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approach [33–39]. This third way to study plasma plumes has
thus become a popular alternative over the last few decades,
during which multiple hybrid codes have been developed.

The need of a closure relation for the electron fluid
affects both multi-fluid and hybrid models, and is one of their
major downsides. Such closure is commonly applied at the
pressure-tensor level, although approaches at the heat flux
level also exist [1, 40]. The most basic but extended model
relies on Boltzmann�s relation, which results in isotropic,
isothermal electrons [36, 40]. Unfortunately, while Boltz-
mann�s relation is adequate for a confined electron popula-
tion, and thus it is a valid approximation in the first part of the
expansion, it predicts an infinite electric potential fall along
the plume. A small improvement over that closure is to treat
the electrons as a polytropic species [15, 27, 31, 41], which
cools down at a rate given by the cooling exponent γ > 1, i.e.
T ne e

1µ g- . While this model yields a finite electric potential
fall, and can to some extent recover the electron temperature
drop with the expansion, the self-consistent determination of
this new parameter remains an open problem. Clearly, only a
kinetic electron model can provide the satisfactory closure
relation for a near-collisionless electron fluid model.

This article presents a quasi-2D kinetic model of a
plasma plume and uses it to characterize several features of
the electron expansion. The model assumes a collisionless,
unmagnetized, quasineutral, steady-state plasma, providing a
good description of the plume far-region. The integration of
the electron model relies on the first-order conservation of an
averaged action integral of motion, which is an adiabatic
invariant under the assumption of a small plume divergence
angle. The action integral plays an analogous role to the
magnetic moment in the magnetized plasma expansion in a
magnetic nozzle [42–45], and it was used successfully to
describe the flow of unmagnetized ions in a convergent
magnetic field by Martínez-Sánchez and Ahedo [46].

The electron velocity distribution function and its
moments are computed, with a focus on the collisionless

cooling of electrons. The results of this study can inform
multi-fluid and hybrid codes, thus filling in the existing
theoretical gap on the electron closure. As an example, an
approximated, ‘lumped’ polytropic model that respects the
total potential fall of the kinetic solution and depends on the
plasma properties at emission is finally proposed, which can
be easily implemented in existing numerical codes.

The rest of the paper is structured as follows. Section 2
introduces the general kinetic plasma plume model. This sets up
a framework for solving the plasma expansion, which is parti-
cularized in section 3 for the case of a plasma plume with a
radially-parabolic electric potential and semi-Maxwellian elec-
trons upstream. Section 4 presents the numerical results of the
plasma expansion. Then, in section 5, the simplified electron
model based on a polytropic cooling law is proposed. Finally,
section 6 presents some additional comments on the kinetic
model in the light of the obtained results, including a discussion
of its limits of validity, and section 7 gathers the main conclu-
sions. A preliminary version of this work was presented in [47].

2. General kinetic model

The kinetic model of a plasma plume expanding into vacuum
from z = 0, as sketched in figure 1, consists of the electron
(‘e’) and ion (‘i’) submodels described below, which are used
iteratively to find the self-consistent electric potential
response. The plume is assumed to be steady-state, axisym-
metric, non-rotating, quasineutral, collisionless and unmag-
netized. These conditions are well satisfied in the plume far-
region of common thrusters like GITs and HETs, i.e. down-
stream of the near-region where collisions with neutrals,
thruster electromagnetic fields, and 3D features existing
around the thruster become negligible, as described in the
introduction.

The electric potential in a plasma plume decreases axially
and radially, accelerating all ions downstream and confining

Figure 1. Sketch of the plasma plume expansion from an initial plane z= 0 (the upstream model boundary) to z  ¥ (downstream
boundary). The electric potential f decreases gently in the axial direction to an asymptotic value f¥, and faster in the radial direction. Typical
ion and electron trajectories are shown. The outer solid lines represent the characteristic radius of the plume at each z position, h(z). The N
dots on the plume axis represent the evaluation nodes used in the model of section 3.
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most of the electrons, as sketched in figure 1. In this model,
the electric potential is assumed to confine all electrons
radially, while only the most energetic electrons overcome the
axial potential fall and escape downstream, to offset the ion
current and produce a current-free plume.

The plume expansion is required to be paraxial, i.e.
slowly diverging. In other words, the axial derivative of the
self-consistent electric potential z r,f f= ( ) needs to be of
order ε = 1,

z
O . 1

f
e

¶
¶

= ( ) ( )

In contrast, the radial derivative rf¶ ¶ is zeroth order. Under
these assumptions, electrons typically perform many radial
and azimuthal orbits before experiencing an important axial
change of the electric potential.

2.1. Electron model

The Hamiltonian H H z r p p p, , , , ,z rq= q( ) of an electron in
a steady-state, axisymmetric electric potential can be written
as:

H
m

p p
p

r
e z r
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e

2 2
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2
f= + + -q
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with p m v p m v,z z r re e= = , and p rm ve=q q. The mechanical
energy E= H and the canonical azimuthal momentum pθ of
the electron are conserved quantities of motion.

For ε= 0 (i.e. a zero-divergence plume), the potential is
a function of r only, so the Hamiltonian has no dependency
on z, and pz is invariant. The perpendicular and axial energies
are then independently conserved quantities:
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The radially-trapped electrons bounce back and forth between
certain limit values r− and r+ while moving in the z and θ

directions. The radial action integral can be defined along one
such radial orbit:

J p rd , 5r r= ∮ ( )

and is another conserved quantity of motion. The conjugated
Hamilton–Jacobi phase-angle variable [48] that parametrizes
the radial motion is

J
p r m
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p
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The variable βr grows linearly with time and increases by one
unit every full radial orbit, with H Jr rb = ¶ ¶˙ . Finally, under
these conditions, it is possible to write the Hamiltonian as a
function of pz, Jr, and pθ only. The conservation of Jr holds
exactly also for separable electric potentials of the
form z r z r, z rf f f= +( ) ( ) ( ).

For 0< ε = 1 and a non-separable potential f(z, r),
which is the case of interest in a plasma plume, Ez and E⊥are
not independently conserved, and electron energy can indeed

flow between the perpendicular directions of motion (r, θ) and
the axial one (z). The definitions of Jr and βr of equations (5) and
(6) may nevertheless still be used, by treating z, pz as constants
inside the integrals. Now, however, Jr varies in time, with
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Likewise, βr no longer increases linearly in time:
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Additionally, the relation between E and pz, Jr, and pθ codified in
the Hamiltonian now also has a dependency on z at order ε,

E E z p J p, , , . 9z r= q( ) ( )

Notwithstanding this, action integrals like Jr are adiabatic
invariants under small perturbations [48]. This means that, while
Jr can have periodic variations of order ε, its secular changes are
only of order ε2 or higher, as can be shown by detailed inspection
of the time integral of equation (7). Likewise, rḃ in equation (8)
has only periodic variations to order ε. The conservation of E, pθ,
and the adiabatic invariance of Jr can be exploited to simplify the
solution of the electron kinetic equation. The electron velocity
distribution function fe is decomposed into a βr-averaged value fē
plus an oscillation fê about this average:

f f z E J p f z E J p, , , , , , , , 10r r re e e b= +q q
¯ ( ) ˆ ( ) ( )

with f f d re 0

1
eò b=¯ and f d 0r0

1
eò b =ˆ . Since the chosen vari-

ables do not discriminate between electrons with positive or
negative axial velocity, whenever this distinction is necessary, fē
and fê are further split as f f f f f f,e e e e e e

^ ^ ^= + = ++ - + -
,

where superscript ‘+ ’ indicates vz�0, and ‘−,’ vz< 0.
The complete electron Vlasov equation for electrons then

reads:
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Integration of this equation requires boundary conditions
f E J p, ,re0 q
+¯ ( ) and f E J p, , ,r re0 b q

+ˆ ( ) at z= 0, which we refer
to as upstream or source electrons, as well as f E J p, ,re q¥

-¯ ( )
and f E J p, , ,r re b q¥

-ˆ ( ) at z  ¥, i.e. downstream or back-
ground electrons. For a plasma plume expanding into
vacuum, there are no background electrons,
i.e. f f, 0e e =¥

-
¥
-¯ ˆ .

Actual plasma sources are expected to deliver an electron
population that is near-homogeneous in βr, so that
f O ;e0 e=
+ˆ ( ) in particular, for initially semi-Maxwellian

electrons, fe0

+ˆ is strictly 0. If fe0

+ˆ is of order ε, then fê is also of
order ε inside the plasma plume domain. Hence, we can
establish the following ordering in the plasma plume,

f O f O1 ; . 12e e e= =¯ ( ) ˆ ( ) ( )

Then, after averaging over rb , equation (11) becomes

v
f

z
O . 13z

e 2e
¶
¶

=
¯

( ) ( )
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This means that, up to order f, ee ¯ is constant along z for each
combination of E, Jr, pθ, in regions delimited by the axial
turning-point manifold vz= 0, whose expression must be
obtained by inversion of equation (9):

p z E J p m v, , , 0. 14z r ze= =q( ) ( )

The region of phase space beyond this manifold is energeti-
cally forbidden.

In general, equation (14) has a non-monotonic behavior in
the z direction, which results from two competing effects on the
electron motion: on the one hand, the axially-decreasing electric
potential causes a confining force that pushes electrons
upstream. On the other hand, in the expanding electric potential,
the adiabatic invariance of Jr and the conservation of pθ create a
net axial force on the radially-averaged electron motion that
pushes them downstream. This second phenomenon is analo-
gous to the magnetic mirror effect in a magnetized plasma,
which pushes electrons in the direction of the expanding
magnetic field due to the invariance of the magnetic moment of
the electron. Consequently, the turning-point manifold can
divide the solution existence domain into regions of four dif-
ferent types, or equivalently, the electrons into four sub-
populations, according to their connectivity with the upstream
and downstream boundaries. In the following, a subindex in
parenthesis is used to denote an electron subpopulation.

1. Regions that connect with both the upstream and
downstream boundaries. In these regions, electrons
have enough energy to overcome all potential barriers
and reach the opposite boundary without any reflection,
and they are therefore termed free electrons. Hence,
f f f f, 0e 1 e0 e 1 e= = =+ + -

¥
-

( ) ( ) in the free electron
regions for an expansion into vacuum.

2. Electrons in regions connected only with the upstream
boundary eventually turn back and return to the plasma
source. They are called reflected electrons. In these
regions, f f fe 2 e 2 e0= =+ - +¯ ¯ ¯

( ) ( ) .
3. Similarly, there are regions only connected with the

downstream boundary. Therefore, for a plasma plume
expanding into vacuum f f f 0e 3 e 3 e= = º+ -

¥
-¯ ¯ ¯

( ) ( ) , and
these are empty regions.

4. Lastly, existence regions that are not connected with either
the upstream or downstream boundaries may contain
doubly-trapped electrons. Here, f fe 4 e 4=+ -¯ ¯

( ) ( ), but the value
of the distribution function remains otherwise undeter-
mined, and the solution requires additional information
from outside of the present kinetic model. As discussed in
section 6, physical reasoning suggests that these regions
must be populated by a fe that is near-Maxwellian and
near-continuous with neighboring parts of phase space.

To obtain the βr-dependent part of the distribution function,
fê, to comparable accuracy, it is necessary to tackle the rest of
the non-averaged Vlasov equation (11) up to order ε, i.e.

v
f

z

H
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f
J

f

J
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r
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e e e 2
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e
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˙
¯
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This correction to fe is not computed in the present work. As a
result, the obtained solution f fe e= ¯ is strictly only accurate to
zeroth order in ε. Once fē is known, any moment of the
electron species, or of a particular electron subpopulation, can
be computed as described in the appendix.

2.2. Ion model

The ions emitted by a plasma thruster are commonly much
colder than the electron population, Ti=Te. Additionally,
ions are hypersonic [27], with a bulk velocity ui about 5–40
times larger than the plasma sonic velocity c T ms e i= .
Nonetheless, except for the lightest propellants, ui is still
much less than the electron thermal velocity, c T me e e= .
Thus, the following ordering of velocities is satisfied in a
plasma thruster plume:

c c u c . 16i s i e   ( )
Moreover, ions are accelerated downstream by the electric
field in the plasma plume, so all of them are free ions that
undergo no axial reflections. Consequently, their motion is far
simpler than that of electrons.

Neglecting the dispersion in the ion velocity distribution
function, ions are modeled as a cold species that satisfies the
following steady-state continuity and momentum fluid
equations,

un 0, 17i i =· ( ) ( )
u um e 0, 18i i i f +  =( · ) ( )

which must be supplemented with upstream boundary con-
ditions at z= 0, ni0 and ui0.

These hyperbolic equations can be solved numerically
for a given f, with equation (18) providing ui by direct
propagation of ion trajectories with the method of character-
istics [27]. Once ui is known, discretization of equation (17)
in the plume domain gives ni.

2.3. Self-consistent electric potential determination

The electron and ion models defined above can be used to
compute the zeroth-order un ,e e, and un ,i i at any point (z, r)
of the plume, given an electric potential map f(z, r) and a set
of compatible boundary upstream conditions f n,e0 i0

+¯ , and ui0.
The quasineutrality assumption and current-free condition in
the paraxial limit couple the two species together and allow
finding the self-consistent plume solution iteratively, includ-
ing the electric potential:

n n n u n u; . 19z zi e i i e e= = ( )

The generalization of the second condition to a given non-
zero net electric current in the plume is straightforward.

Observe that ne can be decomposed as n n ne e e= ++ -,
where the + and − signs denote the contributions of fe

+¯ and
fe
-¯ , respectively. Similarly, u u uz z ze e e= ++ -. Since fe

-¯ at
z= 0 is part of the solution, only ne0

+ and uze0
+ are known

a priori at the upstream boundary. Indeed, the values of ne0
-

and uze0
- depend on the fraction of reflected electrons that
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return to the plasma source. Thus, it is not possible, in gen-
eral, to determine whether the upstream boundary conditions
are compatible with equations (19) at z= 0 without solving
the electron expansion. To overcome this difficulty, only the
shape, but not the magnitude, of fe0

+¯ is prescribed:

f n F0 20e0 e0 e0=+ + +¯ ( ) ¯ ( )

where Fe0
+ is the specified normalized distribution function,

and n 0e0
+( ) is the magnitude of fe0

+¯ to be computed as part of
the solution.

Finally, fixing f(0, 0)= 0 at the origin, an iterative
solution procedure can then be established as follows: an
initial guess of the function f(z, r) and the parameter n 0e0

+( ) is
produced. The electron and ion models are solved to obtain
ne, uze, ni, and uzi at a set of evaluation nodes (zi, ri) for
i= 1,K,N. Equations (19) at those points provide N2 error
equations to be zeroed. Next, an iterative method is used to
generate a new guess of f(z, r) and n 0e0

+( ) to lower this error,
and the procedure is repeated until convergence with a pre-
scribed tolerance is achieved. Upon completion, the solution
method yields the self-consistent f(z, r) and n 0e0

+( ).

3. Radially-parabolic potential and semi-Maxwellian
electrons

Applying a constraint on the radial shape of the electric potential
allows reducing the electron integrals of Jr and βr in equations (5)
and (6) to closed forms, simplifying the solution process. In this
section, solutions with a radially-parabolic potential are sought,

h r
T h

eh
r h, , 21z

e 0
2

4
2f f= - +

*

( ) ( ) ( )

where h z( ) is a monotonically-increasing function that represents
the (unknown) characteristic radius of the plasma plume at each
axial position z with h(0)= h0, and h z( ) has been used to replace
z as the independent variable of the problem. In expression(21),

hzf ( ), with fz(h0)= 0, is the value of the unknown electric
potential along the plume axis, and Te

* is a characteristic energy
constant. The radial electron density profile of equation (21)
results in a Gaussian density profile n r hexpe

2
0
2µ -( ) in the

limit of isothermal electrons with temperature Te*. Such a radial
potential profile is therefore a reasonable model of the far-region
plasma plume and agrees well with experimental measurements
of many GITs and HETs [27]. Observe that the non-separability
of f stems from the first term in the right-hand side of
equation (21) only, and that the potential for each h is that of a
harmonic oscillator in r and θ.

For this electric potential, the corresponding expression
for Jr from equation (5) is

J m
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For brevity, the perpendicular momentum is defined as

p
J

p , 23r

p
= + q^ ∣ ∣ ( )

and a characteristic velocity and momentum are defined,

c
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m
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e
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Then, βr from equation (6) is related to r through:
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and the extreme values of r in a radial electron orbit, r+ and
r−, are given by

r
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Equation (14), which defines the axial turning-point
manifold, becomes:

m v E U h p
1

2
, 0, 27ze

2
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where:

U h p e h T
h
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p
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2
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is the effective potential of the axial electron motion, which
depends on Jr and pθ only through p⊥. Inverting equation (27)
the maximum value of p⊥ for each E and h is given by:

p h E p
h

h

E e h

T
,

2
. 29M
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2

0
2

e

f
=
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^
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*
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The shape of the turning-point manifold is illustrated in
figure 2 for an example function fz(h). Locating the extrema of
either Ueff or p⊥M along h helps to determine the connectivity
of each point of electron phase space with the upstream and
downstream boundary conditions efficiently, and thus dividing
it into regions of types 1 to 4, as defined in section 2.

As seen in figure 2(a), the effective potential Ueff approa-
ches the asymptotic value ef- ¥ as h  ¥, where

zf f= ¥¥ ( ) < 0. For each p⊥, electrons can only exist in the
part of the diagram above the corresponding curve. Free elec-
trons occupy the region of energies larger than the global
maximum of the corresponding line. Reflected electrons exist for
those p⊥for which the initial value of the curve is lower than the
asymptotic value. Finally, doubly-trapped electrons exist only
when the curve has a minimum inside the plume domain.

The intersection of the axial turning-point manifold,
equation (27), with a h const= plane, is a straight line s(h)
for each value of h, as can be observed in figure 2(b), illus-
trating that the manifold is a ruled surface. This feature
enables a simple analysis of the geometry of the electron
phase space, as discussed in section 3.1. As h is increased
from h0 to ¥, the slope of the straight line s(h) decreases and
its intersection with the energy axis moves up, transforming
continuously from the diagonal line s(h0) to s ¥( ). These two
limit lines divide the electron phase space into four sectors A,
B, C and D. Free electrons can only exist in sector A, above
both s(h0) and s ¥( ), whereas reflected electrons can only
exist in sectors A or B, above s(h0). Empty regions can only
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form in sectors A or C, above s ¥( ). Finally, doubly-trapped
electrons may exist everywhere, and they are the only type of
electrons that can exist in sector D, below both s(h0)
and s ¥( ).

In figure 2(c), the allowed region for each energy E is
upper bounded by the corresponding curved line. All ener-
gies E ef< - ¥ (e.g. E1, E2, and E3 in the figure) result in
lines that intersect the horizontal axis, so there are no free
electrons with those energies; reflected electrons exist for
p⊥below the value of the curve at h= h0, whereas doubly-
trapped electrons are present if the curve has a maximum

inside the plume domain. The lines for energies E ef> - ¥
(like E5) diverge downstream, and free electrons occupy all
p⊥below the global minimum of the curve. A three-dimen-
sional view of the axial turning-point surface is shown in
figure 2(d).

To further simplify the model, and as a case of
practical interest, a semi-Maxwellian population is assumed
upstream,

f f n
m

T

E

T
2 0

2
exp , 30M

e0 e e0
e

e

3 2

e* *p
= = -+ +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

¯ ( ) ( )

Figure 2. Electron axial turning-point manifold for the radially-parabolic electric potential of equation (21). (a) The effective potential Ueff
versus h for various values of p⊥, for p p p0 1 2 3< < <^ ^ ^ . The asymptotic value e Tef- ¥

*/ is shown as a dashed line. (b) The effective
potential Ueff versus p̂ for h= h0 (the upstream boundary condition), h = ¥ (far downstream), and an intermediate value of h (dashed line).
(c) The maximum p⊥M versus h for several values of E, for E E E E e E1 2 3 4 5f< < < = - <¥ . (d) Three-dimensional view of the turning-
point surface in the E, p⊥, h space. For the purpose of illustration, the solution fz(h) for the case 1, 0.02,a c m= =  ¥ (defined in
equation (34)) has been chosen.
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where the previously-introduced dimensioning constant Te*
is the reference temperature. It should be observed that, as
f fe0 e0¹- +¯ ¯ in general, the upstream electron temperature Te0

does not coincide with Te*. Only in the limit where the free
electron population is negligible (and all electrons at the
source are reflected electrons) does T Te0 e* .

In order to fully determine the electron distribution
function in the doubly-trapped regions, it is assumed that they
are populated by a fraction of the same distribution function,

f f f , 31M
e 4 e 4 ea= =+ -¯ ¯ ( )( ) ( )

where α is a chosen filling factor between 0 and 1.
The moment integrals of the electron species and sub-

populations for the radially-parabolic electric potential case,
and in particular for the semi-Maxwellian distribution of
above, are reduced to compact expressions in the second part
of the appendix.

With regards to ions, their continuity equation (17) under
the paraxiallity assumption becomes

n h

n

u h

u

h

h
1

, 0

0

, 0

0
. 32z

z

i
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i

i0

2

0
2

=
( )

( )
( )

( )
( )

Lastly, their momentum equation (18) at the plume axis can
be integrated into the conservation of ion mechanical energy

m u h u e h0
1

2
, 0 0 . 33z z zi i

2
i0

2 f= - +[ ( ) ( )] ( ) ( )

The iteration procedure used to determine the self-con-
sistent fz(h) and ne0

+ (0) is simplified by taking the N eva-
luation nodes at the axis of the plume as shown in figure 1, the
last of which is taken at h = ¥ (i.e. for z = ¥). This yields
N−1 quasineutrality error equations for the nodes with
h < ¥, plus a single independent equation for the current-
free condition, for a total of N equations. After fixing
fz(h0)= 0, there are N−1 unknowns in the discretized
fz(h), plus one unknown in ne0

+ (0), for a total of N unknowns.
Therefore, the iteration scheme is well-posed. This approach
has been implemented into the open source numerical code
named AKILES2D [49], after ‘Advanced Kinetic Iterative
pLasma Expansion Solver 2D.’

The resulting model can be normalized with me, e, Te
* , h0

and ni0(0). The dimensionless plasma response is a function
of the filling factor α, the dimensionless velocity parameter χ,
and the square root of the ion-electron mass ratio μ:

u

c

m

m
;

0
; . 34i0 i

e*
a c m= =

( ) ( )

The parameter χ equals the ratio of ion current to thermal
electron flux, based on Te* rather than T 0e0 ( ). The initial ion
Mach number at the axis is related to χ and μ through

M
u

T m

T

T
0

0

0 0
, 35i0

i0

e0 i

e

e0

*
mc= =( ) ( )

( ) ( )
( )

so χ;Mi0(0)/μ, with the factor T T 0 1e e0* ~( ) to be com-
puted as part of the solution. Since ue0(0)= ui0(0) from
equation (19), χ can also be regarded as the electron Mach
number, and χ = 1 is expected in actual plasma thruster
plumes. Indeed, the range of χ from 0.002 to 0.2 amply

covers all current and foreseen electric propulsion
applications.

Observe that the dependency on μ is only introduced into
the problem through mi in equation (33). For a fixed value of
χ and taking M, 0i0m  ¥( ) , the ion velocity remains con-
stant in the expansion, uzi= uzi0, and the dependency on μ

(or Mi0(0)) disappears from the problem. This is referred to as
the hypersonic limit [27]. Thus, the plasma response in
hypersonic electric propulsion plumes depends dominantly on
α and χ, while the dependency on μ is secondary.

As a final comment, while the model formulated here has
been left as a function of the characteristic plume radius at
each actual position, h(z), observe that it is possible to
determine the dependency of h on z by integrating the full ion
model of section 2.2 without using the paraxial approximation
of equation (32). Several approximated methods exist to
determine the evolution of the characteristic plume radius in
hypersonic plasma plumes [27].

3.1. Geometry of the electron phase space

As explained above, the turning-point manifold of
equation (27) is a ruled surface. The expression of the para-
metric family of straight lines s(h) is given by

s h E e h T
h

h

p

p
: 2 0. 36z e

0
2

2
f+ - =* ^

*
( ) ( ) ( )

In particular, s(h) for h= h0 (i.e. at z= 0) and for h  ¥:

s h E T
h

h

p

p
: 2 0, 370 e

0
2

2
*

*
- =^( ) ( )

s E e: 0. 38f¥ + =¥( ) ( )

For later reference, the line s(h) in velocity space at r= 0 is
simply vz= 0, and s h s,0 ¥( ) ( ) are the following curve and
circle, respectively:

s h v v
h

h

e

m
h: 1

2
0, 39z r z0

2 2
2

0
2

e
f- - - =

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

s v v
e

m
h:

2
0. 40z r z

2 2

e
f f¥ + - - =¥( ) ( ( ) ) ( )

In order to determine the phase space domain of the four
electron subpopulations described in section 2.1 for a part-
icular value h= h1 with h h0 1  ¥, it is necessary to take
into account the shape of the whole family s(h) (i.e. for all
values of h, not just h1).

There is, however, one particular situation in which free
electrons are determined solely by s(h0) and s ¥( ). Observe
that sector A of figure 2(b) is the maximum possible extension
of free electrons for a given value of f¥. If the line s(h) never
enters sector A, then this sector is the free electron region.
According to equations (36)–(38), this condition is met when
fz(h) satisfies

h h

h
1 41z 0

2

2
f

f
-

¥

( )
( )

for all values of h. Then, the free electron population depends
only on the initial plume conditions and the value of f¥, and
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the quasineutrality and current-free conditions at h= h0

suffice to determine f¥ and ne0
+ (0)/ni0(0) as a function of χ.

In particular, for the semi-Maxwellian population at the
upstream boundary of equation (30), the two expressions of
equation (19) yield:

n

n T T T

T T

0

0
1 erf

e 2e
exp

e
,

1 2
1

e
exp

e
. 42

i0

e0 e e e

e e

f f
p

f

c p
f f

= +
-

-
-

= -

+
¥
*

¥
*

¥
*

¥
*

¥
*

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

The value of f¥∣ ∣ obtained from equation (42) can be regarded
as the maximum potential fall along the plume that may
develop for a given electron current, i.e. for a fixed value of χ,
which occurs if and only if no intermediate Ueff barriers limit
the free electron region.

If, in addition, the intersection between s(h) and s ¥( )
always moves rightward in the (p⊥, E) plane as h increases,
then there are no doubly-trapped electrons above s ¥( ).
Hence, sector C can only have empty regions. This occurs
when the decrease rate of fz(h) satisfies the lower bound

h

h

h

d

d
2 , 43z zf f f-¥ ( )

( )

for all h. Observe that this condition is a more demanding,
differential version of equation (41).

Finally and likewise, if the intersection between s(h) and
s(h0) always moves rightward in the p⊥, E plane as h
increases, then sector B can only have reflected electrons. The
necessary condition is the upper bound

h

h h

h hh

d

d

2
. 44z z 0

2

3
0
2

f f

-

( )
( )

If equations (43) and (44) are both satisfied, then each of
the four sectors of phase space contains only one type of
electrons, making the computation of moments of fē parti-
cularly simple. Note however that the fulfillment of these
conditions is not known a priori, and therefore they cannot be
used in general to simplify the electron model.

4. Results

The paraxial plasma plume model with the radially-parabolic
electric potential and semi-Maxwellian source electrons is
integrated next to investigate the plasma expansion into
vacuum. The analysis focuses first on the case of completely-
filled doubly-trapped electron regions (α= 1) in section 4.1.
The study of other regimes is approached in section 4.2.

4.1. Filled doubly-trapped electron regions

The converged solution for α= 1 of the electric potential at
the plume axis, fz(h), is shown in figure 3(a) for several
values of χ, μ; the 2D electric potential profile for

0.02,c m= = ¥ is illustrated in figure 3(b). The electric
potential fz(h) decreases monotonically downstream from 0
to an asymptotic value ;f¥ most of the potential fall occurs

early in the expansion. As can be observed, increasing χ

results in a faster approach to the asymptote. A finite value of
μ does not affect the expansion substantially unless the initial
ion Mach number Mi0(h0) is sufficiently low: for xenon ions
(μ= 489) and χ= 0.002, this is Mi0(h0);1, and the
potential approaches f¥ faster in this case than in the

Figure 3. (a) Electric potential hzf f¥( ) along the plume axis for
1, , 0.002, 0.02a m c=  ¥ = , and 0.2 (solid black lines). The

dashed line has α= 1, μ= 4.89×102 (corresponding to Xe) and
χ= 0.002 (i.e. initial ion Mach number Mi0(0);1). The limit
curve of equation (41) is shown as a red dash-dot line. (b) Two-
dimensional plot of the electric potential f(z, r) for

1, , 0.02a m c=  ¥ = , and h(z)= 1+ 0.15z. Thin lines are
isopotential lines.
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hypersonic limit. In contrast, for xenon ions, the curves for
χ= 0.02 (Mi0(h0) ;10) and χ= 0.2 (Mi0(h0);100)
visually coincide with the corresponding hypersonic limits.

The value of f¥ itself is plotted as a function of χ in
figure 4(a). As χ is increased, there is a larger free ion and
electron current, and consequently, e Tef¥

*/ becomes less
negative to allow more electrons to escape downstream. As
discussed in section 3.1, when the condition in equation (41)
is satisfied, then e Tef¥

*/ depends only on the value of χ and
can be computed from equations (42). This condition is seen
to be met for all χ in the studied range of 102  m < ¥.
Hence, in the cases presented, fz and the rest of magnitudes
shown in figure 4 can be computed a priori before solving the
full kinetic problem, and become independent from para-
meters μ and α.

The electron temperature tensor is diagonal to zeroth
order in ε (see appendix), with components

T T T T; . 45z re e e eº = q^ ( )

The average temperature is defined as T T T2 3ze e e= +^( ) .
Figure 4 shows that n n0 0e0 i0

+( ) ( ) and the temperature ratios
(T T0ze0 e*( ) , T T0e0 e*^ ( ) and T T0e0 e*( ) ) decrease with
increasing χ when χ is small. Due to the difference between
fe
+¯ and fe

-¯ at h= h0, a small degree of temperature aniso-
tropy already exists at the upstream boundary (not visible at
the scale shown in figure 4(c).

The maximum possible value of χ for a semi-Maxwellian
upstream population is 2 0.8p  , for which all electrons
at h= h0 are free electrons and no reflected electrons exist
(i.e. ne0

− = 0). For this maximum value of χ, the electron
population at h= h0 is just the semi-Maxwellian fe0

+¯ , and
fz(h)= 0 for all h. Near this maximum of T T, 0e0 e*c ^ ( ) has
non-monotonic behavior with a minimum value. As a con-
sequence, the average temperature T T0e0 e*( ) also displays a
minimum. Clearly, this limit is well outside the expected
range in electric propulsion, where χ = 1.

For the rest of this section the discussion focuses on the
hypersonic limit (m  ¥) with χ= 0.02, unless stated
otherwise. The evolution of the electron velocity distribution
function fē in the (E, p⊥) plane is presented in the plots on the
left of figure 5. The plots on the right provide fē in the vz, vr
plane at the plume axis (r= 0). At h= h0, only free and
reflected electron populations exist. As the plasma expands,
the fraction of reflected electrons gradually decreases, doubly-
trapped electrons gain relevance, and empty regions appear.
As the plume characteristic radius h continues to increase, the
doubly-trapped population becomes dominant. Finally, far
downstream, as h  ¥ and hzf f ¥( ) , the electron density
finally drops to zero and the phase space is divided into a
forbidden region and an empty region.

The straight lines s(h0) and s ¥( ) from figure 2 and the
corresponding transformed curves in velocity variables at the
plume axis, equations (39) and (40), are easily identifiable in
figure 5. As explained in section 3.1, these two lines play a
central role in the geometry of phase space. Figure 6 depicts

hd dzf and the two bounds given in equations (43) and (44),
showing that both are satisfied everywhere for χ= 0.02 and
m = ¥. As a consequence, sector A in figure 2(b) is the free

electron region, sector B contains reflected electrons, sector C
is empty, and sector D contains doubly-trapped electrons.

From equation (32) and the quasineutrality assumption,
the electron density along the axis in the hypersonic limit is
given by

n h

n

h

h

, 0

0
, 46

i

e

0

0
2

2
=

( )
( )

( )

Figure 4. (a) Asymptotic electric potential downstream f¥. (b)
Reflected electron density ratio at the upstream boundary
n n0 0e0 i0
+( ) ( ). (c) Initial electron temperature ratios T T0ze0 e*( )

(dashed), T T0e0 e*^ ( ) (dash-dot), and T T0e0 e*( ) (solid) as a function
of χ for α= 1.
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Figure 5. Electron velocity distribution function fē at different values of h, for 0.02,c m=  ¥ and α= 1, arbitrary units. Plots on the left
show the (E, p⊥) plane; those on the right the (vz, vr) plane at the plume axis (r= 0). The color map shows the magnitude of fe

+¯ . The different
regions of phase space are labeled according to the enumeration of section 2.1: 1, free electrons; 2, reflected electrons; 3, empty regions; 4,
doubly-trapped regions.
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