat fluxes, for Ti� /Te=0.1, 1, and 10, are displayed in
Fig. 4, and comparison to Fig. 3 shows very similar shapes
and magnitudes for the Maxwellian and monoenergetic
cases, with the exception of a nonzero qi� in the Maxwellian
case. The similarity is shown more clearly in Fig. 5, where
the particular values at the sheath edge are compared be-
tween the two models for a wide range of Ti� /Te.

In closing, it is worth emphasizing the very different
ways in which the magnetic cusp and its self-consistent
presheath potential affect electrons and ions. Because of their
almost total confinement, the electron distribution remains
Maxwellian at a constant temperature. On the other hand,
ions are collected or neutralized at the wall, and so their
distribution tends to become one-sided and their parallel and
perpendicular temperatures change as the wall is approached.
Of course, this asymmetric behavior is not peculiar of this
problem: a comparable behavior is found in the well-known,
unmagnetized Tonks–Langmuir problem,15 where ionization
plays for ions the role of the cusp convergence here.

III. MOMENTS OF THE ION DISTRIBUTION
AND CONSERVATION LAWS

An independent check on our results can be obtained
from the fluid, or moment equations. These are obtained by
the classical method of multiplication of Boltzmann’s equa-
tion times a sequence of functions ��w� �, followed by inte-

TABLE I. Ranges of integration for even moments.

Energy range B range Range for � integration

E�ET�B� B�BT�E� �0
�T�E�� . . . �d�

E�ET�B� B�BT�E� �0
�T�E�� . . . �d�+2��T�E�

�m�E,B�� . . . �d�

FIG. 4. Spatial profiles �in terms of B� of main magnitudes for a Maxwellian

population of ions. Lines are for T̂i�=0.1 �solid�, 1 �dashed�, and 10
�dash-and-dot�.
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gration over all w� . For a strongly magnetized species, with
no collisions, Ramos16 gives the results corresponding to
�=1, miw� , miw� w� , and miw� w� w� , the last two of these being
tensors of order 2 and 3, respectively. To the lowest order in
the Larmor radius, all vector fluxes are along the magnetic
field, and the kinetic energy splits naturally into parallel
�miw�

2 /2� and perpendicular �miw�
2 /2� components. One thus

obtains one continuity equation, one momentum equation
along the magnetic field and one equation for each of the
pressures

Pi� = nikTi� = mnic�
2� ,

�29�
Pi� = nikTi� = mniw�

2 �/2.

Ramos obtains in addition two equations for the third-order
quantities qi� and qi�, defined as in Eqs. �22� and �23�. It is

characteristic of this sequence that the equation for a moment
of order n involves one or more moments of order n+1, so
that no complete description is generally possible with a fi-
nite number of moment equations. Thus, for example, the
equations for qi� and qi� involve the energy-weighted and
parallel energy-weighted stress tensor components

r� = 1
2nmc2c�

2�, r� = 1
4nmc2c�

2 �, rB� = 1
4nmc�

2c�
2 � ,

with c� =w� −v� i. Ramos expresses his results in general vector
notation, valid for arbitrary geometry, and including time-
dependent effects. We will particularize his equations for the
steady state and take advantage of the fact that all spatial
derivatives appearing are in the magnetic direction �along the
z-axis�.

For any vector a� directed along the magnetic field we
have

� . a� = � . � a

B
B�� = B� . �� a

B
� = B

d

dz
� a

B
� , �30�

where the last equality implies a quasi-1D geometry. In par-
ticular, the ion continuity equation is � . �niv� i�=0, and this
can be written, from Eq. �30�, as

d

dz
�nivi

B
� =

d

dz
��i

B
� = 0, �31�

which is, as noted, satisfied by our kinetic results �Eq. �18�
and Fig. 3�.

The ion momentum equation along the magnetic field
can be similarly reduced to

minivi
dvi

dz
+

dPi�

dz
+ �Pi� − Pi��

d ln B

dz
+ eni

d�

dz
= 0, �32�

showing explicitly the magnetic mirror effect of an aniso-
tropic pressure tensor. With some rearrangement, Eq. �32�
can be put in a Bernoulli-like form that will be of use later:

dHi

dz
=

1

2vi
3

d

dz
�kTi�vi

2� + B
d

dz
� kTi�

B
� , �33�

where

Hi = 1
2mivi

2 + 3
2kTi� + kTi� + e� . �34�

Notice that the “expansion work” part of the total enthalpy
per particle Hi is kTi�, and the “internal energy” part is
kTi�+kTi� /2. Equation �33� indicates that this total enthalpy
is conserved only if the terms on its right hand side are zero.

The two equations for Pi� and Pi� �or for Ti� and Ti�� are
adapted from Eqs. �31� and �32� of Ref. 16:

Pi�v� i . � ln�B2Pi�

ni
3 � + 2b� . �qi� + 2�qi� − qi��b� . � ln B = 0,

�35�

Pi�v� i . � ln�Pi�

Bni
� + b� . �qi� + 2qi�b� . � ln B = 0, �36�

where b� =B� /B. When the heat fluxes qi� and qi� are ne-
glected, these equations reduce to the steady-state form of
the CGL double-adiabatic laws14

FIG. 5. Parametric response at the sheath edge S for Maxwellian �solid� and
monoenergetic �dashed� populations of ions in terms of their unperturbed
temperature. For the monoenergetic population, qi� =0.
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B2Pi�

ni
3 �

B2kTi�

ni
2 = const �or Ti�vi

2 = const� , �37�

Pi�

Bni
�

kTi�

B
= const, �38�

which according to Eq. �33� would also guarantee Hi

=const. Reference to our kinetic results of Sec. II B will
show that these adiabatic laws are not very good approxima-
tions, especially when Ti� /Te is not very small.

If �qi� ,qi�� are retained in Eqs. �35� and �36�, and the
quasi-1D approximation is invoked, two new quantities are
conserved along z. First, direct manipulation of Eq. �36�
leads to the simple exact form

d

dz
� kTi� + qi�/�i

B
� = 0, �39�

which extends CGL’s Eq. �38� by adding to the mean per-
pendicular energy its axial transport rate per unit particle
flux. An alternative interpretation of Eq. �39� is that the total
�convected plus conducted� heat transported by a variable-
area flux tube remains constant, a result that could have been
anticipated on physical grounds.

Now, Eq. �35� can be similarly manipulated to the form

d

dz
�kTi�vi

2� = −
2viB

ni
� d

dz
�qi�

B
� +

qi�

B2

dB

dz
� . �40�

This does not directly yield a conservation law, but it does
when substituted, together with Eq. �39�, into Eq. �33�:

d

dz
�Hi +

qi� + qi�

�i
� = 0, �41a�

where Hi is the ordinary total ion enthalpy, Eq. �34�. Once
again, this adds to the total ion mean kinetic energy its total
flux per unit particle flux, and it defines a new conserved
quantity, a sort of generalized ion enthalpy,

Hi
� =

1

2
mivi

2 +
3

2
kTi� + kTi� +

qi� + qi�

�i
+ e� . �41b�

As in the case of Eq. �39�, Eq. �41a� could also be interpreted
as stating that the total enthalpy flux per unit area, including
now both heat fluxes, is conserved in the magnetic direction.

Equations �39� and �41a� have been checked against the
kinetic results of Secs. II A and II B, and found to be pre-
cisely satisfied by both monoenergetic and Maxwellian ions
and are, to our knowledge, new results. The relative weight
of the heat fluxes that are neglected in the CGL approxima-
tion, Eqs. �37� and �38�, is displayed in Fig. 6, where they are
seen to be generally of the same order as the convected ther-
mal energy fluxes. The potential utility of Eqs. �39� and �41�
depends on some approximate closure scheme that would
relate the heat fluxes to the lower order moments or their
derivatives. One such scheme has been developed by
Ramos,16 who proceeded by first obtaining evolution equa-
tions for qi� and qi� and then deriving approximate closure
relations between the fourth order moments, r�, r�, and rB�,

and the second-order moments, and Pi�. The accuracy of
these closures could be investigated by comparison to our
kinetic results, but this remains to be done.

The Bohm criterion of the presheath-sheath asymptotic
theory, applied to a macroscopic formulation of a plasma
accelerated from rest, establishes that the presheath-sheath
edge S is a singular �or sonic� point of the quasineutral equa-
tions for ions. That sonic velocity, viS, is known as the Bohm
velocity, and is plotted in Fig. 5. Using Eqs. �2�, �31�, and
�40� in order to eliminate the derivatives of �, n, and Ti� in
Eq. �32�, one has

�mivi
2 − kTe − 3kTi��ni

dvi

dz
− 2

dqi�

dz

= − �2�qi� − qi�� + vi�Pi� + Pe��
d ln B

dz
, �42�

FIG. 6. Relative weight of the heat fluxes in the two energy conservation
equations of the quasi-1D model for monoenergetic and Maxwellian ion

populations, and T̂i�=0.1 �solid�, 1 �dashed�, and 10 �dash-and-dot�.
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as the exact equation for the evolution of vi. Then, if
qi��z�=0, as for a monoenergetic ion population, the Bohm
velocity satisfies

viS = cs � �k�Te + 3Ti�S�/mi,

in agreement with the hydrodynamic Bohm criterion.17

For a general ion distribution function, the functional form of
viS depends on the expression of the closure equation for
dqi� /dz. If the exact form of that equation were known and
used together with Eq. �42�, the resulting sonic condition
would agree with the kinetic Bohm criterion,18 w�

−2�S

=mi /kTe, which implies that viS��kTe /mi �Ref. 19�. For the
Maxwellian ion population here the numerical results show
that viS /cs decreases slowly �from 1� with Ti� /Te increasing
from 0, having viS /cs�0.95 for Ti� /Te=1.

IV. NONMAGNETIZED IONS, MAGNETIZED
ELECTRONS

In many practical cases, the ion gyro radius is compa-
rable or larger than the lateral dimension of the magnetic
“duct,” while the electron gyro radius is much smaller than
this dimension. In the limit, ions react only to electrostatic
fields, which are themselves set up by the small deviations
from neutrality between them and the magnetically guided
ions. Specifically, if there is one limiting magnetic line, like
a or b, in Fig. 7, beyond which no connection is made to the
equilibrated plasma, the B-lines beyond this will be drained
of electrons, and ions will only penetrate a small distance
into this outer region, due to the self-consistent high poten-
tial they will create there. Wall probe data of Fig. 1�c�, re-
cently obtained near the cusps in a DCF thruster5 show the
existence of potential “canyons” similar to that sketched in
Fig. 7 in front of each of them.

Ions moving toward the wall along one of these low-
potential channels will bounce repeatedly off of its sidewalls,
and their trajectories will rotate by roughly twice the side-
wall angle in each such bounce. As sketched in Fig. 7, this
may eventually cause the ion to turn back away from the

wall, similarly to what would happen in a magnetic mirror.
This similarity with a magnetic mirror prompts the question
whether an adiabatic invariant analogous to the magnetic
moment would exist in the electrostatic case. Within the
same limitations �slow convergence of the B-lines�, this can
be answered in the affirmative using the known adiabatic
invariance of the action integral20 J=�pdq, where q is a
cyclic or quasi-cyclic degree of freedom, p is its conjugate
momentum, and the integral is taken along a full cycle �or
quasicycle�. In our case, assuming a line-cusp two-
dimensional �2D� geometry, q is the lateral displacement y of
an ion from the channel centerline, and p=miẏ is the lateral
momentum, so that

J =� pdq = 4�
0

y2

miẏdy = 4�2emi�
0

y2 ���y2� − ��y�dy ,

�43�

where y2 is a turning point, and lateral symmetry has been
assumed.

For concreteness, consider the potential

� = �c + ��2 − �c��y/y2�n �44�

with �c=��0� and n a fitting exponent. Direct substitution
in Eq. �43� leads to J=4pn�2emi��2−�c�y2, with pn=�0

1

��1−�n�d�. To estimate y2, the lateral excursion of an ion,
assume next that the potential at y=h�z� �the half-width of he
potential channel� is half-way up to the external potential
�out. Substituting in Eq. �44� leads to

y2 = h�2
�2 − �c

�out − �c
�1/n

and hence to

J = 4pn
�2emi� 2

�out − �c
�1/n

h��2 − �c��2+n�/2n.

We notice that e��2−�c�=miẏ
2�0� /2, the ion lateral energy

at centerline crossing, which itself can be shown to be a
constant fraction of the average kinetic energy miẏ

2 /2�. We
therefore conclude that the quantity

hmiw�
2 /2��2+n�/2n �45�

is an adiabatic invariant. Since hB=constant in our 2D ge-
ometry, this can be finally expressed as

� � miw�
2 /2�B−2n/�2+n� = invariant. �46�

Two limits stand out:

�a� For a parabolic potential well �n=2�, �= miw�
2 � /2B,

which is identical to �, the magnetic moment.
�b� For a flat-bottom potential well with steep walls

�n→��,

� = miw�
2 �/2B2, �47�

which shows a more rapid variation of the perpendicu-
lar energy with B. The difference can be traced to the
fact that ions are able to penetrate farther into the out-
side potential when the wall is “soft,” i.e., as the chan-
nel narrows towards the wall and oscillating ions gain

Equilibrium
Plasma

(Ti, Te, n)

b

a

z

y

inside 

, insiden n   

, insiden n   

FIG. 7. Schematic showing the trajectory of an ion that is electrostatically
confined by the potential depression in the “channel” bounded by the last
magnetic lines, a and b, that connect to the equilibrium distant plasma. The
region outside this channel is nearly devoid of electrons, and at a higher
potential due to some small ion population that spills from the channel.
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transverse energy, their oscillation amplitude y2 tends
to overshoot h, causing a reduction in the effective con-
vergence rate. This is then reflected in the less steep
increase of the ion transverse energy ��B rather than
�B2�.

Given the smallness of the Debye length in most cases of
interest, the square well appears to be the more realistic
choice, subject, of course to our assumption that electrons
are sharply confined to a well-defined channel. More realistic
electron models would require a refinement of this assump-
tion, involving detailed consideration of the distant plasma
and its connection to the weak part of the field.

The importance of Eq. �47� or Eq. �46� is that all the
results obtained in Secs. II A and II B for magnetized ions
are immediately applicable to the opposite, unmagnetized
case, with only an axial rescaling: B /BS is to be replaced
everywhere by �B /BS�2, or, more generally, �B /BS�2n/�2+n�. In
particular, this shows that the ion flux �i is nearly unaffected
by the cusp. The cusp does limit the width of the wall ex-
posed to this flux, perhaps to a few gyro radii,11 but that is
outside the scope of the present model.

As a final note, if the geometry is that of a point-cusp
instead of a line cusp, the arguments leading to Eq. �45� still
apply, up to some constants, but we now have h2B=const
instead of hB=const. In that case, a potential profile with
a flat bottom implies that the electrostatic adiabatic constant
is actually the same as the magnetic moment, i.e., �=�
= miw�

2 � /2B. Thus, for a point-cusp, the plasma properties
are identical with magnetized and with nonmagnetized ions.

V. CONCLUSIONS

A kinetic model has been formulated for plasmas in a
magnetic cusp, where electrons are strongly magnetized and
isotropic in energy, and ions are either strongly magnetized
or nonmagnetized, but strongly guided by the self-consistent
electrostatic field that results from their slight separation
from the magnetized electrons. The structure along the cusp
centerline, which is fully correlated by the local magnetic
field strength, is very similar to that of an ordinary presheath,
and so are the sheath entrance potential and ion flux. The
wall-protecting function of the cusp is therefore associated
only with its ability to exclude ion fluxes to regions not
magnetically connected to the distant “feeder” plasma. Ana-

lytical results are found for a monoenergetic ion population,
and numerical results are obtained for a Maxwellian plasma
far from the wall, in both cases for a wide range of electron/
ion energies. The results are shown to satisfy the leading ion
moment equations, including two new conservation laws
that, for a quasi-1D, stationary plasma, exactly generalize the
classical CGL constants when the ion heat fluxes are non-
zero.
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