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The electron–electron instability in a spherical plasma structure
with an intermediate double layer
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A linear dynamic model of a spherical plasma structure with an intermediate double layer is
analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary
response and this prevents the displacement of the double layer. Different electron modes dominate
the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current
are the magnitudes most perturbed. The structure develops a reactive electron–electron instability,
which is made up of a countable family of eigenmodes. Space-charge effects must be included in the
quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for
very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for
the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on
the plasma at the high-potential side of the double layer. The influence of the parameters defining
the stationary solution on the instability growth rate is investigated, and the parametric regions of
stability are found. The comparison with a couple of experiments on plasma contactors is
satisfactory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1564597#
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I. INTRODUCTION

This paper studies the high-frequency perturbat
modes developing in a spherical plasma structure consis
of two quasineutral plasmas separated by an intermed
strong double layer~DL!. A large potential drop takes plac
across the DL, which acts as a confining wall for one spec
from each plasma and as an acceleration layer for the o
plasma species; therefore, each of the plasmas is consti
by two mildly disturbed species plus a high-velocity bea
In Refs. 1 and 2, we established a linear dynamic model
this three-region structure, based on a perturbation expan
of the complete steady-state solution. The stationary mo
had been formulated by Ahedoet al.3 to study the plasma
plumes created by electron-collecting plasma contactors

As several review articles and proceedings boo
illustrate,4–6 plasma structures with intermediate double la
ers are found in a variety of natural and laboratory pheno
ena and are the subject of many experimental, theoret
and simulation studies. Experimental examples of th
structures can be seen in Refs. 7 and 8 for contactor plum
and in Refs. 9–11 for other laboratory plasmas. An import
part of that research is devoted to the DL stability. The m
experimental evidence is that DL structures can be susta
for long times, but, at the same time, large levels of plas
fluctuations of different frequencies are detected; in cer
cases anomalous plasma heating is reported. Satu
current-driven instabilities seem the most probable caus
this behavior. However, there is a large controversy on wh
is, for each particular configuration, the dominant instabi
mode and its effect on the final state of the plasma. The c
review articles and the introductory section of Ref. 2 su
marizes the varied conclusions of different research grou

Numerical simulations are a usual way to approach
DL stability problem. Most of the simulations consider
1351070-664X/2003/10(5)/1351/13/$20.00
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finite, planar domain with two electrodes at the boundar
each one acting as both plasma emitter and collector.
merical results show, however, a large variety of behavio
the DL can be ~i! stable,12 ~ii ! disrupted and rebuilt
periodically,12,13 or ~iii ! displaced toward the anode.14,15

Hubbard and Joyce12 point out that the most delicate issue
to impose correctly the boundary conditions, in order
avoid artificial wave reflection at the boundaries and co
pling between plasma conditions at both electrodes. Par
the problem lies in the correct injection and collection
particles, which is not simple in counterstreaming plasma

In contrast to the simulation approach, our work follow
a classical perturbation analysis of the three-region struct
The goals we try to achieve with this type of analysis are~i!
to determine the main temporal modes developing at e
side of the DL,~ii ! to understand the interaction of the mod
with the DL and the domain boundaries,~iii ! to determine
which instability types can develop around a DL structu
and ~iv! to compare the response of this three-region str
ture with the results of the stability theory on homogeneo
infinite, multispecies plasmas~a problem we treated
recently16!. Of course, a linear analysis cannot predict t
nonlinear behavior and eventual saturation of the instabi
which are subjects more appropriate for a numerical simu
tion, but this approach presents its own issues, as we n
before. Our linear analyses can be helpful to deal with th
issues.

Reference 2 showed that, because of the dissimilar c
acteristic times of response of ions and electrons, plas
equations and dynamics are rather different depending on
frequency range of the perturbation modes. That paper
devoted to the low frequency range, when electrons resp
quasisteadily and ion-electron (i –e) acoustic modes domi
nate the plasma response. A relevant feature then was
1 © 2003 American Institute of Physics
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coupling among the perturbation modes and the perturba
of the DL position~illustrated, in particular, by the Bohm an
Langmuir conditions at the DL!. And a key conclusion was
that the plasma structure does not develop any~radial! reac-
tive i –e instability ~that is, a Buneman-type instability!; Ref.
16 reached the same conclusion for a simple plasma struc
but using a more exact model, which included the Land
resonance.

The present work deals with the high-frequency ran
when ions remain quasifrozen in their steady-state respo
and Langmuir and electron–electron (e–e) acoustic modes
govern the plasma response. The general solution of the
propriate plasma equations is presented and sev
asymptotic limits are solved. For this frequency range,
development of a reactivee–e instability in the high-
potential, quasineutral region is expected.16

The paper is organized as follows. Section II formula
the complete unsteady model, presents briefly the ste
state solution, and derives the perturbation model. Sect
III and IV analyze the perturbation responses in the low- a
high-potential regions, and their matching through the D
Section V comments regular responses to perturbed bo
ary conditions and Sec. VI discusses thee–e instability
modes. Section VII presents the main conclusions.

II. THE TIME-DEPENDENT MODEL

The model was formulated in Ref. 2 and Fig. 1 show
sketch of it. The main features are summarized here
spherical model is proposed, withr and t the radial and
temporal variables. The contactor is a sphere of radiuR
immersed into a quiescent unmagnetized plasma~constituted
by electronse and ionsa), of densityN` and temperature
T` in the region undisturbed by the contactor. This emit
second plasma~constituted by electronsc and ionsi ) and is
biased to a positive potential,FR(t), much larger than the
mean plasma temperature. Ambient electrons are accele
inwards and collected by the contactor; letI e(t) be the col-
lected electron current. The emitted plasma is character
by the current and temperature of emitted ions,I i(t) and
TiR , and the temperatureTc of emitted electrons, which re

FIG. 1. Sketch of the spherical model with an intermediate DL.
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main confined around the contactor. The emission curr
I i(t) is assumed large enough for the plasma to sustain
intermediate DL; the region between the contactor and
DL is called thecoreand the external region is thepresheath.
The plasma Debye length,lD`5(e0Te /e2N`)1/2, is as-
sumed small enough to allow us a two-scale analysis an
treat the DL as a free discontinuity between two quasineu
plasmas.

A. Plasma equations

The dynamics of the four plasma species (a5 i ,e,a,c) is
given by the collisionless, macroscopic equations2

]Na

]t
1

1

r 2

]Ja

]r
50, ~1!

ma

]Va

]t
1

]Ka

]r
50, ~2!

TaNa
12%a5const, ~3!

with

Ja5r 2NaVa , Ka5maVa
2/21qaF1Ha . ~4!

Here,ma is particle mass~we will take ma5mi), qa is par-
ticle charge~all ions are assumed to be singly charged!, Na is
density,Ta is temperature,Va is macroscopic velocity,Ja is
particle flow, Ka is mechanical energy, and%a is specific
heat ratio. According to Ref. 3, we take%a53 for the free
species,i ande, and%a51 for the confined species,a and
c. Then, in Eq.~4!, one hasHa5%aTa /(%a21) for the free
species andHa5Ta ln Na for the confined species. The flui
equations are completed with Poisson equation for the e
trostatic potential,F(r ,t),

«0

r 2

]

]r S r 2
]F

]r D52(
a

qaNa . ~5!

In core and presheath, this equation simplifies into
quasineutral condition

(
a

qaNa50.

In the thin double layer, the quasiplanar limit of the Po
son equation is used and the fluid equations become qu
steady in a reference frame tied to the DL. Ifr D(t) is the
mobile position of the DL, which must be determined fro
the solution, Eqs.~1! and ~2! yield

Ja2r D
2 Na drD /dt.const,

~6!
Ka2maVa drD /dt.const.

These conservation equations, valid within the DL, prov
also jump conditions to match the quasineutral solutions
the two sides of the DL. The integration of the Poisson eq
tion across the whole DL provides another jump conditio

S~FD
1!5S~FD

2!, ~7!

where
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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S5(
a

~maNa~Va2drD /dt!21NaTa!

is the Sagdeev potential, andFD
2(t) andFD

1(t) are the po-
tentials at the two DL sides. Equation~7! is known as the
Langmuir condition and can be interpreted in two forms:~a!
the total electric charge in the DL is zero; and~b! the stag-
nation pressure of the whole plasma is the same at the
DL sides. In addition, the Poisson equation provides
Bohm conditions for valid transitions between a non-neu
layer and a quasineutral plasma. For the present plasma
figuration the Bohm condition at each side of the DL is3

S9~FD
1!50, S9~FD

2!.0. ~8!

Some simplifying assumptions can be made on
model, which facilitate the analytical treatment witho
modifying any central aspect of interest here. First, we
sume a large potential jump through the DL,FD

22FD
1

;FR@T` /e, which allows us to neglect the densitiesNc

andNi in the presheath, andNa in the core. Second, the cor
size is assumed moderate@i.e., r D /R5O(1)] in order to
ignore thermal effects~due to spherical convergence! on the
e beam in the core. And third, we takeTiR!Tc , which al-
lows us to consider the speciesi as cold everywhere.

Variables are nondimensionalized with the help ofR,
N` , andT` . The main dimensionless variables are

j5
r

R
, f5

eF

T`
, ta5

Ta

T`
, na5

Na

N`
,

~9!

va5
Va

~T` /ma!1/2, j a5
Ja

R2N`~T` /ma!1/2, ka5
Ka

T`
.

The plasma/contactor model must determine the spa
temporal response of the plasma for time-dependent co
tions,FR(t) and I i(t). In particular, the solution must yield
the collected currentI e(t), the positionr D(t) of the DL, and
the potentials at the two DL sides,FD

2(t) and FD
1(t). For

time-dependent boundary conditions, a normal mode an
sis is carried out. A generic variable, sayf , is decomposed a
the sum of a stationary partf 0(r ) and a time-dependent pe
turbation f 1(r ,t):

f ~r ,t !. f 0~r !1 f 1~r ,t !, ~10!

with f 1(r ,t)}exp(2iVt) andV5V re1 iV im a complex fre-
quency. In general, regular perturbation responses are stu
for modes which are purely oscillatory in time, i.e.,V real
~and positive, unless otherwise is stated!. On the contrary, in
the stability analysis, eigenfrequencies have, in genera
nonzero imaginary part;V im.0 corresponds to unstabl
eigenmodes.

B. Stationary solution

This is denoted by subscript 0 and corresponds to
solution to stationary conditions at the contactor surfa
Making ]/]t50 in Eqs. ~1!–~3!, the quasineutral plasma
verify Ja05const andKa05const. Adding the quasineutra
condition to these conservation equations, we have algeb
Downloaded 22 Apr 2003 to 138.4.73.144. Redistribution subject to AIP
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equations for the spatial profiles of the plasma magnitud
These present turning~i.e., singular! points where

P0[S095(
a

qa
2Na0

%aTa02maVa0
2 50, ~11!

which is the singular Bohm condition, Eq.~8!; spatial deriva-
tives become infinite at the turning points. The presheath
transition,r 5r D0

1 , is one of them and the singularity on th
electric field,dF0 /dr, indicates the transition to the muc
thinner scale of the DL. On the contrary, the core/DL tran
tion satisfiesP0(r D0

2 ).0. Then, one hasP0(r ).0 all along
the core. Physically, the singularity atr 5r D0

1 means that the
inward flow of populatione enters the DL sonically~for a
certain sound velocity!, and the conditionP0(r ).0 for R
,r ,r D0

2 means that the flow of populationi is supersonic
~for a certain sound velocity based on ion masses! in the core
and at the core/DL transition. A second singular point a
pears atr 5R: P0(R)50, meaning that the populationi
leaves the contactor sonically. Figure 2 shows an exampl
the stationary potential profile~in dimensionless variables!.

The stationary solution turns out to depend on three
mensionless parameters: the emitted currentj i0 , the contac-
tor potentialf0R , and the temperature ratiotc0 . The col-
lected current,j e0( j i0 ,f0R ,tc0), increases withj i0 , f0R and
tc0

21. The core size satisfiesjD0.0.98Au j e0u. For conve-
nience, we will usejD0 instead ofj i0 as an input parameter
References 2 and 3 offer extensive details and results for
stationary solution.

C. Perturbation model

The perturbation equations for the particle flow and m
chanical energy are, Eqs.~1!–~3!,

dJa1 /dr2 iVNa1r 250, ~12!

dKa1 /dr2 iVmaVa150, ~13!

whereNa1 andVa1 are obtained from Eq.~4!,

Na1

Na0
5

Ka12qaF12maVa0
2 Ja1 /Ja0

%aTa02maVa0
2 ,

FIG. 2. Stationary solution. Profile of the electrostatic potential forf0R

520, jD055.89, andtc051.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Va1

Va0
5

2Ka11qaF12%aTa0Ja1 /Ja0

%aTa02maVa0
2 . ~14!

SubstitutingNa1 from Eq. ~14! in the quasineutral condition
(qaNa150, the perturbed electric potentialF1 is expressed
as a linear combination ofJa1 andKa1 ,

F15
Q1

P0
,

~15!

Q15(
a

qaNa0

Ka12maVa0
2 Ja1 /Ja0

%aTa02maVa0
2 ,

with P0 as defined in Eq.~11!.
The main boundary conditions for the perturbation pro

lem in the core and the presheath are~i! the perturbation
solution is continuous and bounded everywhere,~ii ! the am-
bient plasma is unperturbed atr 5`, and ~iii ! the perturba-
tions on the emitted plasma variables at the contactor sur
are specified. In addition, the core and the presheath m
verify appropriate matching conditions at the DL.

Plasma perturbations produce a DL displaceme
r D1(t)5r D(t)2r D0 , which affects the jump conditions o
the perturbation problem. Taking into account this displa
ment, the total value of a generic variablef (r ,t) at the two
quasineutral sides of the DL is given by

f ~r D
6 ,t !5 f 0~r D

6!1 f 1~r D
6 ,t !5 f 0~r D0

6 !1 f̂ 1~r D0
6 ,t !,

~16!

where

f̂ 1~r D0
6 ,t !5 f 1~r D0

6 ,t !1r D1

d f0

dr
~r D0

6 !

and higher-order terms have been neglected. From Eqs.~6!,
~7! and ~16!, the DL jump conditions of the perturbatio
problem are

@Ja11 iVr D1r D0
2 Na0#

r
D0
2

r D0
1

50, ~17!

@Ka11 iVr D1maVa0#
r
D0
2

r D0
1

50, ~18!

(
a

F2maNa0Va0~Va11 iVr D1!1maNa1Va0
2 1%aNa1Ta0

1r D1

d

dr
~maNa0Va0

2 1Na0Ta0!G
r
D0
2

r D0
1

50, ~19!

where iVr D1 is the DL displacement velocity and zerot
order jump conditions have been applied already.

@In order to represent the perturbation response in S
V and VI, the spatial variabler needs to be stretched using
linear changer→s(r ,t) described in Ref. 2, which trans
forms r 5R and r 5r D(t) into s5R and s5r D0 , respec-
tively. Once solutionsf 0(r ) and f 1(r ,t) are known, the total
response off at a given point,s5s* say, is f (r (s* ,t),t)
. f 0(s* )1 f̂ 1(s* ,t). Equation~16! expresses that stretchin
at the DL boundaries.#

The dimensionless form of Eqs.~12! and ~13! is
Downloaded 22 Apr 2003 to 138.4.73.144. Redistribution subject to AIP
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j2

d ja1

dj
2 ivana150, ~20!

dka1

dj
2 ivava150, ~21!

where

va5VR~T` /ma!21/2 ~22!

are dimensionless frequencies based in each species m
One has v i5veAme /mi and because of the dissimila
masses of ions and electrons, there are two distinguis
ranges, at least, for the frequencies of the perturba
modes:

~i! the low frequency rangewith V;R21AT` /mi ,
yielding v i50(1) andve!1;

~ii ! the high frequency rangewith V;R21AT` /me,
yielding ve@1 andve50(1).

For a given frequencyV, there are ion–electron (i –e)
modes of short wavelength,l;V21AT` /mi and electron–
electron (e–e) modes of long wavelength, l
;V21AT` /me. Within the low frequency range, studied i
Ref. 2, electrons behave quasisteadily and the respons
governed by thei –e modes. The problem can be studie
taking ve→0 in the equations, which means to consider
finite the wavelength of thee–e modes.

Next sections of this paper deal with the high frequen
range, where the ion populations tend to remain frozen~or
rigid! in their stationary solution and the plasma respons
governed by thee–e modes. In each region, we will sta
analyzing the solution for the general case of bothve andv i

finite. Then we will look for the asymptotic solution forv i

5`, when the wavelength of thei –e modes tends to zero
implying, in general, a zero amplitude of these modes. T
limit v i5` simplifies the ion equations but some bounda
conditions cannot be satisfied unless some perturbation
ers are added; these layers are determined from the ana
of the finitev i case.

Both i –e and e–e modes are quasineutral types
modes in core and presheath. In the high-frequency ra
the presence of ane–e instability introduces eigenmodes o
a third type: non-neutral Langmuir modes of wavelengthl
;ld(RV)21AT` /me. These modes play a central role
bounding the macroscopice–e instability17 but require to
formulate a non-neutral perturbation problem in preshe
and core. An approximate treatment of this problem is p
sented in Sec. VI A.

III. PRESHEATH SOLUTION

A. General case: v i finite

In the presheath, the quasineutrality condition reduce
na5ne , and speciesi andc can be ignored when we dete
mine the potential profile. Then, the dimensionless probl
reduces to

f15
q1

p0
5

ve0
2 j e1 / j e02ke12~ve0

2 23te0!ka1

113te02ve0
2 , ~23!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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for the electrostatic potential@with p0 andq1 the dimension-
less counterparts of the capital case variables in Eqs.~11! and
~15!# and four equations differential@Eqs. ~20! and ~21! for
a5a,e] with

ne1

ne0
5

ka11ke12ve0
2 j e1 / j e0

113te02ve0
2 ,

~24!
ve1

ve0
5

~113te0! j e1 / j e02ka12ke1

113te02ve0
2 ,

na15ne1 andva15ve0 j a1 / j e0 .
The general solution of the presheath is a linear com

nation of four modes, proportional to exp(2iVt) ~usually we
omit to write this temporal dependence!. Taking f1(`)50
and neglecting modes traveling inwards the asymptotic s
tion for v ijD0@1 ~justified in the following section! is

f1. j 1`S j e0

4j4 2
ive

j D1
3a`

4j
expS iv i

2
j D ,

j a1. j 1`S 4i j e0

v ij
2 1Ame

mi
D 1

a`j

2
expS iv i

2
j D , ~25!

j e1. j a1Ame /mi1 j 1` ,

wherea` and j 1` are constant;2 j 1` is the net perturbation
current crossing the presheath and reachingr 5`. The limit
me /mi→0 ~i.e. ve→0) in Eqs.~25! recovers the ion mode
discussed in Ref. 2.

Two boundary conditions are imposed at t
presheath/DL boundary,2 which is characterized byp0D

1 50,
that is

ve0D
1 52A113te0D

1 .21.545, ~26!

the last number being obtained from the universal solut
for the presheath. First, since the DL is a barrier for
ambient ions, their relative velocity there is zero,

@ j a1 /j2ne0#j
D0
1 1 iv ijD150. ~27!

Second, the solution must be bounded atjD
1 . From Eqs.~16!

and~23!, the total perturbation of the electric potential at t
DL boundary is

f̂1D
1 .Fve0

2 ~ j e1 / j e022jD1 /jD0!2ke12~ve0
2 23te0!ka1

113te02ve0
2 G

j
D0
1

,

~28!

which is bounded if

@~ j e1 / j e022jD1 /jD0!ve0
2 2ka12ke1#j

D0
1 50. ~29!

This condition is the Bohm singular condition of the pertu
bation problem for the electron modes. Solving the inde
minacy in Eq.~28!, we have

f̂1D
1 5F2ve0

2 ~ve0
2 21!

2ve0
2 21 S j e1

j e0
22

jD1

jD0
D2

ivejD1ve0

2ve0
2 21

2ke1G
j

D0
1

.

For eachve mode the presheath solution depends
three parameters:jD1 , j 1` , anda` . Conditions~27!–~29!,
Downloaded 22 Apr 2003 to 138.4.73.144. Redistribution subject to AIP
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combined with the integration of Eqs.~20!–~21! and the
asymptotic solution~25!, leave only one of them free. W
write

@ j 1` a`#A85B8jD1 /jD0 , ~30!

for certain matricesA8 andB8, which depend onve and the
zeroth-order solution. As in Ref. 2, the numerical integrati
presents difficulties with the singularity atj5jD0

1 and the
unbounded mode traveling inwards fromj5`. It is found
that A8 is a regular matrix for anyve ; thus Eq.~30! pro-
vides, for eachve , the ratiosj 1` /jD1 anda` /jD1 .

B. Case zv ijD0zš1

For this asymptotic case the presheath solution can
expressed as the combination of the WKB solution of
homogeneous problem plus a particular solution proportio
to j 1` ,2,18

j a1~j!.ã`ap~j!exp@2bp~j!#

1 j 1`S 4ive0

v ij

113te0

113te02ve0
2 2Ame

mi
D , ~31!

with ã` a constant,ap(j) defined in Ref. 2, and

bp~j!52 iv iF E
jD0

1

j

~113te02ve0
2 !21/2dj

2Ame /miE
jD0

1

j

ve0~113te02ve0
2 !21 djG .

These equations show that the perturbations in the presh
consist of a stationary mode and ani –e mode traveling out-
wards with ~dimensionless! group velocity (113te0

2ve0
2 )1/2. The transition from the low to the high frequenc

range is illustrated by the terms withAme /mi , which are
negligible for v i5O(1) but dominant forv i→`. The
asymptotic solution~25! for uv iju@1 comes out from Eq.
~31!.

The WKB solution becomes singular at th
presheath/DL boundary, where Eq.~26! is satisfied. For
j/jD021!1 and Im(ve)Þ0, the solution matching with Eq
~31! is

j a1~j!.2i ã`c1 Ai ~z!2 j 1`c2 Gi~z!, ~32!

where

z~j!5~2v ijD0!2/3a0
21/3~j/jD021!1/2,

Ai, Bi, Gi, and Hi are Airy functions anda0 , c1 , c2 are
constants defined in Ref. 2; the solution for Im(ve)50 pre-
sents a similar form.2

The boundary conditions~27!–~29! at j5jD0
1 relateã`

and j 1` to jD1 . Keeping only the dominant terms fo
uv ijD0u@1 and substituting known quantities, one has

u j 1`u
u j e0u

.0.372~ uv i ujD0!4/3
ujD1u
jD0

}uv i u4/3ujD1u, ~33!

uã`u
u j e0u

.0.528uc3u~ uv i ujD0!5/6
ujD1u
jD0

, ~34!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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with uc3u equal to 1 and 2 for Im(ve)Þ0 and Im(ve)50,
respectively.

C. Case zv ijD0zÄ`

For v i→`, Eq.~33! shows thatjD1;v i
24/3→0 must be

satisfied for j 1` to be finite. Then, Eq.~34! yields ã`

}v i
21/2→0. Therefore, at high frequencies, thei –e modes

and the DL displacement become negligible; indeed, con
tion ~27! shows that the second effect is the consequenc
the first one. It is noteworthy that, forv i→`, finite pertur-
bations of electron current,j 1` , are compatible withjD1

→0. Settingna15ne150 and j a150, the presheath solutio
satisfies

j e15 j 1` , ke15 ivej 1` È j dj

j2ne0
,

~35!

f15ka152ke11
ve0

2

j e0
j 1` .

However, this solution is not valid forj→jD0
1 , because

the density perturbation of the plasma density at the
boundary is not zero: from Eq.~24! one has

n̂e1D
1

n̂e0D
1 5

~ve0D
1 !2

2~ve0D
1 !221

j 1`

j e0
.0.63

j 1`

j e0
Þ0. ~36!

Therefore, a boundary layer with nonzero ion perturbatio
~region PD1 in Fig. 3! must exist close to the DL oute
boundary. There,j a1 satisfies Eq.~32! @for Im(ve)Þ0] yield-
ing

n̂e1~z!

ne0
.2

~a0iv ijD0!2/3

2 Ai~0!~113te02ve0
2 !

jD1

jD0

3~Ai 8~z!1)Gi8~z!!,

and n̂e1(z50) satisfies Eq.~36!. Setting z;O(1) in this
solution, the characteristic thickness of this layer isDj
;jD0uv ijD0u24/3. From Eqs.~20! and ~21!, j e1 andke1 are
clearly constant across this layer. With respect to the va

FIG. 3. Sketch of the different plasma regions and perturbation modes in
high-frequency range.
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tions of ion magnitudes, we findD j a1;v i
21/3 and Df1

.Dka1;v i
22/3, so these variations can be neglected t

Then, Eqs.~35! yield

j e1D
1 . j 1` , ke1D

1 .cpivej 1` , f1D
1 .2ke1D

1 1cp8 j 1` ,
~37!

with cp51.1jD0 / j e0 andcp852.4/j e0 . These expressions re
late the magnitudes at the DL external boundary toj 1` and
will be used in Sec. IV to continue the integration of th
perturbation problem in the core.

D. Results

Figure 4 shows the temporal envelope of the spatial p
turbations onn̂e1 andf̂1 for different values ofv i , obtained
from the numerical integration of the differential equation
As predicted above, the density perturbations tend to be c
fined near the DL asuv i u grows. The asymptotic solution fo
v i5`, Eq. ~35!, has been included in Fig. 4~b!. It recovers
very well the average behavior off̂1 but not, of course, the
small, short-wavelength, ion–electron mode.

IV. CORE SOLUTION AND PROBLEM CLOSURE

A. General case: v i finite

The quasineutrality condition in the core reduces tone1

1nc15ni1 , and the speciesa can be ignored to determin
the potential profile. The core problem consists of the diff

he

FIG. 4. Presheath. Envelope of the spatial response to perturbations o

quencyvejD050.1 and 1; amplitudes are normalized withuf̂1D
1 u51. The

mass ratio isAme /mi50.01. The dashed line in~b! corresponds to the
asymptotic solution forv i5`.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ential equations~20! and ~21!, for a5e,c,i , plus the
quasineutrality condition. Operating conveniently with t
continuity equations, one of the differential equations is s
stituted by

j c11 j e12 j i1Ame /mi5 j 1R , ~38!

where the constant2 j 1R is the net perturbation electric cu
rent traversing the core. Densities and velocities for the
maining five differential equations follow:

ni1

ni0
5

j i1

j i0
2

ki12f1

v i0
2 ,

ne1

ne0
5

ve0
2 j e1 / j e02ke12f1

ve0
2 23te0

,

nc1

nc0
5

kc11f1

tc0
, ~39!

v i1

v i0
5

ki12f1

v i0
2 ,

ve1

ve0
5

ke11f123te0 j e1 / j e0

ve0
2 23te0

.

Finally, the electric potential satisfies

f15
q1

p0
, p05

nc0

tc0
2

ni0

v i0
2 2

ne0

ve0
2 23te0

,

~40!

q152
nc0

tc0
kc11ni0S j i1

j i0
2

ki1

v i0
2 D 2

ne0ve0
2

ve0
2 23te0

S j e1

j e0
2

ke1

ve0
2 D .

Notice that in the low frequency range, there were just t
differential equations for thei –e modes.

Seven boundary conditions are needed to integrate
core equations and determinejD1 . Sincef1 is obtained from
the quasineutrality equation~40!, none of these condition
can fixf1 at any point. However, it seems natural to gove
the perturbations of the electrostatic potential at the conta
surface,f1R . We discussed already this issue in Ref. 2, a
we concluded that a perturbation sheath tied to the quasi
tral core is formed to accommodatef1R to the potential at
the inner end of the core~the sheath is regionRN in Fig. 3!.
Thus, here we impose the following eight conditions.

~i!–~ii ! The DL conditions~17!–~18! on speciese yield

@ j e1 / j e01 ivejD1 /ve0#
j

D0
2

jD0
1

50, ~41!

@ke11 iveve0jD1#
j

D0
2

jD0
1

50, ~42!

with j e1D
1 ( j 1`) and ke1D

1 ( j 1`), and jD1( j 1`) given by the
presheath solution.

~iii ! Since the DL is a barrier for speciesc, its total
perturbation flow is zero,

@ j c1 /nc0j2#j
D0
2 1 ivejD150. ~43!

~iv! The Langmuir condition~19! is satisfied.
~v! At high frequencies, the perturbation of the emitt

ion current is zero,j i1(1).0.
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~vi! Sincej51 is a singular point of the stationary so
lution, we havep0(1)50. Then, for f1 , Eq. ~40!, to be
bounded aroundj51, we impose

q1~1!50. ~44!

~vii ! f1R is known.
~viii ! kc1R[f1R1tc0nc1R /nc0R is known.

To impose the pair (f1R , kc1R) is equivalent to give the
more natural pair (f1R , nc1R). No condition onj c1 is im-
posed atj51 since we impose already condition~iii ! on j c1 .

Sinceq1(1)50, the quasineutral potential at pointN is
obtained from applying l’Hopital rule to Eq.~40!, that is

f1N5 lim
j→1

q1 /p0 .

When this value is different fromf1R , the perturbation
sheath accommodates the potential differencef1N2f1R . In
the zero Debye-length limit, Eqs.~20! and ~21! yield

ka1N5ka1R , j a1N5 j a1R ,

and the jumps ofna1 andva1 from pointsR to N are deter-
mined from these conservation conditions and the poten
jump. We do not need to know the internal structure of t
sheath to solve the quasineutral problem.

Once the preceding conditions are applied, the gen
solution of the core equations between pointsN and D2

relate magnitudes atD2 to the perturbation parameterkc1R

in the form

@ j i1D
2 ki1D

2 jD1#A5kc1RB, ~45!

for certain matricesA and B, which depend onve and the
zeroth-order solution. Therefore, leaving apartf1R , which
modifies the perturbation sheathRN exclusively, the pertur-
bation response of the whole structure depends only onkc1R

andve .
Temporal eigenmodes of the perturbation problem co

spond to nontrivial solutions forkc1R50. These eigenmode
exist for those stationary solutions making matrixA, in Eq.
~45!, singular. Thus, the dispersion equation of the compl
plasma structure is

D~ve ; j i0 ,f0R ,tc0 ,me /mi !50, ~46!

with D5detA.

B. Cases v iš1 and v iÄ`

For uv i u@1 @andve5O(1)] the core equations admit a
WKB solution too. As in the presheath case, the WKB so
tion is similar to the one obtained in Ref. 2 except for
includes the effect ofveÞ0. It consists of one pair of short
wavelength,i –e modes~moving with thei beam! and two
pairs ofe–e modes.

For uv i u→` that WKB solution justifies to assume thei
population as quasirigid.19 We take

ni1~j!50, v i1~j!50, ~47!

and keep the four differential equations for thee–e modes.
Using Eq.~47! in Eq. ~40!, the electrostatic potential satisfie
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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S nc0

tc0
2

ne0

ve0
2 23te0

Df1

.2
nc0

tc0
kc12

ne0

ve0
2 23te0

S ve0
2 j e1

j e0
2ke1D . ~48!

Notice that the indeterminacy off15q1 /p0 at j51 has dis-
appeared in Eq.~48! thanks to the substitutionki15f1 .
Condition ~44! can be omitted, but still the perturbatio
sheathRN, tied to the contactor, is needed to connectf1R to
f1N5f1(1), this last one coming out now from Eq.~48!.

Since the DL becomes rigid forv i5`, the conditions at
point D2 simplify. In particular, we have

ke1D
2 5ke1D

1 , j c1D
2 50, j e1D

2 5 j e1D
1 , ~49!

with ke1D
1 ( j 1`) and j e1D

1 ( j 1`) given by Eq. ~37! for the
presheath. This yields

j 1R5 j 1` , ~50!

for the perturbation currents in core and presheath. Fina
the relationskc1D

2 ( j 1`) andf1D
2 ( j 1`) are obtained from Eq

~48! and the Langmuir condition, which here simplifies to

~12v i0D
2 /v i0D

1 !ni0D
2 f1D

2 1nc0D
2 kc1D

2 1ne0D
2 ke1D

2

1~ve0D
2 22ve0D

1 ! j 1` /jD0
2 50. ~51!

Therefore, the core equations for the electrons can be i
grated fromjD0

2 to the contactor surface usingj 1` as the
unique free parameter. This implies that the matrix relat
~45! reduces here to the scalar relation

D~ve ; j i0 ,f0R ,tc0! j 1`5kc1R , ~52!

which yields directly a functionD for the dispersion relation
~46!.

C. Case zvezš1

This asymptotic limit allows us to obtain a WKB-typ
solution onve for the core region. This solution is of intere
to understand the characteristics of thee–e modes and their
mutual interaction, and to obtain a semianalytical express
for the dispersion relation. The general form of t
asymptotic solution can be found in Ref. 19. Here, we wr
down the WKB solution only for cases where

3te0 /~ve0
2 2tc0!!ne0 /ni0!1,

which correspond to very large contactor potentials and m
erate cores. For these cases, the WKB solution presents
tively simple expressions and retains still its main propert
The WKB solution is

j e1~j!.2
a~j!

j e0
~C3 exp@ iveb1~j!#2C4 exp@ iveb2~j!#!,

ke1~j!.2
i

a~j!
~C3 exp@ iveb1~j!#1C4 exp@ iveb2~j!#!

1C11C2g~j!, ~53!

f1~j!52kc1~j!.
ve0

j2nc0
j e1~j!2C12C2g~j!,
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with

a~j!5j2ne0
3/4nc0

1/4,

b6~j!5E
jD0

j S 17 iAne0

nc0
D dj

ve0
,

g~j!5E
jD0

j dj

ni0j2 .

Equations ~37! and ~49! state that ke1D
2 5ke1D

1

5cpivej 1`@ j 1` . Making the ansatz

ke1 ,kc1 ,f1 ,Cl5O~ve! j 1` ~ l 51,2,3,4!,

C32C4!O~ve! j 1` ,

we have that, up to dominant order, the Langmuir condit
~51! reduces to

kc1D
2 .

ne0D
2

ne0D
2 2ni0D

1 ke1D
1 ,

and the integration constants in Eq.~53! satisfy

C2. ivej 1` , C1.kc1D
2 ,

C3.C4.2
iaD

2

2

ni0D
1

ne0D
2 2ni0D

1 ke1D
1 .

The WKB solution ~53! shows that, of the foure–e
modes, those proportional toC1 andC2 are related to thec
population and are stationary~in time! in the laboratory
frame. Those proportional toC3 andC4 are related to thee
population and form a pair which is stationary in thee-beam
frame; of this last pair, each individual mode grows spatia
in a different direction. The conditionC3.C4 , together with
b1(jD0)5b2(jD0)50 implies that the mode growing in
wards is dominant always; for Re(ve).0 this mode corre-
sponds tob1(j).

To close the problem we setkc1(1)5kc1R in Eq. ~53!.
This yields an analytical expression for functionD in Eq.
~52!,

D

ve
.S aD

2

2ne0R
1/4 nc0R

3/4 exp@ iveb1~1!#ni0D
1 1 ine0D

2 D
3

cp

ne0D
2 2ni0D

1 1 ig~1!. ~54!

V. REGULAR RESPONSE

Figure 5 shows the space-temporal response of the e
tric potential, F(r ,t)5F0(r )1F1(r ,t), for two cases of
purely oscillatory perturbations of the densitync1R . In the
core, we observe that, at lowve , the modes which are sta
tionary in the laboratory frame dominate over the pair
modes moving with thee beam; on the contrary at highve ,
the mode moving with thee beam and growing inwards
becomes the dominant one. At the presheath the statio
wave dominates over thei –e mode. The discontinuity ob-
served atr 5R corresponds to the small sheath adjusti
f1N.2kc1R to f1R50.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Figure 6 shows the spatial envelope@without the depen-
dence on exp(2iVt)] of different perturbation variables fo
nc1RÞ0, f1R50, and different frequencies. We observe th
the perturbation sheath RN transmits most of the pertu
tion of nc1R to f1N . As a consequence, the most perturb
magnitude in the core isf1 . The perturbationf1N is trans-
mitted along the core by the modes related to speciesc. The
interaction with the DL produces the perturbationj 1` which
is transmitted both toward the contactor, by one of the mo
related to speciese, and outwards, along the presheath. T
different dominant modes at each distinguished range ofve

explain that, forve small, the spatial envelope is practical
constant along the core~these solutions are similar to thos
of Ref. 2! whereas, forve large, the amplitude of the pertu
bation increases toward the contactor. The relative ma
tudes of the perturbations in the core followne1 /ne0

; j e1 / j e0; j c1 / j e0;f1 /ve0
2 .

VI. INSTABILITY MODES

We discuss here the unstable eigenmodes of the w
plasma structure. We present results for the asymptotic l
v i5`, when the DL displacement,jD150, can be ne-
glected. For each stationary plasma structure, the eigen
quencies are the solutions of the dispersion relation~46!.
These solutions can be expressed as

FIG. 5. Complete regular response of the electrostatic potential to pertu
tions atr 5R characterized bykc1R /f0R50.1, f1R50, v i5`, andve51
~a!, 10 ~b!. The stationary solution corresponds tof0R520, jD055.89, and
tc051.
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n~jD0 ,f0R ,tc0!, n51,2,... ,

where eachn indicates a particular family of harmonics
Eigenmodes are nontrivial solutions for homogeneo
boundary conditions at the contactor surface, i.e.,nc1R

5f1R50. In particular, eigenmodes develop perturbatio
of the net current. Thus,j 1` is a convenient parameter t
measure the instability amplitude.

For the particular rangeve@1, analytical expressions
can be obtained from solving Eq.~54! for exp@iveb1(1)#.
This yields

b1~1!ve
n.~ 3

2 12n!p

2 i lnS g~1!~ne0D
2 2ni0D

1 !1cpne0D
2

cpni0D
1 aD

2 2ne0R
1/4 nc0R

3/4 D ,

and, for largen, it simplifies to

ve,re
n .2pnuve0u/~jD021!, ve,im

n .ve,re
n Ane0 /nc0.

~55!

Figure 7 shows the first three families of harmonics v
susjD0 , for f0R and tc0 given. For each zeroth-order solu
tion there is a countable family of unstable modes, with b

a-
FIG. 6. Envelope of the spatial response to perturbations charcterize
kc1RÞ0 andve50.1, 1, and 10. Amplitudes are normalized withkc1R51.
The dashed lines are the instantaneous profiles forve510. The stationary
solution corresponds tof0R520, jD055.89, andtc051. Given f1R , the
sheath~discontinuity! RN adjusts the differencef1N2f1R .
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ve,re
n andve,im

n growing withn. ~Space-charge effects, to b
treated in the next subsection, limit the number of unsta
modes and the maximum value ofve,im.) Figure 8 shows
space–temporal profiles of the first three unstable modes
a particular stationary solution~point A in Fig. 7!. The mode
traveling with thee beam and growing from the DL to th
contactor provides the main contribution to the eigenmo
The spatial wavelength of the instability depends on both
core size and the harmonic number. This is confirmed by
9, which shows the spatial envelope for the eigenmodn
52 and two stationary solutions with different core sizes.
addition, Eq.~55! shows that the spatial wavelength is r
lated directly tov re . The amplitudes of the eigenmodes
the presheath are negligible; the presheath just provides
convenient conservation and jump conditions at the exte
side of the DL and transmits the perturbation of the curr
outwards.

A. Space-charge effects and maximum growth rate

The high-frequency eigenmodes correspond to a reac
electron–electron instability. The main characteristics of t
instability in a three species plasma were discussed in
16 for the basic case of a semiinfinite, planar plasma.
unbounded character of the familyve,im

n for a particular sta-
tionary solution is related to the zero Debye-length limit

FIG. 7. Frequencies of eigenmodesn51, 2, and 3 versus the core size. Th
dashed lines are the solutions of the approximate nonzero Debye-le
model ~of Sec. VI A! in the limit lD` /R→0. Other parameters aref0R

5100 andtc0510. PointA andB correspond to solutions shown in Figs.
and 10, respectively.
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the present perturbation model. It is known that the reac
e–e instability is bounded by space-charge effects or, to
more precise, by the coupling of the unstablee–e modes
with non-neutral Langmuir modes, of much short
wavelength.17

Therefore, this perturbation model is correct only f
modes with wavelengths satisfyingl5Ruve0 /veu@ld ,
whereld is the typical Debye length in the core. In order
determine the most unstable mode, space-charge effects
be included in core and presheath, which means to rep
the quasineutrality condition by the full Poisson equation

lD`
2

R2

1

j2

d

dj S j2
df1

dj D5ne11nc12ni12na1 .

An exact solution of the resulting problem is difficult to ob
tain because of the disparity of spatial scales involved,
coupling with the non-neutral DL, and the inhomogeneity

th

FIG. 8. Space-temporal evolution ofF(r ,t) for the first three eigenmodes
n51 ~a!, 2 ~b!, and 3 ~c!. The stationary solution corresponds tof0R

5100, jD053.716, andtc0510.
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the stationary solution. Here, an approximate analysis is
ried out, aimed mainly to confirm the stabilizing effect of th
Langmuir modes and to estimate which is the most unsta
mode in terms oflD` /R and the rest of parameters of th
stationary solution.

The approximate treatment of the problem~for v i5`)
is based on the following assumptions. First, in t
presheath, which is practically unaffected by modes w
ve@1, we just take the solution leading to Eq.~37!. Second,
in the perturbation equations of the core, Eqs.~20! and~21!,
we replace the zeroth-order magnitudes (ve0 , ne0 , . . . ) by
average values and neglect spherical effects~i.e., 2/j
!d/dj). The fluid and Poisson equations are then integra
analytically for eachve . The general solution~in the core! is
the combination of six fundamental modes,

Y~j!5b11b2j1(
j 53

6

bj exp~ k̃ jj!,

with k̃ j[k j (V)R, and k j the solutions of the dispersio
relation

Vpc
2

V22k2Cc
2 1

Vpe
2

~V2kVe0!22k2Ce
2 51,

FIG. 9. Profiles of the eigenmoden52 for two core sizes,jD0

53.716 (1) and 8.883~2!. The dashed line represents an instantane
profile for jD058.883. Other parameters aref0R5100 andtc0510.
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with Vpa
2 5e2Na /e0me andCa

25raTa0 /ma . Finally, to de-
terminej 1` and the constantsbj ( j 51,..,6) we apply the five
boundary conditions on thee–e modes plus two conditions
on the electrostatic potential. Clearly, one of these two c
ditions is f1R50 ~and the perturbation sheathRN is part
now of the core solution!. For the second condition onf1 we
take

lD`@df1 /dj#j
D0
2 .0,

which is correct while the space-charge effects are m
smaller in the core side than in the DL one.~In any case, we
have verified that the replacement of this condition with
linear combination of the form@af11b df1 /dj#j

D0
2 50, for

certain constantsa andb, does not modify the conclusions t
come.19! To check the validity of this approximate mode
Fig. 7 compares, for the limitlD` /R50, the frequencies of
two singular modes obtained from the approximate and
exact models. The agreement is good enough to accep
qualitative conclusions of the approximate model.

Figure 10~a! presents solutions of the approximate pe
turbation model for nonzero Debye length. It shows the e
lution of ve,im

n with lDc /R for the familiesn51, . . ., 5; for
convenience,lDc5lD`AN` /Nc0 is used instead oflD` .
We observe that nonzerolDc /R has a stabilizing effect ove
all eigenmodes, which is more pronounced the larger isn. As

s

FIG. 10. Influence of a nonzero Debye-length on the instability growth r
The dashed line in~b! corresponds toV im(k) of the eigenmodes of an
infinite plasma fork5(3p/2)(r D02R)21n. The stationary solution corre
sponds tof0R5100, jD051.68, andtc0510.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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a consequence, the indexn of the most unstable mode tend
to decrease withlDc /R increasing, and forlDc /R.0.01
~and the stationary solution used in Fig. 10! the most un-
stable mode corresponds already ton51.

B. Finite-size effects

The e–e instability in our plasma structure develop
mainly in the core. Therefore, it must be influenced by
finite size of this region and the conditions at the boundar
mainly at the DL. Then, a subject of interest is the relation
this e–e instability with the eigenmodes of thee–e instabil-
ity developing in a similar but infinite and homogeneo
plasma. The instability type for this basic case~and similar
plasma conditions! is thereactive, weak-beaminstability.17,20

This presents a continuous family of eigenmodes~of wave
numberk! and the~local! dispersion relation yieldsV im /Vpc

in terms ofklDc and the parameters of the zeroth-order
lution. The maximum growth-rate and wave number of t
weak-beam instability satisfy

V im /Vpc.31/2224/3~Ne0 /Nc0!1/3, k/lDc5Cc /Ve . ~56!

The comparison of the two problems requires to rel
the wave numberk and the indexn, characterizing the
eigenmodes of each problem. Taking into account that
wavelength of the eigenmodes of our spherical structure
crease withn or (r D02R)21 increasing, Fig. 10~b! presents
that comparison for the data of Fig. 10~a! and k5(3p/2)
3(r D02R)21n, where the numerical factor was adjusted f
a good fit at largen. The close relation between the tw
problems is clearly observed. As it is reasonable, sh
wavelength harmonics~that is, those with largen) are less
affected by finite-size effects and approach the basic in
bility properties, Eq.~56!. At the other end, forn51, the
maximum growth rate is only one-third of the maximum
V im . Finally, the parts of the solid lines, in Fig. 10~b!, to the
right of the dashed line~i.e., for nlDc /R large! indicate only
that the selected relation betweenk andn is incorrect there.

C. Instability threshold

The preceding analysis suggests that the fundame
eigenmode~i.e., n51) characterizes thee–e instability be-
havior whenlDc /R is not very small (lDc /R.0.01 for the
case of Fig. 10!. In addition,ve,im

1 is maximum forlDc50
and decreases slowly withlDc . Therefore we expect the
behavior ofve,im

1 for lDc50 ~which can be studied with the
quasineutral perturbation model! to give a correct picture o
the behavior of the dominant growth rate of the instabil
whenlDc /R is not very small.

Figures 11~a! and 11~b! show the evolution ofve,im
1 with

the contactor potential and the temperature ratio, for a gi
core size. The growth rate decreases whenF0R /Tc0 or
Tc0 /T` decrease, and the plasma becomes stable eventu
Figure 12 shows the stability threshold in the parame
plane (f0R ,jD0) for two different values ofT` /Tc0 . For
Tc0 given, the stability of the plasma structure is favored
low F0R , largeT` , and larger D0 /R. Physically, this corre-
sponds to a less supersonice beam in the core.
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We compare now our results with two experimental o
servations of contactor plumes with an intermediate D
Vannaroniet al.8 detected thermalization of thee beam in
the core and propose the bump-in-tail instability as the pr
able cause~the bump-in-tail instability is the resistive case
the reactive weak-beam instability17!. Williams and Wilbur7

detected fluctuations of different amplitudes and frequenc

FIG. 11. Influence of the stationary solution on the growth rate of the f
damental mode forlDc /R50 ~using the zero Debye-length model!. In ~a!
f0R /tc0510 andjD053.716; in~b! tc0510 andjD053.716.

FIG. 12. Parametric regions of stability of the fundamental mode
lDc /R50 ~using the zero Debye-length model! and two different tempera-
ture ratios. PointC corresponds to the case of Fig. 11~a!.
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but did not report any clear sign of ane–e instability. The
plasma structure of Vannaroniet al. is characterized bytc0

52, jD0.3.8, f0R /tc0.13, andlDc /R;102321022; for
these values, our model predicts the presence of the rea
e–e instability, controlled by an eigenmode withn.1. On
the contrary, the plasma structure of Williams and Wilbur h
tc050.33, jD0.6.6, f0R /tc0518, andlDc /R;0.02– 0.1,
which is around the instability threshold of our model. N
tice that stabilization by space-charge effects is much st
ger in this second case. Therefore, as far as we can ch
our model conclusions seem to agree with experimental
servations.

VII. CONCLUSIONS

This paper extends to the high-frequency range
analysis of the nonstationary response of a spherical struc
made up of two plasmas with an intermediate, strong DL
contrast to the low-frequency range, the response is n
characterized by~a! a more complex dynamic response, go
erned by traveling and stationarye–e modes,~b! a negli-
gible response of the ions, except for some boundary lay
~c! a negligible displacement of the DL, as a consequenc
the ion behavior, and~d! the development of a reactivee–e
instability, launched by the supersonic electronic beam
versing the core.~The rigidity of the DL to high frequency
perturbations would agree with the observation made
Joyce and Hubbard12 that, in contrast to thei –e instability,
the e–e instability does not disrupt the double layer itself!

In the high-frequency range, the quasineutral pertur
tions in the presheath consist of the superposition of a
tionary wave and a wave traveling outwards, plus an
boundary layer close to the DL boundary. The presheath
sponse is proportional to the net perturbation current,j 1` .
The quasineutral response in the core consists of four wa
two are stationary in the laboratory frame, the other two
stationary~in time! in the frame of the inwarde beam; each
wave from this last pair grows spatially in a different dire
tion. In addition, to adjust the perturbations of the elect
static potential, there is a perturbation Debye sheath clos
the contactor surface. The mechanisms of transmission o
perturbations along the different regions have been
plained. The dominant electron modes are different for
casesve5O(1) andve@1.

The quasineutral perturbation model predicts the de
opment of a reactive~i.e., macro! e–e instability with a
countable family of eigenmodes. However, a quasineu
model is unable to determine correctly the maximum grow
rate ~and the related eigenmode!. An approximate perturba
tion model with space-charge effects was analyzed to s
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that problem. Space-charge effects show that some of
previous stationary waves are indeed Langmuir modes,
the coupling of these modes with thee–e ones bounds the
instability. It is found that, except for very small Deby
lengths, the fundamental eigenmode dominates the insta
ity. Growth rates and other characteristics of the eigenmo
are consistent with the basic theory in an homogeneous
finite plasma. Finite-size effects are found to modify mild
the growth rates of the eigenmodes.

For the cases when the fundamental mode dominates
instability, the parametric regions of stability~of the whole
plasma structure! were investigated. The reactive instabili
tends to disappear for low contactor potentials, high tempe
tures of the ambient plasma, and large core sizes. The c
parison of our results with two experiments on contac
plumes is satisfactory.

Finally, it must be pointed out that the disappearance
the reactivee–e instability would leave still a weaker, resis
tive e–e instability, due to the Landau resonance. Also, t
ion beam crossing hypersonically the presheath can dev
a weak i –e instability at the presheath. Reference 17 p
vides estimates of the growth rates and other propertie
these weaker instabilities.

ACKNOWLEDGMENT

This research was supported by the Ministerio de Ci
cia y Tecnologı´a of Spain under Project No. BFM-2001
2352.

1E. Ahedo and V. Lapuerta, Phys. Plasmas2, 3252~1995!.
2V. Lapuerta and E. Ahedo, Phys. Plasmas7, 2693~2000!.
3E. Ahedo, J. Sanmartı´n, and M. Martı´nez-Sa´nchez, Phys. Fluids B4, 3847
~1992!.

4N. Hershkowitz, Space Sci. Rev.41, 351 ~1985!.
5M. A. Raadu, Phys. Rep.178, 26 ~1989!.
6R. Schrittwieser,Double Layers and other Nonlinear Potential Structure
in Plasmas~McGraw-Hill, Singapore, 1992!.

7J. Williams and P. J. Wilbur, J. Spacecr. Rockets27, 634 ~1990!.
8G. Vannaroni, M. Dobrowolny, E. Melchioni, F. de Venuto, and R. Gio
J. Appl. Phys.71, 4709~1992!.

9P. Coakley and N. Hershkowitz, Phys. Fluids22, 1171~1979!.
10S. Torven and D. Anderson, J. Phys. D12, 717 ~1979!.
11M. Guyot and C. Hollestein, Phys. Fluids26, 1596~1983!.
12G. Joyce and R. Hubbard, J. Plasma Phys.20, 391~1978!; R. Hubbard and

G. Joyce, J. Geophys. Res.84, 4297~1979!.
13C. K. Goertz and G. Joyce, Astrophys. Space Sci.32, 165 ~1975!.
14N. Singh and R. W. Schunk, J. Geophys. Res.87, 3561~1982!.
15T. Yamamoto, J. Plasma Phys.34, 271 ~1985!.
16V. Lapuerta and E. Ahedo, Phys. Plasmas9, 3236~2002!.
17V. Lapuerta and E. Ahedo, Phys. Plasmas9, 1513~2002!.
18C. M. Bender and S. A. Orszag,Advanced Mathematical Methods fo

Scientists and Engineers~McGraw-Hill, Singapore, 1986!.
19V. Lapuerta, Ph.D. thesis, Universidad Polite´cnica de Madrid, Spain, 1999
20D. B. Melrose,Instabilities in Space and Laboratory Plasmas~Cambridge

University Press, Cambridge, 1986!.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp


