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The electron—electron instability in a spherical plasma structure
with an intermediate double layer
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A linear dynamic model of a spherical plasma structure with an intermediate double layer is
analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary
response and this prevents the displacement of the double layer. Different electron modes dominate
the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current
are the magnitudes most perturbed. The structure develops a reactive electron—electron instability,
which is made up of a countable family of eigenmodes. Space-charge effects must be included in the
quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for
very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for
the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on
the plasma at the high-potential side of the double layer. The influence of the parameters defining
the stationary solution on the instability growth rate is investigated, and the parametric regions of
stability are found. The comparison with a couple of experiments on plasma contactors is
satisfactory. ©2003 American Institute of Physic§DOI: 10.1063/1.1564597

I. INTRODUCTION finite, planar domain with two electrodes at the boundaries,

each one acting as both plasma emitter and collector. Nu-

This paper studies the high-frequency perturbation,qica| results show, however, a large variety of behaviors:
modes developing in a spherical plasma structure consisting . L can be (i) stable!? (i) disrupted and rebuilt

of two quasineutral plasmas separated by an intermediatBEriodica"ylz,lg or (iii) displaced toward the anod&!®
strong double laye{DL). A large potential drop takes place Hubbard ar;d Joydépoint out that the most delicate issue is

across the DL, which acts as a confining wall for one specie;0 impose correctly the boundary conditions, in order to

from each plasma and as an acceleration layer for the Oth%{ﬁoid artificial wave reflection at the boundaries and cou-
[

plasma species; therefore, each of the plasmas is constitute -
by two mildly disturbed species plus a high-velocity beam PIN9 between plasma conditions at both electrodes. Part of

In Refs. 1 and 2, we established a linear dynamic model fthe _problem_lies_ in the_ corre_ct injection and _collection of
this three-region structure, based on a perturbation expansi(ﬁ?rt'des’ which is not simple in counterstreaming plasmas.

of the complete steady-state solution. The stationary model In 9°”tr6‘5t to th? 5|mulat|op approach, our V\(ork follows
had been formulated by Ahedet al® to study the plasma a classical perturbation analysis of the three-region structure.

plumes created by electron-collecting plasma contactors. 1h€ goals we try to achieve with this type of analysis @ye
As several review articles and proceedings bookd® determine the main temporal modes developing at each
illustrate?—® plasma structures with intermediate double |ay_5|de of the DL (ii) to understand the interaction of the modes

ers are found in a variety of natural and laboratory phenomWith the DL and the domain boundarieij) to determine
ena and are the subject of many experimental, theoreticafhich instability types can develop around a DL structure,
and simulation studies. Experimental examples of thes@nd(iv) to compare the response of this three-region struc-
structures can be seen in Refs. 7 and 8 for contactor plume&ire with the results of the stability theory on homogeneous,
and in Refs. 9—11 for other laboratory plasmas. An importantfinite, _multispecies plasmaga problem we treated
part of that research is devoted to the DL stability. The mairfecently®). Of course, a linear analysis cannot predict the
experimenta| evidence is that DL structures can be Sustainé’épn”near behavior and eventual saturation of the inStabiIity,
for long times, but, at the same time, large levels of plasmavhich are subjects more appropriate for a numerical simula-
fluctuations of different frequencies are detected; in certairiion, but this approach presents its own issues, as we noted
cases anomalous plasma heating is reported. Saturat@gfore. Our linear analyses can be helpful to deal with these
current-driven instabilities seem the most probable cause dgsues.
this behavior. However, there is a large controversy on which ~ Reference 2 showed that, because of the dissimilar char-
is, for each particular configuration, the dominant instabilityacteristic times of response of ions and electrons, plasma
mode and its effect on the final state of the plasma. The cite@quations and dynamics are rather different depending on the
review articles and the introductory section of Ref. 2 sum-frequency range of the perturbation modes. That paper was
marizes the varied conclusions of different research groupsdevoted to the low frequency range, when electrons respond
Numerical simulations are a usual way to approach thejuasisteadily and ion-electrom—{e) acoustic modes domi-
DL stability problem. Most of the simulations consider a nate the plasma response. A relevant feature then was the
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main confined around the contactor. The emission current
I I;i(t) is assumed large enough for the plasma to sustain an
intermediate DL; the region between the contactor and the
PRESHEATH

DL is called thecoreand the external region is tlpgesheath

The plasma Debye lengthhp..=(eoTe/€?N.)Y? is as-
sumed small enough to allow us a two-scale analysis and to

1
[}
:
[}
: . treat the DL as a free discontinuity between two quasineutral
| N plasmas.
| X .
L] P Y
1 . .o [} .
: fIl .
/ — A. Plasma equations
= The dynamics of the four plasma speciesi,e,a,c) is
& R R given by the collisionless, macroscopic equatfons
= ot
"> "D N, 1 4J,
FIG. 1. Sketch of the spherical model with an intermediate DL. ot + r_2 7 =0, @
N, K,

coupling among the perturbation modes and the perturbation m07+ ar 0, 2

of the DL position(illustrated, in particular, by the Bohm and .
Langmuir conditions at the DLANd a key conclusion was TN, ¢*=const, 3
that the plasma structure does not develop @agial) reac-

tive i —e instability (that is, a Buneman-type instabiljfyRef. with

16 reached the same conclusion for a simple plasma structure J,=r?N,V,, K,=m,\V2/2+q,®+H,. 4

but using a more exact model, which included the LandaLi_| . . . .
ere,m, is particle masgwe will take my=m;), q, is par-

resonance. . : ! .
esonance ticle chargeg(all ions are assumed to be singly chargéd, is

The present work deals with the high-frequency range : ! . - ; .
. . . . . tensity, T, is temperaturey , is macroscopic velocity], is
when ions remain quasifrozen in their steady-state response

and Langmuir and electron—electroe-e) acoustic modes E::;C:Ztigovxcigrtljsi’nm?(():hsgflcgl Svnee:gﬁeagafcl)sr ;Ze?rlgg
govern the plasma response. The general solution of the ap- eciesi énde andg _1 f(.)r fhe confinaed speciea. and
propriate plasma equations is presented and several / ' Qa P '

asymptotic limits are solved. For this frequency range, the Then, in Eq(4), one hast,=¢,T,/(e,~1) for the free

. ) S . Species and ,=T, In N, for the confined species. The fluid
development of a reactive—e instability in the high- ; . : .
: . S equations are completed with Poisson equation for the elec-
potential, quasineutral region is expectéd.

The paper is organized as follows. Section | formulatestrOStatIC potentialdb(r.,t),
the complete unsteady model, presents briefly the steady- g, o
state solution, and derives the perturbation model. Sections 2 5
[Il and IV analyze the perturbation responses in the low- and
high-potential regions, and their matching through the DL.In core and presheath, this equation simplifies into the
Section V comments regular responses to perturbed boun@uasineutral condition
ary conditions and Sec. VI discusses thee instability
modes. Section VIl presents the main conclusions. 2 q.N,=0.

3

2
or

=—§ duNg - (5)

Il. THE TIME-DEPENDENT MODEL In the thin double layer, the quasiplanar limit of the Pois-

) _ son equation is used and the fluid equations become quasi-
The model was formulated in Ref. 2 and Fig. 1 shows agieady in a reference frame tied to the DL.r[f(t) is the

sketch of it. The main features are summarized here. Aygpile position of the DL, which must be determined from
spherical model is proposed, withandt the radial and e solution Eqs(1) and(2) yield

temporal variables. The contactor is a sphere of raius

immersed into a quiescent unmagnetized plagroastituted J.~ 3N, drp/dt=const,
by electronse and ionsa), of densityN,, and temperature
T.. in the region undisturbed by the contactor. This emits a
second plasméconstituted by electrons and ionsi) and is  These conservation equations, valid within the DL, provide
biased to a positive potentiag(t), much larger than the also jump conditions to match the quasineutral solutions at
mean plasma temperature. Ambient electrons are acceleratte two sides of the DL. The integration of the Poisson equa-
inwards and collected by the contactor; left) be the col- tion across the whole DL provides another jump condition,
lected electron current. The emitted plasma is characterized S(5)=S(d2) @

by the current and temperature of emitted ioh$t) and b oo
Tir, and the temperaturg; of emitted electrons, which re- where

(6)

K,—m,V,drp/dt=const.
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20

$a
15}

S=> (m,N,V,—drp/dt)2+N,T,)

is the Sagdeev potential, adel, (t) and® ] (t) are the po-
tentials at the two DL sides. Equatidi) is known as the
Langmuir condition and can be interpreted in two forres: 10t
the total electric charge in the DL is zero; atlg the stag-

nation pressure of the whole plasma is the same at the two

DL sides. In addition, the Poisson equation provides the 5f DL

Bohm conditions for valid transitions between a non-neutral

layer and a quasineutral plasma. For the present plasma con-

figuration the Bohm condition at each side of the D is o 3 5 Z 9

3

] o . FIG. 2. Stationary solution. Profile of the electrostatic potential ¢gg
Some simplifying assumptions can be made on the-=20, £&,,=5.89, andt,=1.

model, which facilitate the analytical treatment without
modifying any central aspect of interest here. First, we as-
sume a large potential jump through the D®y— @
~®g>T, /e, which allows us to neglect the densitibs
andN; in the presheath, and, in the core. Second, the core

S'(®))=0, S'(®y)>0. (8)

equations for the spatial profiles of the plasma magnitudes.
These present turning@.e., singulay points where

size is assumed moderafee., rp/R=0(1)] in order to , qiNao
ignore thermal effect§due to spherical convergencen the POES’O:Z. m:o' )
e beam in the core. And third, we takegr<T., which al-
lows us to consider the speciess cold everywhere. which is the singular Bohm condition, E(); spatial deriva-
Variables are nondimensionalized with the helpRyf tives become infinite at the turning points. The presheath/DL
N., andT... The main dimensionless variables are transition,r =r,, is one of them and the singularity on the
electric field,d®,/dr, indicates the transition to the much
£= r b= ﬂ t ZE n _& thinner scale of the DL. On the contrary, the core/DL transi-
R’ T, ¢ T, ¢ N’ tion satisfiesP(rpg) >0. Then, one ha®y(r)>0 all along
(9)  the core. Physically, the singularity et rj, means that the
vasz. ja:_z‘];m’ ka:&_ inward flow of populatione enters the DL sonicallyfor a
(T /my) RN..(T../m,) T certain sound velociy and the conditiorPy(r)>0 for R

The plasma/contactor model must determine the space<'<fpo means that the flow of populatidnis supersonic
temporal response of the plasma for time-dependent condffor @ certain sound velocity based on ion masseshe core
tions, ®x(t) andl;(t). In particular, the solution must yield and at the core/DL transition. A second singular polln_t ap-
the collected currerit(t), the positiorr o (t) of the DL, and  Pears atr=R: Po(R)=0, meaning that the population
the potentials at the two DL side® (t) and ®(t). For leaves t.he contactor .sonlcallly_. Figure 2.shows an gxample of
time-dependent boundary conditions, a normal mode anal;}-he stationary potential profllen dimensionless variablgs .
sis is carried out. A generic variable, siyis decomposed as The stationary solution turns out to depend on three di-

the sum of a stationary pafg(r) and a time-dependent per- mensionless parameters: the emitted curjgntthe contac-
turbationf(r,t): tor potential ¢or, and the temperature ratiQ,. The col-

lected currentj¢o(jio: Por,tco), iNCreases with;o, ¢or and

f(r,t)=fo(r)+f4(r,1), (10t The core size satisfie§py=0.98[jco|. For conve-
with f,(r,t)<exp(=iQt) andQ=Q,.+iQ;, a complex fre- nience, we will usetpq instead ofjio as an input parameter.
quency. In general, regular perturbation responses are studi&fferences 2 and 3 offer extensive details and results for the
for modes which are purely oscillatory in time, i.€),real ~ Stationary solution.
(and positive, unless otherwise is statedn the contrary, in
the stability analysis, eigenfrequencies have, in general, a
nonzero imaginary partQ;,>0 corresponds to unstable C. Perturbation model

eigenmodes. The perturbation equations for the particle flow and me-
chanical energy are, Eq&l)—(3),
_ _ dJ,, /dr—iQN,r?=0, (12
B. Stationary solution
dK,,/dr—=iQQm,V,,=0, (13

This is denoted by subscript 0 and corresponds to the
solution to stationary conditions at the contactor surfacewhereN,; andV,; are obtained from Eq4),
Making d/dt=0 in Egs.(1)—(3), the quasineutral plasmas _ _ 2
verify J,o=const andK ,,= const. Adding the quasineutral Nor _ Ko =y mava‘;‘]all‘]“o
condition to these conservation equations, we have algebraic Neo CaTao™MaViyo
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Val _Ka1+qaq)l_QaTaO‘Jal/‘Ja0 1 djal .
o= . 14 = —iw,n,,=0, 20
VaO QaTuo_maViO ( ) §2 dg Pallal ( )
SubstitutingN,; from Eq.(14) in the quasineutral condition dk,; .
>q,N,1=0, the perturbed electric potentid@l, is expressed dé w4041 =0, (2D
as a linear combination af ; andK 4,
where
@1:%, wo=QR(T.,./m,) 2 (22)
0
5 (15  are dimensionless frequencies based in each species mass.
9= a.N Ka1=MeVieda1/Jao One has w;=w.ym,/m; and because of the dissimilar
17 24 GalNao 0aTao— M Vo masses of ions and electrons, there are two distinguished
ranges, at least, for the frequencies of the perturbation

with Py as defined in Eq(11). modes:

The main boundary conditions for the perturbation prob- (i) the low frequency rangewith Q~R~1\T,/m;
lem in the core and the presheath d@rethe perturbation yielding ;=0(1) andw.<1; o

solution is continuous and bounded everywhgii¢ the am- (i) the high frequency rangewith QNRflm
bient plasma is unperturbed e, and (i) the perturba- ielding w,>1 andw,=0(1) e
tions on the emitted plasma variables at the contactor surfa«% For aegiven freqﬁencﬁ .there are ion—electrori £e)

are specified. In addition, the core and the presheath MUt odes of short wavelength,~Q 1T, /m, and electron—
verify appropriate matching conditions at the DL. electron e-e) modes of long \I/vavelength, N

Plasma perturbations produce a DL displacement, (-1 T, /m.. Within the low frequency range, studied in

rﬁl(t):rDét)._rDo’ g\llhiChTaf?Cts. the jump COEQitig_nslof Ref. 2, electrons behave quasisteadily and the response is
the perturbation problem. Taking Into account this disp ace?‘sjoverned by theé —e modes. The problem can be studied

ment, thettoltal_dvalue} ?rf] aDgErjeri(_: varik?lﬂer,t) at the wo taking we— 0 in the equations, which means to consider in-
quasineutral sides of the IS given by finite the wavelength of the—e modes.
f(rg O ="fo(rg)+fa(rp t)= fo(féo)Jrfl(féo 1), Next sections pf this paper deal with the h|g.h frequency
(16) range, where the ion populations tend to remain fro@an
rigid) in their stationary solution and the plasma response is

where governed by thee—e modes. In each region, we will start
R 0 analyzing the solution for the general case of bothand w;
fl(r50,t):f1(r50,t)+rD1W(r50) finite. Then we will look for the asymptotic solution fes;

=, when the wavelength of the-e modes tends to zero,
and higher-order terms have been neglected. From Bys. implying, in general, a zero amplitude of these modes. The
(7) and (16), the DL jump conditions of the perturbation limit w;=c0 simplifies the ion equations but some boundary

problem are conditions cannot be satisfied unless some perturbation lay-
o ers are added; these layers are determined from the analysis
[Ja1+iQrD1r2D0Na0]rgZ=O, (17)  of the finitew; case.

Both i—e and e—e modes are quasineutral types of
) Do modes in core and presheath. In the high-frequency range,
[Ka1+'QrDlmaVa0]r50:O' (18 the presence of ae—e instability introduces eigenmodes of
a third type: non-neutral Langmuir modes of wavelength
. 2 ~Ag(RQ) " 1JT../m.. These modes play a central role in
; 2MaNaoVao(Var 71027 p1) #MeNa1Voo T €aNarTao bounding the macroscopie—e instability*” but require to
. formulate a non-neutral perturbation problem in presheath
d ) oo and core. An approximate treatment of this problem is pre-
+ o1 g (MaNaoVao+ NaoTao) | =0, (19 sented in Sec. VIA,

"bo

whereiQrp, is the DL displacement velocity and zeroth-

order jump conditions have been applied already. Ill. PRESHEATH SOLUTION
[In order to represent the perturbation response in Secs. .

V and VI, the spatial variable needs to be stretched using a A- General case: w; finite

linear changer —s(r,t) described in Ref. 2, which trans- In the presheath, the quasineutrality condition reduces to

forms r=R andr=rp(t) into s=R and s=rpo, respec- n,=n,, and species andc can be ignored when we deter-

tively. Once solutiongo(r) andf,(r,t) are known, the total mine the potential profile. Then, the dimensionless problem

response off at a given points=s* say, isf(r(s*,t),t) reduces to

—_~ * * H .

- ft%(es D)Ij—gé(usnd,';)r.ieiguatlon(16) expresses that stretching ¢1:$ ) 020 o1 /i e~ Ke1 — (02— 3teo)Kar

The dimensionless form of Eq&l2) and(13) is Po 1+3teg— v

: (23
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for the electrostatic potentifith py andq; the dimension- combined with the integration of Eq$20)—(21) and the
less counterparts of the capital case variables in @dsand  asymptotic solution25), leave only one of them free. We
(15)] and four equations differenti@Eqgs. (20) and (21) for  write

a=a.e] with 2 [ a.JA =B ép1/épo, (30
Ner _ Kaitker—vcojer/eo for certain matrice\’ andB’, which depend om, and the
Neo 1+3teo—v§o ' zeroth-order solution. As in Ref. 2, the numerical integration

. (24 presents difficulties with the singularity @t &5, and the

Vet _ (1+3teg)jer/jeo— Kar—Kex unbounded mode traveling inwards frofs=cc. It is found
' that A’ is a regular matrix for anyw,; thus Eq.(30) pro-

vides, for eachw,, the ratiosj../ép, anda../&p1 -

Veo 1+3teo—v§0

Na1=Ney @NAVa1=Veoja1/jeo-
The general solution of the presheath is a linear combi-

nation of four modes, proportional to expi(2t) (usually we s

omit to write this temporal dependencdaking ¢,(<)=0 B. Case |wi€po[>1

and neglecting modes traveling inwards the asymptotic solu- For this asymptotic case the presheath solution can be

tion for w;épe>1 (justified in the following sectionis expressed as the combination of the WKB solution of the
. . . homogeneous problem plus a particular solution proportional
_ Jeo Twe) 3a, | w; to i, 218
R A T e he
jal(g)zamap(g)exr[_ﬁp(g)]
. . 4ijeo [Me a.€ | ) .
=i — + = — £, . 4 1+ 3t /m
Jal Jl ( wi§2 mi 2 ex 2 g (25) +Jlm Ueo e0 S _e , (31)
wi§ 14+3te—vg m;
Jer=JarVMe/Mi+ ] 1., with &, a constante,(é) defined in Ref. 2, and
wherea,, andj,,, are constant;-j., is the net perturbation

3
f+ (1+3teg—v5y)  M2dé
I3

DO

current crossing the presheath and reachinge. The limit Bp(§)=—lw;
me/m;—0 (i.e. we—0) in Egs.(25) recovers the ion modes

discussed in Ref. 2. ¢
Two boundary conditions are imposed at the - \/me/mij . Ue0(1+3te0_vgo)_ld§}
presheath/DL boundafywhich is characterized bpgp =0, éo
that is These equations show that the perturbations in the presheath
N vl consist of a stationary mode and iare mode traveling out-
Veop= ~ V1+3tepp=—1.545, (26)  \yards with (dimensionless group velocity (33t

the last number being obtained from the universal solutior™ Ugo)l_/z- The transition from the low to the high frequency
for the presheath. First, since the DL is a barrier for therange is illustrated by the terms witim,/m;, which are

ambient ions, their relative velocity there is zero, negligible for w;=0(1) but dominant forw;—c. The
) 5 ) asymptotic solution(25) for |w;&|>1 comes out from Eq.
[Jar/€ neo]ggoﬂwifm:o- (27) (3D).

The WKB solution becomes singular at the
presheath/DL boundary, where E(R6) is satisfied. For
&l épo—1<1 and Imy)#0, the solution matching with Eq.

Second, the solution must be bounded &t From Eqs(16)
and(23), the total perturbation of the electric potential at the
DL boundary is

(31 is
2 i g 2
bi~ er(Jellleo_2§D1/§DO)_kezl_(veo_3te0)ka1 Jar(é)=2ia..c1 Ai(Z)— ] 1€, Gi(2), (32
1+ 3t~ v &, where

(28) _
2(€)=(2wiépo)*ag Al £no— 1),
Ai, Bi, Gi, and Hi are Airy functions anda,, c;, c, are
[(jel/jeo—me/fDo)vgo_kal—kel]ggozo- (299 constants defined in Ref. 2; the solution for g(=0 pre-
sents a similar form.

This condition is the Bohm singular condition of the pertur- The boundary condition&7)—(29) at £= &, relate.,
bation problem for the electron modes. Solving the indeteryq ji. 10 &,. Keeping only the dominant terms for

which is bounded if

minacy in Eq.(28), we have |wiépo/>1 and substituting known quantities, one has
. 2v2(u2—1)(j & ) i weép 1V } lj
+ e0\Ve0 el D1 eSD1Ve0 Jlool |§Dl|
== =P Tk 1 0.372 | 413 413
(vle 2U§0_1 jeo gDO zvgo_l el §+ |Je0| 0.3 Z|wl|§D0) gDO Oc|0‘)I| |§D1|7 (33)
DO
For eachw, mode the presheath solution depends on |_a°°| 20-528C3|(|w'|§DO)5/6|§D1| (34)
three parameterspq, j1.., anda. . Conditions(27)—(29), |J eol ' o
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perturbation DL ion perturbation 0.4
sheath layer R (a)
! Vo / Tlel
e Ve 1o reo
e VAVAVANFEN b ;
: e—¢ : : /\/\/L
! PO VAVEN A 0.2
) e—¢ Vo :
I b ' 0.1
! stationary o ! stationary
Nk I ) I modes . ! I mode
! I Vo : 1
: Lo : 0
) ) ' ' 0 1
! L 10 s/€po 10
R N D D" P
D1
FIG. 3. Sketch of the different plasma regions and perturbation modes in the |¢1| 1
high-frequency range.
0.8
. 0.6
with |c5| equal to 1 and 2 for Img)#0 and Img.)=0,
respectively. 0.4
0.2
C. Case |w;&pg|==
_ 0
For wj—, Eq.(33) shows thatp;~ »; #*—0 must be 10° s/Epe 10

satisfied forj,,. to be finite. Then, Eq.34) yields @&,
P 12_0. Therefore, at high frequencies, thee modes FIG. 4. Presheath. Envelope of the spatial response to perturbations of fre-
and the DL displacement become negligible; indeed, condiguencywe£po=0.1 and 1; amplitudes are normalized wjhp|=1. The

tion (27) shows that the second effect is the consequence dfass rati_o is\/m_e/m,:0.01. The dashed line ifb) corresponds to the
the first one. It is noteworthy that, fas;— o, finite pertur- ~ 3Symptotic solution fors;=c=.

bations of electron curreni,;.., are compatible withép;
—0. Settingn,; =ng; =0 andj,; =0, the presheath solution tigns of ion magnitudes, we ﬁnd\jal,vwi*lﬂ and A ¢,

Xw

satisfies =Aky~w; 23, so these variations can be neglected too.
¢ d¢ Then, Eqs(35) yield
fe1= 10, Ker=iwej1e | ) . : o T
Jeamha e oeh = €Neg jeip=l1x Keip=Cplwej1=, Pip=—Kap+Cpi1x,
)2 (39 (37
d1=Kg1=—Ke1 + .—eojlw. with c,=1.16p0/jeo andc,= 2.4/ 0. These expressions re-
Jeo late the magnitudes at the DL external boundary;to and

However, this solution is not valid fof— &3, , because will be used in Sec. IV to continue the integration of the
the density perturbation of the plasma density at the DLperturbation problem in the core.
boundary is not zero: from Ed24) one has

D. Results
a4+ + 2 . .
Me1p _ (veop) Jﬁzo 65 20 (36) Figure 4 shows the temporal envelope of the spatial per-
~+ s - . A . N
feop  2(Veop)’—1 Jeo Jeo turbations omfi,; and ¢, for different values ofv; , obtained

Therefore, a boundary layer with nonzero ion perturbationgrom the numerical integration of the differential equations.
(region PD™ in Fig. 3 must exist close to the DL outer As predicted above, the density perturbations tend to be con-

boundary. Therej,; satisfies Eq(32) [for Im(we)#0] yield- fined near the DL akw;| grows. The asymptotic solution for

ing wij=, EQq.(35), has been included in Fig(H). It recovers
Aeu(2) (gl £pg) 2 ¢ very well the average behawor gf; but not, of course, the
e 5D , b1 small, short-wavelength, ion—electron mode.
Neo 2 Ai(0)(1+3tep—v5) po

and N, (z=0) satisfies Eq(36). Settingz~O(1) in this
solution, the characteristic thickness of this layer Ag The quasineutrality condition in the core reducesp

~ Epol wi€pol ~#3. From Eqs.(20) and(21), jo; andke; are  +ng=n;;, and the speciea can be ignored to determine
clearly constant across this layer. With respect to the variathe potential profile. The core problem consists of the differ-

A. General case: o finite
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ential equations(20) and (21), for a=e,c,i, plus the (vi) Sinceé=1 is a singular point of the stationary so-
quasineutrality condition. Operating conveniently with thelution, we havepy(1)=0. Then, for ¢,, Eq. (40), to be
continuity equations, one of the differential equations is subbounded around=1, we impose

stituted b
e | a1(1)=0. (44)
Jertler—linVme/mi=jig, (38 (Vi) ¢1g is known.
where the constant j is the net perturbation electric cur- (Viil) Keir=1r T tcoNcir/Neor 1S kNown.
rent traversing the core. Densities and velocities for the reTo impose the pair ¢r, ke1r) iS equivalent to give the
maining five differential equations follow: more natural pair ¢1r, Nc.1r)- NO condition onj. is im-
n i koo posed at=1 since we impose already conditi@iin) onj.;.
L ﬂ_ Lz_l Sinceq;(1)=0, the quasineutral potential at poiNtis
Nio  Jio Vio obtained from applying I'Hopital rule to Eq40), that is
Ezvgojel/jeo_kel_ﬁbl ¢in=1im q1/pg-
Neo va—3teo ’ et
ot When this value is different fromp,r, the perturbation
Ner _ Kot d’l, (39)  sheath accommodates the potential differefpgg— ¢1r. In
Nco teo the zero Debye-length limit, Eq$20) and(21) yield
vir_ Kii— ¢ Kein=Kair,  Jain=]atr)
U_- - U ! . .
i0 i0 and the jumps oh,; andv .4 from pointsR to N are deter-

mined from these conservation conditions and the potential

Ver  Kert éd1—3tepjer/jen . )
=== e jump. We do not need to know the internal structure of the

- >—

veo Ve~ 3teo sheath to solve the quasineutral problem.
Finally, the electric potential satisfies Once the preceding conditions are applied, the general

n N N solution of the core equations between poihtsand D~

_% —_c0_ 0" relate magnitudes d0 ~ to the perturbation parametig; g

b1 v Po t 2 2 3¢ .
Po 0 Vio Ve 3leo in the form
. 2 . (40) o
. ncok n (Jil kil) Neol eo (]el kel) [iiip kKiip ép1]A=KcigrB, (45)
1= 77 KatNiols— =2 |~ "2 5 |7 .~ 2|
teo Jio vio) VeoT3teolleo Vo for certain matricesA and B, which depend onw, and the

Notice that in the low frequency range, there were just twozeroth-order solution. Therefore, leaving apéktz, which
differential equations for the—e modes. modifies the perturbation shea®N exclusively, the pertur-
Seven boundary conditions are needed to integrate thation response of the whole structure depends onli.g
core equations and determiéig; . Sinceg, is obtained from and we.
the quasineutrality equatio®0), none of these conditions Temporal eigenmodes of the perturbation problem corre-
can fix ¢, at any point. However, it seems natural to governspond to nontrivial solutions fdt;;r=0. These eigenmodes
the perturbations of the electrostatic potential at the contactdeXist for those stationary solutions making matixin Eq.
surface,¢;r. We discussed already this issue in Ref. 2, and45), singular. Thus, the dispersion equation of the complete
we concluded that a perturbation sheath tied to the quasine@asma structure is

tral core is formed to accommodatl i to the potential at D t o m./m)=0 46
the inner end of the coréhe sheath is regioRNin Fig. 3). (@eifio Por.teo:Me/M;) =0, (46
Thus, here we impose the following eight conditions. with D= detA.

(i)=(ii) The DL conditions(17)—(18) on specie< yield

S &
[Je1/Je0+|we§D1/UeO]§LD—)Z:01 (41 B. Cases w>1 and w;=®

+ For|wi|>1 [and w,=0(1)] the core equations admit a
. épo_ . :
[Ker+iweveoépar],~ =0, (42 WKB solution too. As in the presheath case, the WKB solu-
DO . . . . . .
o L _ _ tion is similar to the one obtained in Ref. 2 except for it
with jeip(j12) andkeip(ji), and épi(ja) given by the jncludes the effect ofs# 0. It consists of one pair of short-

presheath solution. wavelength,i—e modes(moving with thei beam and two
(iii) Since the DL is a barrier for species its total  pairs ofe—e modes.

perturbation flow is zero, For |wj|— o that WKB solution justifies to assume the
[J'cl/ncoﬁz]g[;o“wefm:o- (43) population as quasirigit We take
(iv) The Langmuir conditior(19) is satisfied. Nis(€)=0, vi(£)=0, (47
(v) At high frequencies, the perturbation of the emittedand keep the four differential equations for thee modes.

ion current is zeroj;;(1)=0. Using Eq.(47) in Eq. (40), the electrostatic potential satisfies
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Neco Neo
T vi—stg M
0 Ueo e0
Neo Neo 2 jel )
=——ka— 7| 0% —Ke |- (48)
teo 090_3t90 © Jeo

Notice that the indeterminacy @f,=q,/py até=1 has dis-
appeared in Eq(48) thanks to the substitutiok;;= ¢;.

Condition (44) can be omitted, but still the perturbation

sheathRN, tied to the contactor, is needed to connggf to
¢1n= P1(1), this last one coming out now from E¢8).

Since the DL becomes rigid fas; =, the conditions at
point D~ simplify. In particular, we have

Ke1p=Ke1p - (49)

with Kg;p(j1-) and jeip(js=) given by Eq.(37) for the
presheath. This yields

Jeip=0, jng:J:le

J1R=] 1%, (50

for the perturbation currents in core and presheath. Finally,

the relations ;5(j 1) and ¢1p(j 1) are obtained from Eq.
(48) and the Langmuir condition, which here simplifies to

e o
(1=viop/viop)Niop @1p + NeopKeip T NeopKeid

+(Vaop~ 2V a0p) j 1/ £D0=0. (51)

Therefore, the core equations for the electrons can be inte-

grated fromép, to the contactor surface usirng.. as the

V. Lapuerta and E. Ahedo

with
a(é)=¢ennl,

g el
ﬁ¢(§)=J (1:i\/2—c‘;)

épo

¢ de
g):f‘fDOW.
Equations (37) and (49) state that kg;p=Kkiip
=Cpi We]1.>] 1. Making the ansatz
Ke1,Ke1,#1,C1=0(we)j1 (1=1,2,3,9,
C3—Cy<O(we)j1x,

dé

Ueo

we have that, up to dominant order, the Langmuir condition
(51) reduces to
Neod

Keip=—

- k™
N —npi_ eiD:
e0D ioD

and the integration constants in E§3) satisfy

Co=iwej1, Ci=Kp,

po— +

_~ _ lap  Nigp +

Ca—C4—_Tﬁ elD -
Neop ~ Niop

The WKB solution (53) shows that, of the foue—e

unique free parameter. This implies that the matrix relatiormodes, those proportional ©, andC, are related to the

(45) reduces here to the scalar relation

D(we;jio:Poritco) J1e=Keir: (52

which yields directly a functio® for the dispersion relation
(46).

C. Case |w [>1

This asymptotic limit allows us to obtain a WKB-type

solution onw, for the core region. This solution is of interest Thi

to understand the characteristics of thee modes and their

mutual interaction, and to obtain a semianalytical expressio
for the dispersion relation. The general form of the
asymptotic solution can be found in Ref. 19. Here, we write

down the WKB solution only for cases where

3teo/ (02— teo) <Neo/Mip<1,

population and are stationary§n time) in the laboratory
frame. Those proportional 16; andC, are related to the
population and form a pair which is stationary in gdseam
frame; of this last pair, each individual mode grows spatially
in a different direction. The conditiof;=C,, together with
B+ (épo)=PB_(épo) =0 implies that the mode growing in-
wards is dominant always; for Ref)>0 this mode corre-
sponds toB, (£).

To close the problem we sét;(1)=kqr in Eq. (53).

s yields an analytical expression for functiénin Eq.

(52),

D ap ) o

— = 2—1/4—374—9XF{|we,3+(1)]”5D+'”eoo

We NeorNcor
X tiy(1) (54
————+iy(1).
Neop— Niop

which correspond to very large contactor potentials and mod-

erate cores. For these cases, the WKB solution presents rel- ReguULAR RESPONSE

tively simple expressions and retains still its main properties.

The WKB solution is Figure 5 shows the space-temporal response of the elec-
(&) tric potential, ®(r,t)=dy(r) +P4(r,t), for two cases of

jer1(&)=— —2(CiexfingB.(§)]-CiexdiweB_(£)]),  Purely oscillatory perturbations of the density;z. In the

Jeo core, we observe that, at low,, the modes which are sta-

tionary in the laboratory frame dominate over the pair of

modes moving with the beam; on the contrary at high,,

the mode moving with thee beam and growing inwards

L (CyextfiweBs (6)]+Caextivg_(£)])

kel(g)2 - a(g)

+C1+Cyry(é), (53 becomes the dominant one. At the presheath the stationary
wave dominates over thie-e mode. The discontinuity ob-
Veo . _ L
¢1(§):—kc1(§)2gTr:lel(g)—Cl—Czy(é), served atr=R corresponds to the small sheath adjusting
c0 d1n=—Kcir 10 $1r=0.
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FIG. 5. Complete regular response of the electrostatic potential to perturba- |  th ial bati h ized b
tions atr =R characterized byoyr/dor="0.1, ¢1r=0, w; =, andw,=1 FIG. 6. Envelope of the spatial response to perturbations charcterized by

(@), 10 (b). The stationary solution correspondsdge=20, épo=5.89, and ~ Kcir7 0 andwe=0.1, 1, and 10. Amplitudes are normalized wkthz=1.
to=1 The dashed lines are the instantaneous profilesofer 10. The stationary
o .

solution corresponds t@og= 20, épo=>5.89, andt,,=1. Given ¢,r, the
sheath(discontinuity RN adjusts the differencé;y— &1 -

Figure 6 shows the spatial envelopeithout the depen-
dence on exp{iQt)] of different perturbation variables for
N.r# 0, ¢1R:. 0, and different frequgncies. We observe that o= 0" épo borsteo)y N=1,2,...,
the perturbation sheath RN transmits most of the perturba-
tion of ni1g to @4y . AS @ consequence, the most perturbedwhere eachn indicates a particular family of harmonics.
magnitude in the core ig,. The perturbationp,y is trans- Eigenmodes are nontrivial solutions for homogeneous
mitted along the core by the modes related to spexiéhe  boundary conditions at the contactor surface, i,r
interaction with the DL produces the perturbatign which = ¢,g=0. In particular, eigenmodes develop perturbations
is transmitted both toward the contactor, by one of the modesf the net current. Thus,;.. iS a convenient parameter to
related to species, and outwards, along the presheath. Themeasure the instability amplitude.
different dominant modes at each distinguished range of For the particular range.>1, analytical expressions
explain that, forw, small, the spatial envelope is practically can be obtained from solving E@54) for exfiwB.(1)].
constant along the conghese solutions are similar to those This yields
of Ref. 2 whereas, fow, large, the amplitude of the pertur-
bation increases toward the contactor. The relative magni8+(1)we=(3+2n)m
tudes of the perturbations in the core follomg;/ngg

ST T 1)(Ngop—Nigp) + CpNg
~Jerlieo~ic1lieo~ B1/vE- i in| XMoo~ Mio0) e, i s |
CpNiop®¥p
VI. INSTABILITY MODES and, for largen, it simplifies to

We discuss here the unstable eigenmodes of the whole | n n

plasma structure. We present results for the asymptotic limit we,re=2N|veol/ (§p0~ 1), we,im:we,reVneO/ncO(-SS)
wij==, when the DL displacement{y;=0, can be ne-

glected. For each stationary plasma structure, the eigenfre- Figure 7 shows the first three families of harmonics ver-
quencies are the solutions of the dispersion relafié®). susépg, for ¢gr andt.y given. For each zeroth-order solu-

These solutions can be expressed as tion there is a countable family of unstable modes, with both
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(2

T‘DO/R
(S ®)

1 2 3 4 5

Tpo/R €@ ©)
TcO
FIG. 7. Frequencies of eigenmodes 1, 2, and 3 versus the core size. The 20

dashed lines are the solutions of the approximate nonzero Debye-length
model (of Sec. VIA) in the limit Ap,./R—0. Other parameters argqr

=100 andt,,=10. PointA andB correspond to solutions shown in Figs. 8 10 et ;:s:.{.,g Sl
and 10, respectivel 'o'oz'c;'i;-éﬁ?/""l[
, resp Y. 5 ST ul
SN

wg e andwg i, growing withn. (Space-charge effects, to be -2
treated in the next subsection, limit the number of unstable

modes and the maximum value ef, ;,,.) Figure 8 shows
space—temporal profiles of the first three unstable modes for

a part_lcular. stationary SO|UtldrpomtA, in Fig. 7). The mode FIG. 8. Space-temporal evolution &f(r,t) for the first three eigenmodes,
traveling with thee beam and growing from the DL to the -1 (a), 2 (b), and 3(c). The stationary solution corresponds d@y
contactor provides the main contribution to the eigenmode=100, ¢,,=3.716, and,=10.

The spatial wavelength of the instability depends on both the

core size and the harmonic number. This is confirmed by Figt'h resent perturbation model. It is known that the reacti
9, which shows the spatial envelope for the eigenmode € present perturbation modet. Tt 1s known that the reactive

=2 and two stationary solutions with different core sizes. In°~ € instability is bounded by space-charge effects or, to be

addition, Eq.(55) shows that the spatial wavelength is re- more precise, by the coupling of the unstaklee modes

lated directly tow,. The amplitudes of the eigenmodes in Qgcelenr?gt-k??u”al Langmulr - modes, - of much shorter
h heath ligible; th heath | [ h : . . .
the presheath are negligible; the presheath just provides t Therefore, this perturbation model is correct only for

convenient conservation and jump conditions at the external odes with wavelengths satisfying = R|v /w5 A
side of the DL and transmits the perturbation of the curren . eleng _g— Ueo!@e d
wherel 4 is the typical Debye length in the core. In order to

outwards. :
determine the most unstable mode, space-charge effects must
) be included in core and presheath, which means to replace

A. Space-charge effects and maximum growth rate the quasineutrality condition by the full Poisson equation,

The high-frequency eigenmodes correspond to a reactive Asz 1 d do,
electron—electron instability. The main characteristics of this R 2dE gzdg) =Ng1tNey—Njp—Ngyp.
instability in a three species plasma were discussed in Ref.
16 for the basic case of a semiinfinite, planar plasma. Thén exact solution of the resulting problem is difficult to ob-
unbounded character of the famiy} ; ., for a particular sta- tain because of the disparity of spatial scales involved, the
tionary solution is related to the zero Debye-length limit of coupling with the non-neutral DL, and the inhomogeneity of
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FIG. 9. Profiles of the eigenmode=2 for two core sizes,épo
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FIG. 10. Influence of a nonzero Debye-length on the instability growth rate.
The dashed line inb) corresponds td);,(x) of the eigenmodes of an
infinite plasma fork=(37/2)(rpo— R) ~*n. The stationary solution corre-
sponds togor= 100, £po=1.68, andt.,=10.

=3.716 (1) and 8.8832). The dashed line represents an instantaneous

profile for £ny=8.883. Other parameters ag#gg= 100 andt.,=10.

with O}, =e’N,/egme andC%=p,T,o/m, . Finally, to de-
terminej,., and the constants; (j =1,..,6) we apply the five

the stationary solution. Here, an approximate analysis is Cahoundary conditions on the—e modes plus two conditions

ried out, aimed mainly to confirm the stabilizing effect of the o, the electrostatic potential. Clearly, one of these two con-
Langmuir modes and to estimate which is the most unstablgijtions is ¢,,=0 (and the perturbation sheaRN is part

mode in terms of\p../R and the rest of parameters of the
stationary solution.

The approximate treatment of the probléfar w;= )
is based on the following assumptions. First,
presheath, which is practically unaffected by modes wit
w1, we just take the solution leading to E§7). Second,
in the perturbation equations of the core, E@®) and(21),
we replace the zeroth-order magnitudesy( Neg, - - -) by
average values and neglect spherical effe@te., 2§
<d/d¢). The fluid and Poisson equations are then integrate
analytically for eachw, . The general solutiofin the corg is
the combination of six fundamental modes,

6
Y<§>=b1+b2§+i§3 b exp(%;£),
with k;=«;(2)R, and «; the solutions of the dispersion
relation
2 2
Q5 N Qpe _
02— Kk2C2 " (Q—KVe)?— k°C2

11

in the

now of the core solution For the second condition ah, we
take

7\Dx[d¢1/d§]§50=0,

r\/\/hich is correct while the space-charge effects are much

smaller in the core side than in the DL orin any case, we
have verified that the replacement of this condition with a
linear combination of the forrha¢,+b d¢1/d§]§50=0, for

gertain constanta andb, does not modify the conclusions to

come!®) To check the validity of this approximate model,
Fig. 7 compares, for the limity../R=0, the frequencies of
two singular modes obtained from the approximate and the
exact models. The agreement is good enough to accept the
qualitative conclusions of the approximate model.

Figure 1@a) presents solutions of the approximate per-
turbation model for nonzero Debye length. It shows the evo-
lution of wg ;, with Ap/R for the familiesn=1,. .., 5; for
convenience\pc.=Ap.VN../N¢g is used instead ohp., .

We observe that nonzeig,./R has a stabilizing effect over
all eigenmodes, which is more pronounced the largar &s
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a consequence, the indexof the most unstable mode tends 3
to decrease with\p./R increasing, and foip./R>0.01 Q. R o5l

(and the stationary solution used in Fig.) if&e most un- T I
stable mode corresponds alreadynte 1. o/ e

2 L

B. Finite-size effects 1.5¢

The e—e instability in our plasma structure develops 1t
mainly in the core. Therefore, it must be influenced by the

finite size of this region and the conditions at the boundaries, 057
mainly at the DL. Then, a subject of interest is the relation of
this e—e instability with the eigenmodes of the=-e instabil-
ity developing in a similar but infinite and homogeneous
plasma. The instability type for this basic cased similar

plasma conditionsis thereactive, weak-beaimstability’-?°

This presents a continuous family of eigenmodeswave >
numberk) and the(local) dispersion relation yield,, /. QiR 4| (b)
in terms ofk\p. and the parameters of the zeroth-order so- \/m
lution. The maximum growth-rate and wave number of the
weak-beam instability satisfy 3r
Qi /Qpe=3"2""(NggINeo) 3, k/Npc=Cc/Ve. (56) ol
The comparison of the two problems requires to relate
the wave numberx and the indexn, characterizing the 1t
eigenmodes of each problem. Taking into account that the
wavelength of the eigenmodes of our spherical structure de- 0 . . .
crease wittn or (rpo— R) ! increasing, Fig. 1(®) presents 0 10 20 30 40
that comparison for the data of Fig. @D and k= (37/2) eDor/Teo

X(rpo—R) ~n, where the numerical factor was adjusted for

a good fit at |argen_ The close relation between the two FIG. 11. Influence of the statioqary solution on the growth rate of the fun-

problems is clearly observed. As it is reasonable, shortdamental mode fokpc/R=0 (using the zero Debye-length motieln (&)
. . . borlteo=10 andépp=3.716; in(b) t.o=10 andép,=3.716.

wavelength harmonicg&hat is, those with largae) are less

affected by finite-size effects and approach the basic insta-

bility properties, Eq.(56). At the other end, fon=1, the We compare now our results with two experimental ob-

maximum growth rate is only one-third of the maximum of servations of contactor plumes with an intermediate DL.

Qi . Finally, the parts of the solid lines, in Fig. @), to the  Vannaroniet al® detected thermalization of the beam in

right of the dashed linéi.e., forn\p./R large indicate only  the core and propose the bump-in-tail instability as the prob-

that the selected relation betweerandn is incorrect there.  able causéthe bump-in-tail instability is the resistive case of

the reactive weak-beam instabifify. Williams and Wilbuf

C. Instability threshold detected fluctuations of different amplitudes and frequencies,

The preceding analysis suggests that the fundamental

eigenmode(i.e., n=1) characterizes the—e instability be- 13

havior when\p./R is not very small {./R>0.01 for the Do

case of Fig. 10 In addition,wéim is maximum forkp,=0 R Bl

and decreases slowly withp.. Therefore we expect the ol 0.5

behavior ofwé’im for N\pc=0 (which can be studied with the

quasineutral perturbation modéb give a correct picture of 71

the behavior of the dominant growth rate of the instability

when\p¢/R is not very small. 5} UNSTABLE
Figures 11a) and 11b) show the evolution ofuéim with

the contactor potential and the temperature ratio, for a given 3r C

core size. The growth rate decreases whkgk/T., or

T.0/T. decrease, and the plasma becomes stable eventually. 10 5 1'0 1'5 20

Figure 12 shows the stability threshold in the parametric

plane (por,épo) for two different values ofT,, /T.,. For e®or/Teo

Teo given, the stability of the plasma structure is favored byFIG. 12. Parametric regions of stability of the fundamental mode for

low ®og, largeT.., and Iarger DO/R_- Physically, this corre- ) /R=0 (using the zero Debye-length motiand two different tempera-
sponds to a less supersomideam in the core. ture ratios. PoinC corresponds to the case of Fig.(a1l
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but did not report any clear sign of ate instability. The that problem. Space-charge effects show that some of the
plasma structure of Vannarost al. is characterized by, previous stationary waves are indeed Langmuir modes, and
=2, £p0=3.8, dor/tco=13, andrp./R~103—10"2; for  the coupling of these modes with tlee-e ones bounds the
these values, our model predicts the presence of the reactivestability. It is found that, except for very small Debye
e—e instability, controlled by an eigenmode with>1. On  lengths, the fundamental eigenmode dominates the instabil-
the contrary, the plasma structure of Williams and Wilbur hasty. Growth rates and other characteristics of the eigenmodes
te0=0.33, épp=6.6, Por/tco=18, and\p./R~0.02—-0.1, are consistent with the basic theory in an homogeneous, in-
which is around the instability threshold of our model. No- finite plasma. Finite-size effects are found to modify mildly
tice that stabilization by space-charge effects is much strorthe growth rates of the eigenmodes.

ger in this second case. Therefore, as far as we can check, For the cases when the fundamental mode dominates the
our model conclusions seem to agree with experimental obinstability, the parametric regions of stabiligf the whole

servations. plasma structupewere investigated. The reactive instability
tends to disappear for low contactor potentials, high tempera-
VII. CONCLUSIONS tures of the ambient plasma, and large core sizes. The com-

This paper extends to the high-frequency range theparison of our results with two experiments on contactor

analysis of the nonstationary response of a spherical structufgumgs IS sgusfactory. . .
made up of two plasmas with an intermediate, strong DL. In Finally, it must be pointed out that the disappearance of
contrast to the low-frequency range, the reéponse is noJ\Pe reactivee—e instability would leave still a weaker, resis-

characterized bya) a more complex dynamic response, gov- tive t?_e |nstab|!lty, gue 0 thg LI?nShau resohnar:ﬁe. AISC;)’ thle
erned by traveling and stationae~e modes,(b) a negli- lon béam crossing hypersonicaily the presheath can develiop

gible response of the ions, except for some boundary Iayer?, weaki—e instability at the presheath. Reference 17 pro-

(c) a negligible displacement of the DL, as a consequence ot\ﬂdes estml:ate_s (:f grﬁ growth rates and other properties of
the ion behavior, an¢d) the development of a reactive-e ese weaker instabriiies.
instability, launched by the supersonic electronic beam traack NOWLEDGMENT
versing the core(The rigidity of the DL to high frequency . S :

. . . This research was supported by the Ministerio de Cien-
perturbations would agree with the observation made by

Joyce and Hubbatdthat, in contrast to thé—e instability, (2:'\,‘3”[5; Tecnologa of Spain under Project No. BFM-2001-

the e—e instability does not disrupt the double layer itself. '

_ m_ the high-frequency range, the quasineufcr_al Perturba-ie anedo and V. Lapuerta, Phys. Plasn2a8252 (1995.

tions in the presheath consist of the superposition of a sta?v. Lapuerta and E. Ahedo, Phys. Plasnag693(2000.

tionary wave and a wave traveling outwards, plus an ionT-N;dO' J. Sanmarty and M. Martnez-Sachez, Phys. Fluids B, 3847
1992.

boundary layer clc_>se to the DL boundary. T_he presheath r€ay. Hershkowitz, Space Sci. Red1, 351 (1985.

sponse is proportional to the net perturbation current, 5M. A. Raadu, Phys. Re[178 26 (1989.

The quasineutral response in the core consists of four wavesR. SchrittwieserDouble Layers and other Nonlinear Potential Structures

two are stationary in the laboratory frame, the other two are " Plasmas(McGraw-Hill, Singapore, 1992

. . . . . J. Williams and P. J. Wilbur, J. Spacecr. Rocka¥s 634 (1990.
Statlonary(m tlme) in the frame of the inware beam; each 8G. Vannaroni, M. Dobrowolny, E. Melchioni, F. de Venuto, and R. Giovi,

wave from this last pair grows spatially in a different direc- 3. appl. Phys71, 4709(1992.
tion. In addition, to adjust the perturbations of the electro-lzP. Coakley and N. Hershkowitz, Phys. Fluiga 1171(1979.
static potential, there is a perturbation Debye sheath close {gS- To'ven and D. Anderson, J. Phys.1D, 717 (1979.
the contactor surface. The mechanisms of transmission of th M. Guyot and C. Hollestein, Phys. Fluid, 1596 (1983.
A : : ’ eG Joyce and R. Hubbard, J. Plasma P¥s391(1978; R. Hubbard and
perturbations along the different regions have been ex-G. Joyce, J. Geophys. Re4, 4297(1979.

plained. The dominant electron modes are different for theC. K. Goertz and G. Joyce, Astrophys. Space S2j.165(1975.
casesw,=0(1) andw>1 1N. Singh and R. W. Schunk, J. Geophys. R&%.3561(1982.
e e .

. . . 15T, Yamamoto, J. Plasma Phya4, 271 (1985.
The quasineutral perturbation model predicts the develss,, Lapuerta and E. Ahedo, Phys. Plasn$a8236(2002.

opment of a reactivdi.e., macrg e—e instability with a v, Lapuerta and E. Ahedo, Phys. Plasn8ad513(2002.
countable family of eigenmodes. However, a quasineutraﬁsc. M. Bender and S. A. Orszag\dvanced Mathematical Methods for

: : : Scientists and Engineet®cGraw-Hill, Singapore, 1986
model is unable to determine correctly the maximum grOWthlg\/. Lapuerta, Ph.D. thesis, Universidad Pdditeca de Madrid, Spain, 1999.

r_ate (and the _related eigenmodé\n approximate perturba- 20p g Melrose Instabilities in Space and Laboratory Plasm@ambridge
tion model with space-charge effects was analyzed to solveuniversity Press, Cambridge, 1986

Downloaded 22 Apr 2003 to 138.4.73.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



