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Two-Dimensional Electron Model for a Hybrid
Code of a Two-Stage Hall Thruster

Diego Escobar and Eduardo Ahedo

Abstract—An axisymmetric model for magnetized electrons in
a Hall thruster, to be used in combination with a particle-in-cell
model for heavy species, is presented. The main innovation is
the admission of exchanges of electric current at the chamber
walls, thus making the model applicable to a larger variety of Hall
thrusters. The model is fully 2-D for regular magnetic topologies.
It combines an equilibrium law for collisionless dynamics along
the direction parallel to the magnetic field with drift–fluid equa-
tions for perpendicular transport. These are coupled to sheath
models for the interaction with different types of walls. The
derivation of a parabolic differential equation for the tempera-
ture and the full computation of the electric field work improves
clarity and accuracy over previous models. Simulations of a Hall
thruster with an intermediate current-driving electrode, operating
in emission, floating, and collection modes are presented. Enhance-
ment of thrust efficiency is found for the electrode working in
the high-emission mode if the magnetic field strength is adjusted
appropriately. The two-stage floating mode presents lower wall
losses, lower plume divergence, and higher efficiency than the
equivalent one-stage configuration.

Index Terms—Hybrid simulation methods, plasma–material
interactions, plasma propulsion, two-fluid plasmas.

I. INTRODUCTION

IN RECENT years, plasma propulsion has become a true
alternative in Europe and USA to chemical propulsion in

medium-power (1–5-kW) space applications since important
fuel savings are achieved and successful flight-demonstration
missions (DeepSpace-1, Artemis, and SMART-1) have reduced
the reluctance of operators to use this new technology. Hall
thrusters are among the most developed concepts in plasma
propulsion, thanks largely to the four-decade Russian research
and flight experience on them. In addition, Hall thrusters
can provide the optimal specific impulses needed for station
keeping and other near-Earth missions. As flight opportunities
and confidence increase, the span of Hall thruster applications
and technical requirements increases too. Innovative research
is focused now on Hall thruster designs for efficient dual-
mode (high-thrust/high-specific-impulse) operation, long life-
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time, and nominal discharge powers ranging from 100 W to
100 kW.

Multistage Hall thrusters are among the possible solutions
proposed to meet some of these requirements [1], [2]. This type
of thrusters uses additional electrodes on the chamber walls to
control better the electric field. This would allow one to opti-
mize the ionization and acceleration processes (thus increasing
thrust efficiency), to extend the operational envelope of the
thruster, or to reduce the plume divergence [3]–[7]. Further
enhancement of thruster performances would be achieved using
active electrodes, capable of injecting a secondary electron
current into the chamber. Ahedo and Parra [1] have shown that
an intermediate electrode located and biased conveniently can
deliver part of the electron current required for ionization at a
lower energy cost than the electron current from the external
cathode, with the subsequent efficiency gain. However, recent
experiments with active electrodes [4], [6], [8], [9] have been
unable to increment noticeably the efficiency of one-stage (1S)
thrusters. This lack of success is likely due to several facts,
such as an improper design or operation parameters, technical
complications canceling out any gain derived from two-stage
(2S) operation, and an insufficient understanding of the physics
of 2S discharges.

The diversity of new Hall thruster designs makes more
imperative a deeper understanding of the complex interplay of
physical phenomena taking place in them and the development
of reliable models of the plasma flow. Hybrid (particle/fluid)
models are nowadays the optimal simulation option in terms
of implemented physics and geometry, computation time, and
detailed results. The first 2-D hybrid model for Hall thrusters,
called HPHall, was developed by Fife [10]. Heavy species (ions
and neutrals) are treated with a specifically designed particle-in-
cell (PIC) plus Monte Carlo collision (MCC) method, whereas a
fluidlike model is used for magnetized electrons. HPHall needs
less than 2 h of computation in a standard personal computer
(PC) to simulate a 1-ms discharge, with 105 macroparticles, 103

cells, the real magnetic topology, and a geometrical domain that
includes the thruster chamber and the exterior near plume. In
contrast, the full-PIC code of Adam et al. [11] takes one month
of computation time in a four-processor PC cluster to simulate
a 0.1-ms discharge, with a 1-D magnetic topology and a simple
annular domain.

The huge difference in computational resources between
hybrid and full-PIC codes is mainly due to the fact that the
former ones can apply the plasma quasi-neutrality condition,
thus avoiding to work with cell sizes smaller than the Debye
length and with time steps smaller than the inverse of the
plasma frequency. Nonetheless, hybrid codes must solve the
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Debye sheaths forming around the various chamber walls.
These sheaths provide the correct physical connection between
the walls and the quasi-neutral plasma, and sheath models
determine the correspondence between the known boundary
conditions at the wall and those to be applied at the edge of
the quasi-neutral domain. Thus, sheaths are a central piece
of the whole plasma model, which influence the structure of
the plasma flow through controlling energy and momentum
losses to the walls. Also, they influence the wall sputtering by
affecting the energy and angle of ions impacting the wall.

The implementation of more consistent plasma–wall inter-
action models was the main goal of Parra et al. [12], when
upgrading the code HPHall into HPHall-2, making use of the
previous work by Ahedo et al. for fluid models [13]–[15].
The large sensitivity of the electron distribution function and
the plasma response to the interaction with walls has been
debated extensively [16]–[19], and plasma–wall modeling con-
tinues to be a central research line in Hall thrusters [20]–[22].

HPHall has been used to simulate several thruster prototypes
[23]–[25], high-specific-impulse operation [26], and wall sput-
tering [27]–[30]. Also, HPHall has been the reference for other
2-D hybrid codes. Hagelaar et al. [31] use a very similar hybrid
model except for, on the one hand, the implementation of a
more efficient implicit algorithm for integration of the electron
equations and, on the other hand, the use of simple “empirical”
laws proposed by Boeuf and Garrigues [32] for wall interaction
parameters, thus renouncing to model the sheath physics. The
code of Scharfe et al. [33] is also very similar to HPHall except
for a simplified quasi-1-D formulation for electrons. There,
the sheath model of Barral et al. [17] is implemented, which
coincides essentially with that of Ahedo [13].

HPHall-2 presents two practical limitations. First, it is lim-
ited to simulate thrusters with a regular magnetic topology
(i.e., B �= 0), since electron equations are solved in a reference
frame tied to the magnetic streamlines, and therefore, it cannot
deal easily with regions where magnetic streamlines intersect
(unless the integration domain is split into several subdomains).
This “magnetic” frame is used since the numerical integration
of electron fluxes in the cylindrical frame (used by the PIC
subcode) is strongly hindered by the large anisotropy of the
electron conductivity tensor. In order to deal with singular mag-
netic topologies, Hagelaar [34] proposes a numerical scheme
that determines correctly the parallel and perpendicular electron
fluxes directly in the cylindrical frame. Pérez-Luna et al. [2]
have upgraded the hybrid code of Hagelaar et al. by imple-
menting that scheme, but they keep Boeuf’s expressions for
plasma–wall interaction. The new code is successfully applied
to a Hall thruster with a singular magnetic topology.

HPHall-2 is also limited to simulate Hall thrusters with
lateral dielectric walls, that excludes multistage thrusters and
thrusters with metallic walls, such as the thruster-with-anode-
layer (TAL) family. The main goal of the model presented here
is to remove this limitation from the code. This requires one,
first, to modify the electron quasi-neutral equations in order that
they admit net exchanges of electric current at lateral walls.
Second, and complementary to it, it requires one to derive
sheath models that are suitable for each type of nondielectric
walls that are being simulated.

The upgrading of the electron model has given us the oc-
casion of revising its mathematical formulation. As a result,
a simpler and more accurate formulation than the original
one, with a fully 2-D description of electron variables, is pre-
sented here. The clear advantage (in practical terms) of hybrid
codes versus full-PIC codes must not hide the limitations of
a fluid approach when dealing with weakly collisional mag-
netized electrons, as it is the case. Nonlocal transport along
magnetic lines and microscopic turbulence are examples of
phenomena that are difficult to include consistently in fluid
equations [34]. Hence, a brief revision of the main assumptions
supporting (or setting the limits of) the fluidlike model is
presented.

Finally, the new capabilities of the model will be illustrated
with simulations of a thruster with an active electrode, placed
at one chamber wall, and operating at different modes for the
electric current exchanged with the plasma. The results com-
pare well with those of the 2S axial fluid model of Ahedo and
Parra [1]. These showed that thruster efficiency can increase
significantly in the electron-emitting mode if the magnetic field
strength is adjusted appropriately, without modifying the usual
one-peak magnetic topology. On the contrary, they found the
efficiency to decrease always in the electron-collecting mode.
Pérez-Luna et al. [2] have simulated a laboratory 2S prototype
with a two-peak magnetic topology. No efficiency gain over
one stage is obtained, but simulations are mainly within the
electron-collecting mode.

Provisional versions of the present electron model and 2S
simulations were presented in conference papers [26] and [35].
Here, the new electron model is run together with a version
of the PIC code that is more advanced than the one HPHall-2
in [12]; these PIC improvements are reported elsewhere [26],
[36], [37].

The rest of this paper is organized as follows. Section II
presents the general aspects of the hybrid model and the
magnetic reference frame. Section III introduces the 2-D elec-
tron quasi-neutral model. Section IV discusses the different
sheath models. Section V presents boundary conditions, nu-
merical integration, and comparisons with other existing codes.
Section VI presents simulations of 1S and 2S discharges.
Conclusions are drawn in Section VII.

II. GENERAL FEATURES OF THE HYBRID MODEL

HPHall is a time-dependent axisymmetric model of the
plasma discharge in a Hall thruster from the anode to an exter-
nal location, near the cathode neutralization surface [Fig. 1(a)].
Cylindrical variables (z, r, and θ) describe the physical space.

The Debye length is assumed to be much smaller than any
other geometrical or plasma length, so that the plasma is quasi-
neutral except in thin Debye sheaths around the chamber walls.
The computational domain simulates the quasi-neutral plasma
and considers the Debye sheaths as surface discontinuities. A
separate subcode solves these sheaths for each type of wall
(metallic, ceramic, etc.) and provides the appropriate conditions
at the boundary of the quasi-neutral domain.

There are two quasi-neutral subcodes: a PIC one for the
heavy species and a fluid one for the electrons. The PIC subcode
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Fig. 1. (a) Elements of the simulated SPT-100-type thruster with an interme-
diate electrode, and the mesh used by the PIC subcode. (b) Elements of the
magnetic-based reference frame. (c) Magnetic streamlines used as coordinate
curves in the electron magnetic mesh, and nodes used in integrals along the
streamlines. (d) Radial and axial components of the magnetic field at the
chamber median.

deals with the following three different species: neutrals (n),
singly charged ions (i+), and doubly charged ions (i++) [12],
[36]. The PIC and electron subcodes are advanced sequentially
in time with a time step Δt. In each temporal advancement,
the electric potential and electron temperature fields φ and
Te are inputs of the PIC subcode and outputs of the electron
subcode. Reciprocally, particle densities and fluxes of neutrals
and ions are inputs of the electron subcode and outputs of the
PIC subcode.

The magnetic field B is generated externally by the thruster
magnetic circuit and is implemented into the simulation code in
a preprocess. The small magnetic field induced by the discharge
is negligible, so that B is irrotational and solenoidal. Magnetic
potential and stream functions exist [σ(r, z) and λ(r, z), respec-
tively], which satisfy

∂σ/∂r = Br, ∂σ/∂z = Bz

∂λ/∂r = − rBz, ∂λ/∂z = rBr. (1)

The resulting orthogonal set of curvilinear coordinates is
(λ, σ, θ), and the transformation between the Cartesian frame
and the magnetic frame is

x′
λ =

1
rB2

(−Bz cos θ,−Bz sin θ,Br) ≡
1⊥
rB

x′
σ =

1
B2

(Br cos θ,Br sin θ,Bz) ≡
1‖
B

x′
θ = (−r sin θ, r cos θ, 0) ≡ r1θ (2)

where {1⊥,1‖,1θ} is an orthonormal set [Fig. 1(b)]. The arc
length along the streamlines, χ, is defined by

dχ/dσ|λ=const = B−1 (3)

The set of curvilinear coordinates is considered to be regular
out of the symmetry axis, which means that B2(z, r) > 0
everywhere. For most Hall thruster geometries, it suffices to ask
that Br(z, r) �= 0, such that ∂λ/∂z �= 0, and each streamline
λ(z, r) connects two different walls (or, more precisely, two
different boundaries of the computational domain).

The particle and energy conservation equations for electrons
have the functional form

∇ · p = f (4)

for certain functions p and f . The integral of this expression in
a volume ΔΩ bounded by two stream surfaces, λ and λ + Δλ,
and two lateral sheaths of the thruster is

0 =
∫

ΔΩ

(∇ · p − f)dΩ

= 2π

λ+Δλ∫
λ

dλ′

⎛
⎜⎝∂

∂λ′

∫
Γ(λ′)

dχrp⊥+
∑
Q

pnQ

BQ · NQ
−

∫
Γ(λ′)

dχ
f

B

⎞
⎟⎠.

(5)

Here, p⊥ = p · 1⊥ and pn = p · 1n; 1n and N are unit vectors
normal to a wall, pointing out of the volume and toward
increasing radii, respectively. The volume differential element
is dΩ = B−1dχdθdλ, and the surface differential element for a
stream surface S : λ(r, z) = const is dS = |x′

σ × x′
θ|dσdθ =

rdχdθ. If r = rw(s) represents the wall shape, with s being
the arc length along the wall, one has ds/dλ|r=rw(z) = (rB ·
N)−1. The subindex Q in the summation extends to the two
sheath edges connected by one streamline, and Γ(λ′) means the
streamline located at λ′.
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The derivation of (5) with respect to Δλ yields the
λ-dependent 1-D integral transform of (4)

∂

∂λ
〈rBp⊥〉 = 〈f〉 − Σ(pn) (6)

where the operators

〈f〉 = 2π

∫
Γ(λ)

dχ

B
f Σ(pn) = 2π

∑
Q

pnQ

BQ · NQ
(7)

represent the integrals along the streamlines and the sum of
fluxes into the two lateral sheaths, respectively. As a conse-
quence of the curvature of the magnetic field, both operators
include the magnetic field as a weighting function, and λ is the
natural variable.

Finally, notice that for Bz(z, r) = 0 (radial streamlines) and
Br(z, r) ∝ r−1 (which satisfies ∇ · B = 0 but not ∇∧ B =
0), (6) recovers the familiar cylindrical form

∂

∂z

∫
Γ(z)

2πrpz =
∫

Γ(z)

2πrfdr −
∑
Q

(2πrQpnQ) (8)

which is useful when comparing the present model with
r-averaged radial ones.

III. 2-D QUASI-NEUTRAL MODEL

A. Perpendicular and Parallel Dynamics

Electron dynamics are characterized by the following facts.
First, electrons are highly magnetized, with a gyroradius 	e

being much smaller than the typical quasi-neutral plasma length
(but still larger than the Debye length). Second, the thruster
lateral walls effectively confine electrons except for a small
collected fraction. Third, the electron collision time τcol (based
on binary collisions mainly) is much shorter than the electron
transit time in the channel τz (which is the confinement time
too) but much larger than the bouncing time between lateral
walls (τr) and the electron gyroperiod. These conditions jus-
tify, on the one hand, the adoption of a drift–fluid model for
perpendicular electron transport, with a macroscopic velocity
ue being much smaller than the electron thermal velocity ce.
On the other hand, thermal equilibrium of confined electrons
can be assumed for the near-collisionless parallel motion [38].
As a result, for large electron confinement, plasma density and
potential satisfy the Maxwell–Boltzmann equilibrium law

ne(λ, σ) = n0(λ) exp e
φ(λ, σ) − φ0(λ)

Te(λ)
(9)

along the parallel direction. Here, Te(λ) is the electron temper-
ature, and φ0(λ) and n0(λ) are constants along each streamline,
which will be chosen conveniently (in order to represent aver-
age values of density and potential in the streamline).

Perpendicular electron dynamics consist mainly of the az-
imuthal E × B drift plus the small axial drift. Condition
ue � ce is well satisfied except in very particular cases, like
sharp localized peaks of uθe at the maximum of the electric

field [39] or large ue and uθe near positive anode sheaths
[40] (not frequent in normal operation). In addition, azimuthal
momentum convection must be taken into account for high
secondary electron emission (SEE), when the exchange of
magnetized primary electrons (p) by unmagnetized secondary
electrons (s) at the walls causes a net loss of electron angular
momentum meneuθe.

Once the equilibrium law (9) has been established for parallel
dynamics, and the PIC subcode provides the plasma density and
other ion and neutral magnitudes, the electron perpendicular
fluid model provides two equations for the conservation of
particles and energy and four equations for the perpendicular
transport of mass and heat. The set of seven equations deter-
mines totally the 2-D profiles of the electron temperature Te,
electric potential φ, thermalized potential φ0, electron current
density je, and perpendicular heat conduction qe⊥1⊥ + qeθ1θ.
All these variables depend on λ and σ except for Te and φ0.

In Hall thrusters, there are two phenomena that can distort
the simple equilibrium law (9). The first one is that the non-
replenishment of bulk electrons collected by the walls reduces
the sheath potential fall formed around the wall. This produces
a distribution function with a smaller “temperature” (i.e., ve-
locity dispersion) in the parallel direction [22]. The second
phenomenon is the presence, in the bulk of the plasma, of two
near-free counterstreaming beams of SEE [18]. Nonetheless,
(9) remains a reasonable approximation for parallel dynamics,
since the temperature anisotropy is mild and the density of the
SEE high-energy beams is small. There is not much difficulty in
implementing a more elaborate equilibrium law for parallel dy-
namics, but this will be consistent only if the perpendicular fluid
model takes into consideration that the distribution function
is not close to a simple Maxwellian. Anisotropic magnetized
fluid models are rather elaborate and include explicitly drift and
mirror effects due to magnetic nonhomogeneities [41], [42].

It is worth pointing out that the Maxwell–Boltzmann equilib-
rium law (9) is satisfied also in the large-anisotropy limit of a
full drift–fluid model for mass and heat transport, consisting of

je = ¯̄σ ·
(
−∇φ +

∇(neTe)
ene

)
(10)

qe = − ¯̄κ · ∇Te (11)

with ¯̄σ and ¯̄κ = 5Te ¯̄σ/2e2 being the conductivity and thermal
diffusivity tensors, respectively. For near-collisionless parallel
dynamics, the parallel components of these two equations are
acceptable only as numerical artifacts in order to fulfil the
equilibrium law (9).

B. Current and Particle Conservation

The current density j = ji + je satisfies

∇ · j = 0 (12)

which, in magnetic coordinates, becomes

∂

∂σ

(
j‖
B

)
+

∂

∂λ

(
rj⊥
B

)
= 0. (13)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:05 from IEEE Xplore.  Restrictions apply.



ESCOBAR AND AHEDO: 2-D ELECTRON MODEL FOR A HYBRID CODE OF A TWO-STAGE HALL THRUSTER 2047

Since the ion current density ji is provided by the PIC subcode,
this equation relates the parallel and perpendicular electron
current densities je‖ and je⊥.

The integral transform of (12) yields the spatial evolution of
the electron current Ie(λ) = 〈rBje⊥〉 across the streamlines

∂Ie

∂λ
= −∂Ii

∂λ
− Σ(jn). (14)

The electron continuity equation

∂ne

∂t
+ ∇ · (neue) = ṅion (15)

with ṅion being the volumetric plasma source, will be used
only as an auxiliary equation when computing the work of the
electric field.

C. Perpendicular Transport of Mass and Heat

The perpendicular electron transport laws are coupled to the
energy equation derived next. We summarize here the deriva-
tion made in [12].

The perpendicular fluxes of electrons satisfy the
drift–diffusion equations

0  − rB
∂neTe

∂λ
− eneE⊥ − Bjeθ (16)

0 Bje⊥ − meνenneueθ + Fturb −
[

D

Dt
(meneue)

]
θ,p→s

(17)

where E = −∇φ is the self-adjusted electric field, νen is
the total electron–neutral collision frequency for momentum
exchange, Fturb accounts for the turbulence effects from phase-
correlated fluctuations of azimuthal forces [43], [44], and the
last inertial term accounts for the azimuthal momentum losses
caused by primary-to-secondary electron exchanges, also re-
ferred to as wall collisionality. References [12] and [14] discuss
the transformation of these two effects in effective resistive
terms, so that (17) is substituted by

jeθ = −ωe

νe
je⊥, νe ≈ νen + αturbωe + νwm (18)

where νe is the effective collision frequency, with αturb mea-
suring the relative turbulence level and νwm being the wall-
collisionality frequency. The latter satisfies

νwm ≈ Σ(ju
sn)

e〈ne〉
(19)

with ju
sn being the current density associated to unmagnetized

secondary electrons from the wall (this includes diffusively
backscattered primary electrons); notice that for zero secondary
emission, one has νwm = 0.

Parameter αturb is empirical in all Hall thruster models. At
present, there is no theory that can establish and evaluate the
(microscopic [11] or macroscopic [45]) mechanisms respon-
sible for the turbulent-based perpendicular transport. Further-
more, there is even no consensus on an empirical expression

for αturb(λ). It has been observed, quite obviously, that by
tailoring appropriately that function, simulation profiles agree
better with experimental ones, but different authors propose
different expressions for αturb(λ) [33], [46]–[49]. Since this
paper is not centered on the effects of turbulent diffusion, we
assume simply that αturb is constant and the same for all
simulations.

Equations (16) and (18) combine to yield Ohm’s law for the
perpendicular current density

je⊥ = σ⊥rB

(
−∂φ

∂λ
+

1
ene

∂neTe

∂λ

)
(20)

with σ⊥ = e2neνe/(meω
2
e) being the perpendicular conductiv-

ity. Now, using the parallel equilibrium law (9) and choosing
for n0 the definition

n0(λ) = exp
〈σ⊥r2B2 ln ne〉

〈σ⊥r2B2〉 (21)

the integral transform of (20) yields an equivalent Ohm’s law

Ie = 〈σ⊥r2B2〉
(
−∂φ0

∂λ
+

1
en0

∂n0Te

∂λ

)
(22)

where the contributions of the “average” potential and pres-
sure gradients are easily recognized. Using (9) and (22), (20)
becomes

je⊥ = σ⊥rB

(
Ie

〈σ⊥r2B2〉 −
1
e

∂Te

∂λ
ln

ne

n0

)
. (23)

Using similar drift–fluid equations for the perpendicular heat
transport, the heat-flux components satisfy

qeθ = − ωe

αqνe
qe⊥, qe⊥ = −κ⊥rB

∂Te

∂λ
(24)

where κ⊥ = (αq5/2)σ⊥Te/e2 is the perpendicular thermal dif-
fusivity and the factor αq accounts for differences in the effec-
tive collision rate for mass and heat transport (it is uncertain
that turbulence and wall collisionality affect identically the two
processes).

D. Work of the Electric Field

The energy equation includes the work of the electric field
〈je · E〉. This can be decomposed in perpendicular and parallel
contributions 〈je⊥E⊥〉 and 〈je‖E‖〉, respectively. Fife [10] dis-
regards the parallel contribution, arguing that it is much smaller
than other terms and requires one to compute the parallel
current je‖, which otherwise is decoupled from the main set of
equations. Both Hagelaar et al. [31] and Parra et al. [12] keep
this simplification. Pérez-Luna et al. [2], who obtain je in the
main integration scheme, seem to keep the parallel contribution.

Globally, the parallel work makes a small contribution to the
energy balance, but the contribution can be comparable to other
ones in certain cases. For instance, E‖ tends to be larger than
E⊥ in the rear part of the Hall thruster chamber, and potential
falls along the streamlines within the plasma bulk can be
larger than in the adjacent sheaths if the tail of wall-collected
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electrons is highly depleted [22] or for electron-collecting
electrodes with magnetic streamlines parallel to the electrode
(as found out by Ahedo and Escobar [40] around the anode or
by Pérez-Luna et al. [2] around the intermediate electrode).

Furthermore, an exact derivation of 〈je · E〉 in terms of
suitable variables is rather straightforward. Using the identity

〈je · E〉 = −〈∇ · φje〉 + 〈φ∇ · je〉 (25)

and making an extensive use of (6) and previous equations for
φ, Ie, and je⊥, one finds

〈je⊥E⊥〉 =
I2
e

〈σ⊥r2B2〉 −
Ie

en0

∂n0Te

∂λ
(26)

〈je‖E‖〉 =
∂

∂λ

(
〈r2B2κE〉

∂Te

∂λ

)

+ Te

〈(
∂ne

∂t
− ṅion

)
ln

ne

n0

〉

− TeΣ
(

jen

e
ln

ne

n0

)
(27)

with

κE = σ⊥
Te

e2
ln2 ne

n0
(28)

being an associated thermal diffusivity. The assignment of
terms of 〈je · E〉 to the parallel and perpendicular contributions
has been based on the fact that the variation of ne along a
streamline is due exclusively to E‖ [(9)], so that 〈je‖E‖〉 = 0
if ln ne were constant along a streamline.

The Joule heating and the work of the pressure perpendicular
gradient are easily identifiable in the compact expression for the
perpendicular electric work. The last contribution to the parallel
electric work is the product of the electron current density to the
lateral sheaths and an average potential fall along the streamline

− TeΣ
(

jen

e
ln

ne

n0

)
= −2π

∑
Q

jenQ

BQ · NQ
(φQ − φ0). (29)

E. Energy Conservation

The total energy conservation equation in the drift-diffusive
and isotropic-temperature limits is

∂

∂t

(
3
2
neTe

)
+ ∇ ·

(
5
2
Teneue + qe

)
= je · E − Q̇inel

(30)

where Q̇inel accounts for losses due to (single and double)
ionization and radiation from electron de-excitation.

The integral transform of this equation yields the evolution
equation for the internal energy density

∂

∂t

(
〈ne〉

3
2
Te

)
− ∂

∂λ

(
5Ie

2e
Te − 〈rBqe⊥〉

)
= 〈je · E〉 − 〈Q̇inel〉 − Σ(hen) (31)

with hen being the electron energy density flux into the two
Debye sheaths (which differs generally from the flux into the
walls).

Using (24), (26), and (27) for the heat flux and the electric
field work, the integral transform of (31) yields a classical
parabolic equation for the internal energy density

∂

∂t

(
〈ne〉

3
2
Te

)
− ∂

∂λ

(
5Ie

2e
Te

)

− ∂

∂λ

(〈
(κ⊥ + κE)r2B2

〉 ∂Te

∂λ

)

= −〈Q̇inel〉 +
I2
e

〈σ⊥r2B2〉 −
Ie

en0

∂n0Te

∂λ

+ Te

〈(
∂ne

∂t
− ṅion

)
ln

ne

n0

〉

− TeΣ
(

jen

e
ln

ne

n0

)
− Σ(hen) (32)

with κ⊥ + κE being the total thermal diffusivity (which is
proportional to Te).

Equation (32) completes the quasi-neutral formulation. Its
standard expression, as a parabolic partial differential equation
for Te, improves the previous 2-D formulations in hybrid codes,
which consisted in a temporal differential equation for Te and
∂Te/∂λ at discrete λ-nodes [10], [12], [31]. This discrete
equation was derived working with the integral terms of (5)
instead of using (6).

IV. SHEATH MODELS

The quasi-neutral model includes the following three fluxes
at the two sheath edges: jen, jsn, and hen. These must be
determined from appropriate sheath models for each type of
wall or electrode in terms of variables of the quasi-neutral
model. It turns out that these sheath models are strongly coupled
to the quasi-neutral model and must be solved simultaneously;
sometimes, this coupling leads to strong numerical instabilities.

Sheaths are also coupled with the PIC model for ions. In
most cases, sheaths are negative, i.e., they are ion attracting and
electron confining. Then, the sheath potential fall φWQ yields
the gain of ion perpendicular energy within the sheath, which
is necessary to compute the ion energy and angle at wall im-
pact, wherefrom the wall sputtering is computed [28]. Positive
sheaths present a stronger coupling with the PIC subcode, since
they reflect back ions of low perpendicular energy. Positive
sheaths also mean no electron confinement [40] and, therefore,
more complex parallel dynamics for electrons. Positive sheaths
are not common in Hall thrusters, but they are likely to form in
front of an electrode with high electron collection.

Different models of negative sheaths are currently imple-
mented in the hybrid code. First, there is the sheath model
for a metallic and current-driving electrode, which is used for
the thruster anode. The last version of this sheath model is
reported in [50, Sec. II. A]. Second, there is a sheath model
for a dielectric wall and thermalized electrons. This is basically
the model of Ahedo [13], implemented in HPHall-2, with
additional improvements on the electron distribution function,
and the inclusion of double ions and supersonic ion velocities
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at the sheath edge (these last ones arising from the time-
oscillatory behavior of the quasi-neutral plasma [50]). There are
two regimes in this model, depending on the sheath being or not
charge saturated. Third, there is a sheath model for a charge-
saturated, current-driving electrode (hereafter just called active
electrode), which simulates a hot thermionic emitter or equiva-
lent electrode. This will be used here for 2S discharges. Finally,
there is a sheath model for a dielectric wall and electron partial
thermalization, which considers that the distribution function
of primary electrons at the wall is a partially depleted half-
Maxwellian. First results with this last model confirm the large
sensitivity of the plasma response to the depletion of the tail
of collected electrons [49]. In particular, large reductions of the
sheath potential fall and power losses to the lateral walls are
found for 90% of tail depletion.

A. Models for Electron Total Thermalization

A comparison of the main features of the sheath models for
different types of walls, and thermalized primary electrons is
summarized here. For the sake of clarity, zero backscattering
of electrons at the wall is assumed. A collisionless negative
sheath between the wall W and the sheath edge Q is assumed.
The sheath is monotonic with φ (except very near the wall
in the charge-saturated regime), and the potential fall is φWQ.
The following two populations of electrons are taken into
account: the primary electrons (p) coming from the quasi
neutral plasma and the secondary electrons (s) coming from the
wall. Both populations are assumed to have a semi-Maxwellian
distribution function at the wall with temperatures Tα’s and
densities nαW ’s (where α = p, s). The characteristics of the ion
population at Q are known from the PIC subcode.

The current densities of the three species are constant within
the sheath. The two electron currents are

jpnQ = −enpW

√
2Tp

πme
jsnQ = ensW

√
2Ts

πme
. (33)

The electron total energy fluxes at W and Q are

henW = − 2
e
(TpjpnQ + TsjsnQ)

henQ =henW − φWQjenQ. (34)

The electron density within the sheath is

ne(φ) = npW exp
eφ − eφW

Tp

(
2 − erfc

√
eφ − eφW

Tp

)

+ nsW exp
eφ − eφW

Ts
erfc

√
eφ − eφW

Ts
. (35)

From a first integral of Poisson’s equation, the electric field
in the sheath, En = −∂φ/∂1n, satisfies (in the length scale
associated to the Debye length)

E2
n  2

ε0

φQ∫
φ

(ρi − enp − ens) dφ (36)

with ρi(φ) being the ion electric charge. Charge saturation
(CS) conditions are obtained when the electric field at the wall
becomes zero, which is for

e

φQ∫
φW

(np + ns)dφ =

φQ∫
φW

ρi dφ. (37)

At the CS limit, the total electric charge within the sheath is
zero, and the sheath becomes a double layer [51]. Beyond the
CS limit, a potential well (on the order of Ts/e) is formed
in order to reflect back to the wall part of the electron wall
emission. In this way, the potential well acts as an automatic
control of the secondary emission that reaches the quasi-neutral
plasma. In general, Ts is small compared to the sheath potential
fall, and the dimensionless sheath solution within the CS regime
is the one at the CS limit.

The temperature of secondary electrons (Ts) is considered
known (∼1–3 eV). Then, four conditions are needed in order to
determine φWQ, Tp, npW , and nsW . Two of them are related to
the fact that electrons are modeled with a single population (e)
in the quasi-neutral plasma and with two populations inside the
sheath. The continuity of neQ and (∂neQ/∂φ)Q using (9) and
(35) at each side of the sheath edge is needed to assure a good
matching of electron flow properties [13].

The other two conditions depend on the type of wall. For
a dielectric material, we have the following: 1) The electric
current is zero (jinQ + jenQ = 0), and 2) the SEE yield curve
of the material δsp(Tp) ≡ −jsnQ/jpnQ is known. For each
material, the sheath reaches the CS limit at certain temperature
(T ∗

p ). For a CS dielectric wall, which is for Tp > T ∗
p , the

last condition becomes −jsnQ/jpnQ = δsp(T ∗
p ). For an active

electrode, where electron emission is limited by CS conditions
at the electrode surface, the following are noted: 1) The CS
condition (37) is imposed, and 2) either jnQ or φW is known.
For a metallic material, we normally impose the following:
1) SEE is negligible, and 2) φW is known.

Electron fluxes and sheath potential falls for dielectric walls
with different SEE yields (and electron total thermalization)
are given in [13]. For a dielectric material with a crossover
temperature T1 for the SEE yield, the contributions to the term∑

(hen) for energy losses at the sheath edges in (32) scale as

henQ(Te, T1) ∝ neQT 3/2
e × β(Te/T1) (38)

with β being about 15 times larger for CS conditions than
for zero SEE [13], [17]. In the case of electron partial ther-
malization, the scaling law (38) continues to be valid, with β
decreasing as the thermalization mean free path increases [22].

Fig. 2 shows electron fluxes and sheath potential falls for an
active electrode and simple ion flow conditions. Although the
electrode is always an emitter of secondary electrons (jsnQ >
0), the sign of the net electric current distinguishes the floating
(jnQ = 0), collection (jnQ < 0), and emission modes (jnQ >
0) of operation (notice that the usual convention in terms of
the negative electric current is used). In all modes, the electron
fluxes are much larger than the ion flux: jpnQ  jsnQ � jinQ.
In general, we expect the active electrode to operate with
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Fig. 2. Characteristics of an electron-emitting electrode in terms of the total-
current-to-ion-current ratio. (a) Nondimensional primary, secondary, and net
electron currents. (b) Nondimensional energy fluxes into the sheath and the
wall. (c) Nondimensional sheath potential fall. (d) Nondimensional secondary
electron density in the sheath edge. All results shown are computed assuming a
sonic ion flux composed only by singly charged cold ions and zero secondary
electron temperature.

eφWQ/Te ∼ 1 and Ts � Tp. Then, secondary emission makes
a small contribution to the plasma density in the quasi-neutral
region, nsQ � neQ, and to energy wall losses. On the contrary,
it contributes strongly to decrease the energy flux at the sheath
edge in the emission mode, which can be expressed as

henQ(Te, jnQ)  Te

e

(
2|jpnQ| −

eφWQ

Te
jnQ

)
(39)

or, using a linear fitting from numerical results, as

ehenQ

TejinQ
≈ 140 − 2.3

jnQ

jinQ
. (40)

The energy flux into the sheath changes from positive
to negative for jsnQ/|jpnQ| ∼ 2.44, which corresponds to
jnQ/jinQ ∼ 61.2. Therefore, an active electrode in the
high-emission mode (which can be defined vaguely by
jnQ/jinQ > 100) heats the quasi-neutral plasma at a rate of
henQ(Te, jnQ) ∼ −φWQjnQ.

V. CLOSURE OF THE ELECTRON MODEL

Once the sheath models are matched, (9), (14), (22), and
(32) constitute a closed set of coupled equations for Te(λ),
Ie(λ), φ0(λ), and φ(λ, σ) in terms of magnitudes known from
the PIC subcode. Once these magnitudes are known, the three
components of je(λ, σ) come out from (18), (23), and the
integration of (13) along each streamline.

A. Boundary Conditions

The electron model equations require four conditions at the
boundary streamlines: λA in the anode side and λP in the near
plume. Normally, these conditions are IeP , TeP , (∂Te/∂λ)|A,
and the point of zero potential. The virtual cathode is chosen as
the zero potential point, and then, the potential at the metallic
anode coincides with the discharge potential, Vd. Additionally,
(13) requires the boundary condition

je‖Q =
jen − je⊥1⊥ · 1n

1‖ · 1n

∣∣∣∣
Q

(41)

at the sheath edge where the integration starts; the fulfillment of
(14) assures that the same condition is satisfied automatically at
the other sheath edge.

There are several issues related to the anode and cathode
boundaries that are discussed hereafter. The closure of (14),
(22), and (32) at the anode is delicate since, first, the anode
surface does not coincide with a streamline generally, and
second, the sheath is nonuniform, with its parameters (potential
fall, current density, etc.) varying along the anode surface.
The treatment of the region lying between the anode and
the streamline tangent to it (the “separatrix”) is discussed in
[37, Sec. II]. Basically, the procedure consists of the follow-
ing: 1) A streamline intersecting the anode is used in order
to define an effective value of λA and integrate the afore-
mentioned equations on λ; 2) plasma variable values at the
sheath edge are obtained by usual bilinear interpolation; and
3) at each anode point, the anode sheath model is used to relate
edge and wall magnitudes. In certain magnetic topologies [25],
the region between the anode and the separatrix is quite large,
and the accuracy of the solution is reduced there.

The difficulties at the anode suggest that, whenever possi-
ble, the plume boundary λP should coincide with a magnetic
streamline. Then, a “cathode model” for the neutralization of
the ejected ion beam must be formulated. The simplest model
consists of taking the streamline λP as the one intersecting the
cathode. Then, TeP is the emission temperature, and

IeP = IP − IiP (42)
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with IP being the discharge current delivered by the exter-
nal circuit through the cathode. In a thruster without internal
electrodes, IP is the discharge current at the anode (Id). If
the external electric circuit fixes the discharge current Id, two
iterations are needed to adjust the parameters of the anode
sheath [37].

Although Id is a natural boundary condition of a 1S electron
model, the control of the discharge voltage Vd is more common
in practice. When the external circuit fixes Vd instead of Id,
an iteration on Id must be carried out so that Vd(Id) converges
to the desired value. In certain cases, when this convergence
has been elusive or fragile because of numerical instabilities,
strategies based on fixing the discharge power, Pd(Id) = IdVd,
have been successful [49]. Additional convergence issues can
arise in 2S thrusters, depending on the constraints imposed by
the external circuit on the intermediate electrode.

The electron formulation presented here allows the imple-
mentation of other cathode models and plume boundary con-
ditions. The wall cathode model formulated in [37, Sec. III] is
one of them. It consists of taking IP = 0 in (42) and placing an
emissive annular cathode at a wall location of the near plume.
Electrons injected at this cathode spread quickly along the
neutralization band formed by the stream surfaces intersecting
the cathode. Thus, the discharge can be considered 2S with a
“main (inner) stage” between the anode and the cathode and an
“outer stage” extending beyond the cathode location.

The wall cathode model tries to approach the actual physics
of the cathode/plasma interaction and facilitates the simulation
of the plume region beyond the cathode, where the magnetic
field vanishes; there lies generally the upstream boundary of
simulation codes of the external plume. However, the con-
vergence of the wall cathode model is sometimes difficult to
achieve, because of the high sensitivity of the sheath solution to
variations in the parameters. A practical alternative to the wall
cathode model, which avoids largely its numerical instabilities,
is the volumetric cathode model presented in [49, Sec. III].
In this model, extra source terms are added to the electron
fluid equations in order to model directly the neutralization
band. This model behaves much better numerically and yields
a plasma response that is very similar to the wall cathode
model.

B. Numerical Method

The energy equation (32) is first transformed in a noncon-
servative equation for the temperature advection. This one is
discretized spatially with first-order finite differences, whereas
an explicit Euler scheme is used for the temporal discretization
[i.e., forward in time and centered in space (FTCS)]. In order
to preserve the order of the numerical error on λ of the FTCS
scheme, a second-order accurate Adams–Bashforth method is
used for the discretization of the ordinary differential equations
governing the electron current and the thermalized potential
[(14) and (22)]. This method must take into account that the
λ-intervals are not uniform. An additional spatial discretization
is used along the streamlines in order to compute the χ-integral
coefficients present in the formulation. Fig. 1(c) shows a typical
mesh on λ and χ.

Since the FTCS method is conditionally stable for diffusion-
dominated problems, the electron time step δt is constrained
to values on the order of 5 · 10−10 s so that numerical stability
is preserved. This value is more than two orders of magnitude
lower than the time step Δt used by the PIC subcode. However,
it prevents any numerical instability even in those regions where
the advection term dominates over the heat diffusion term.
Hence, around 200 temporal advances are carried out in each
execution of the electron subcode. This is a disadvantage of this
numerical method that causes an increase in the time required
to carry out the simulations. In any case, the overall time
spent by the simulation in the PIC and electron subcodes is
comparable.

The proposed differential formulation allows the implemen-
tation of more accurate and faster numerical methods in a
relatively simple way. In particular, an implicit unconditionally
stable scheme, as the one proposed by Hagelaar et al. [31],
would permit the use of the same time step in the electron
and PIC subcodes. Another possible improvement would be
the use of a finite-volume approach since it is more suited for
conservation laws like (32). However, current results are rather
acceptable in terms of overall energy conservation, as shown in
Section V.

C. Comparison With Other Models

The proposed electron model improves the previous ones by
Fife [10] and Parra et al. [12] in several ways. First, the conser-
vation equations admit exchanges of electric current through the
lateral walls, making the resulting code applicable to multistage
and TAL-type Hall thrusters. Second, a sheath model for active
electrodes has been added. Third, the formulation of the energy
equation as a standard parabolic equation facilitates the inter-
pretation and evaluation of the different physical phenomena
involved in it. It also eases the implementation of more accurate
and stable integration schemes, such as the implicit method of
Hagelaar et al. [31]. Fourth, the formulation is more accurate
since no approximation has been made in the derivation of
the energy conservation equation on λ, where the work of
the electric field is computed exactly. Fifth, the 2-D character
of the model (for regular magnetic topologies) has been fully
developed with the determination of the whole electron current
density vector je. Finally, the comparison of this differential
formulation with r-averaged axial models [14], [17] is simpler.
In particular, the present model recovers the 2S 1-D fluid model
of Ahedo and Parra [1] in the steady-state case except for the
work of the parallel electric field.

Our model keeps the restriction of dealing with regular mag-
netic topologies (although singular topologies could be handled
by matching different regular subdomains). This restriction is
removed by Pérez-Luna et al. [2], who solve (10)–(12), and
(30) directly in the cylindrical frame. For regular magnetic
topologies, where the two models are comparable, there are two
main differences. First, the use of (9) lowers significantly, in
our case, the computational cost by separating the computation
of Te and φ from that of je, which is then reduced to simple
quadratures along the streamlines. Second, Pérez-Luna et al. do
not couple the quasi-neutral electron model to a sheath model.
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Instead of our term
∑

(hen) in (32), they have a volumetric term
〈ne〉W (Te) with

W (Te, T0) = νW Te exp(−T0/Te) (43)

where νW and T0 are adjustable parameters. This function does
not agree with the scaling law (38) for a dielectric wall, and is
certainly less suitable for the energy fluxes at the sheath edge
of an active electrode, where (40) applies. Finally,

∑
(hen) adds

contributions from the inner and outer walls, which can be quite
different when the walls are, for instance, an active electrode
and a dielectric material.

VI. RESULTS AND DISCUSSION

Results for both 1S and 2S configurations are presented
here in order to illustrate the new features of the electron
formulation, the importance of the sheath models, and the
sensitivity of the thruster performances to changes in the lateral
walls. However, neither a deep comparison with experimental
results nor a parametric study of different operation parameters
is carried out.

Simulations are performed for the SPT-100 thruster of
Fig. 1(a). Nominal operation conditions are Vd = 300 V, ṁA ≈
4.85 mg/s of xenon, and the magnetic topology of Fig. 1(d). The
PIC subcode mesh is shown in Fig. 1(a), whereas the magnetic
grid used by the electron subcode is shown in Fig. 1(c). The
cathode electrons are injected in the plume boundary at TeP =
5.5 eV, i.e., neither the volumetric cathode nor the wall cathode
models are used. Ceramic walls and total electron thermaliza-
tion are assumed as well. Ceramics walls are characterized by
E1 = 47.7 eV, with E1 being the energy of a monoenergetic
beam yielding 100% of SEE, which corresponds to a crossover
temperature T1  32 eV. Regarding the mass and heat transport
of electrons, αturb ≈ 0.01 and αq = 1 are kept constant in all
simulations.

Most of the results shown hereafter are time averages. These
results are obtained by averaging 0.5 ms of simulation after a
transitory period of 0.2 ms. Previous experiences have shown
this methodology to yield results less than 1% different with
respect to simulations that are five times longer.

In the 2S configurations, the intermediate electrode ex-
changes a current Id1 with the surrounding plasma, and the
electrode-to-anode potential is Vd1. If Id2 is the current ex-
changed by the external cathode, the discharge current at the
anode is Id = Id1 + Id2, and the discharge power is

Pd = Id2Vd + Id1Vd1 ≡ IdVd − Id1(Vd − Vd1). (44)

In all cases, the discharge voltage Vd is used as fixed operation
parameter. The cathode current Id2, being the natural boundary
condition, must be iterated until the desired value of Vd is
achieved. Simulations with an active electrode are run at fixed
current Id1 instead of at fixed voltage Vd1. The reason is the
large slope in the current–voltage characteristic of an active
electrode, with ∂ ln jnQ/∂ lnφWQ � 1 (Fig. 2). This is the
same argument one has for simulating the anode-to-cathode
circuit with fixed Vd instead of a fixed Id2. Thus, Vd1 is an
output of the simulation, which is obtained from the solution

for φ(z, r) and the electrode sheath model presented earlier.
Propellant, current, voltage, plume, and thruster efficiencies are
defined, respectively, as

ηu = miIiP /eṁA

ηc = IiP Vd/Pd

ηv = PiP /IiP Vd

ηp = F 2
i

/
2ṁiP Pd

η = F 2/2ṁAPd (45)

with ṁiP , IiP , and PiP being the ion mass flow, beam current,
and kinetic power, respectively, at the plume boundary; F
being the overall thrust accounting for particle momentum and
electron pressure; Fi being the thrust due to the ion beam; and
the rest of the symbols as usual.

A. One-Stage Thruster

The results for the 1S thruster are presented here to discuss
the relevance of the proposed formulation. These results are
also used as a reference for the 2S simulations.

The performances of 1S operation shown in Table I are worse
than in practice. This is mainly due to the excessive energy
losses at the lateral walls inherent to the total thermalization
model. The partial thermalization model under development is
aimed to solve this discrepancy with experiments [49]. Nev-
ertheless, the model can be used to analyze the influence of
various operation parameters and to compare different thruster
configurations, in particular, 1S with respect to 2S operation.

Table II shows the contributions of the different terms to
the time-averaged energy balance and the corresponding error,
when the electron energy equation (31) is expressed as

Pelec,e + Pcathode = Pioniz + Plateral,e + Panode,e. (46)

Here, Pelec,e is the work of the electric field, Pcathode is the
amount of energy introduced with the electron current at the
plume boundary, Pioniz represents losses due to ionization and
radiation, and Plateral,e and Panode,e represent energy losses
into the lateral and anode sheaths, respectively. This time-
averaged balance is excellent, with an error smaller than 1% of
the discharge power, which is partly due to a nonzero average
of the temporal derivative. Furthermore, the corresponding es-
timated error is less than 0.5 W in each iteration if the temporal
term is accounted for properly.

Table II also shows the time-averaged perpendicular and
parallel contributions to the electric work (Pelec,e⊥ and Pelec,e‖,
respectively). These values prove that the parallel contribution
cannot be neglected in the computations. The corresponding
time-averaged spatial distribution is shown in Fig. 3(a) where
significant differences between the overall electric work and the
perpendicular contribution are observed.

Another illustration of the influence of the parallel electric
work is shown in Fig. 3(b). This figure shows the ratio between
the average perpendicular thermal diffusivity and the equivalent
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TABLE I
PARAMETERS OF OPERATION AND PERFORMANCES OBTAINED IN THE 1S CONFIGURATION AND SEVERAL 2S CONFIGURATIONS WITH THE ELECTRODE

EXCHANGING AN ELECTRIC CURRENT Id1 WITH THE PLASMA. OTHER OPERATION PARAMETERS ARE Vd = 300 V, ṁA ≈ 4.85 mg/s, AND

Br,max ≈ 230 G. IiW IS THE ION CURRENT RECOMBINED AT THE LATERAL WALLS. 1 INDICATES THAT THE MAGNETIC FIELD STRENGTH

HAS BEEN INCREASED UNTIL THE DISCHARGE POWER EQUALS THAT OF THE 2S FLOATING ELECTRODE CASE. 2 CORRESPONDS

TO A SIMULATION WITH A 2-mm-THICK ELECTRODE CENTERED AT 16 mm FROM THE ANODE

TABLE II
TIME-AVERAGED VALUES OF THE CONTRIBUTIONS TO THE ELECTRON ENERGY BALANCE FOR THE 1S CASE

Fig. 3. (a) Overall and perpendicular electric work. (b) Ratio between the
average perpendicular thermal diffusivity κ⊥ and the equivalent thermal dif-
fusivity due to the parallel electric work κE along the channel median. Note
that the z-scales are different in these figures, and the units in (a) are associated
to the magnetic integral operator. The dashed line in (b) represents the thruster
chamber exit plane. Results correspond to the 1S configuration.

thermal diffusivity due to 〈je‖E‖〉. This ratio is greater than
15% in the near plume where 2-D effects are quite significant
due to the important variation of the plasma density along the
streamlines. Inside the thruster chamber, this ratio is smaller,
although it can be up to 6% near the anode. Notice that the
influence of κE would be larger if thermal diffusivity were
partially inhibited with respect to mass diffusivity, i.e., if αq

in (24) were less than one.

B. Two-Stage Thruster

A 2S configuration built with a 5-mm-thick annular electrode
placed on the outer wall and centered at 15 mm from the anode

[Fig. 1(a)] is analyzed here. Its location follows the common 2S
design, where the electrode is placed between the ionization and
acceleration regions. The magnetic field topology is unchanged
with respect to the 1S simulations.

The 1-D fully fluid model of Ahedo and Parra [1] for 2S
discharges showed that an ideal electron-emitting electrode can
enhance significantly the efficiency of the plasma discharge
if the electrode is located and biased conveniently, and the
magnetic field is adjusted too. In their simulations, the optimal
electrode-to-anode distance was around 15 mm for a SPT-100
thruster under the operation conditions considered here. Based
on this work, the same location has been used in this paper,
and the strength of the magnetic field is modified in order to
optimize the thruster performances in 2S operation. Table I and
Figs. 4–7 show results of the simulations carried out for the 1S
configuration of reference and several 2S cases with varying
electrode current.

For Id1 = 0, the electrode is at floating potential. Observe in
Table I the differences in performance between this case and
the 1S case: The ion current lost into the lateral walls (IiW ) has
been reduced to about one-half, and the thrust efficiency has
been increased significantly. This illustrates the large sensitivity
of the plasma discharge to the interaction with the walls. In this
case, a 5-mm segment of the ceramic wall, with a moderate SEE
(∼73%), is substituted by a high-emission electrode, which has
a stronger contact with the plasma: The sheath potential fall
satisfies eφWQ/Te ≈ 4.32 for the 5-mm segment of ceramic
wall and eφWQ/Te ≈ 1.13 for the floating active electrode
(Fig. 5). Since energy losses of primary electrons are propor-
tional to neQ

√
Te exp(−eφWQ/Te), the lower sheath fall for

the emissive electrode implies (for the same thermal flux) a
much larger energy loss. From Figs. 5 and 7, it seems that
the plasma tries to reduce the impact of the low sheath fall
by reducing the plasma density there. This adjustment modifies
ultimately a large part of the density and temperature profiles
(Figs. 5 and 7). As a result, the energy losses to the inner
wall are much lower for the floating 2S configurations than
for the 1S one (Fig. 5). Curiously, the different trends of ne
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Fig. 4. One-dimensional (time-averaged) plasma profiles at the channel me-
dian for the 1S thruster and a 2S thruster with the intermediate electrode placed
at z = 15 mm and emitting different electric currents Id1’s.

and Te result in similar profiles for the ionization source ṅi. A
consequence of keeping almost the same ṅi and the reduction
of the ion current to the wall is a larger axial ion current density
in the plume and a smaller radial current (Fig. 6), which would
result in a lower plume divergence. This is consistent with the
increased plume efficiency reported in Table I.

In order to assess the influence of the electrode current, a
parametric variation has been carried out on Id1, ranging from
0 to 2 A. Results in Table I indicate a small improvement
in the overall efficiency for the Id1 = 1 A case with respect
to the floating electrode configuration due to an enhanced
acceleration process (ηv) compensated by the decrease of the
current efficiency (ηc). This suggests that the magnetic field
should be optimized for this 2S case. Then, as the electrode
current continues to increase, efficiency drops slowly, possibly
because the main ionization takes place too upstream and the
increase of losses to the walls.

The optimization of the magnetic strength is carried out on
the Id1 = 1 A case since its performance is the best among
the previous 2S simulations at constant magnetic field. In

Fig. 5. One-dimensional plasma profiles at the (left plots) outer and (right
plots) inner sheath and wall for the same cases than Fig. 4.

Fig. 6. Axial and radial ion current densities at the chamber exit section for
the same configurations than Fig. 4.

order to compare properly thruster performances, the magnetic
field strength is increased until the discharge power Pd [(44)]
equals the floating electrode case. An increase of 25% suffices
to achieve this goal. Performance results shown in Table I
indicate that a relevant efficiency improvement is achieved for
the same Pd and ṁA as in the 2S floating electrode case.
This improved performance comes from the enhanced current
utilization, which does not affect negatively the ionization and
acceleration processes. Similar conclusions were obtained by
Ahedo and Parra [1] with their 1-D fluid model.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:05 from IEEE Xplore.  Restrictions apply.



ESCOBAR AND AHEDO: 2-D ELECTRON MODEL FOR A HYBRID CODE OF A TWO-STAGE HALL THRUSTER 2055

Fig. 7. Two-dimensional plasma maps of ne, φ, and jiz for (left plots) the 1S
configuration and (right plots) the 1A-Bopt 2S configuration of Figs. 4 and 5,
respectively.

Ahedo and Parra [1] find that the electron-collecting mode
leads always to efficiency deterioration. A 2S simulation of
the electron-collecting mode, Id1 = −0.5 A, is reported in
Table I and confirms the quick decrease of efficiency in this
mode. This is explained by the fact that part of the electron
current emitted by the cathode is heated up in the acceleration
region but is collected by the electrode before ionizing the gas.
Pérez-Luna et al. [2] have also simulated 2S configurations in
the electron-collecting mode. In their study, a doubly peaked
magnetic field is used, and the electrode control parameter
is the anode-to-electrode potential, with the electrode current
being an output of the simulation. However, they do not use a
sheath model for the active electrode, and thus, the potential
that they are actually fixing is not the electrode potential,
φW = Vd − Vd1, but the sheath edge potential, φQ = Vd −
Vd1 + φWQ, which, in practice, is self-adjusted by the plasma.
Curiously, they find that the electrode cannot operate in the
electron-emitting mode within a reasonable range of physical
parameters. One possible explanation is that they place the
electrode between the two magnetic peaks, where the magnetic
streamlines are near-parallel to the electrode instead of near-
perpendicular. This would force the electrode to act as an extra
anode rather than as an intermediate cathode.

A characteristic of the intermediate electrode which is found
to be more relevant than expected from the Ahedo–Parra model

is its surface Aae. For a fixed electrode current Id1, the injected
electric current density is inversely proportional to that surface
(jnQ = Id1/Aae). Then, for fixed plasma conditions, one has
jnQ/jinQ ∝ A−1

ae , and (40) states that the smaller the electrode
surface is, the deeper the electrode operates in the emission
mode and the more favorable the energy exchange at the sheath
edge is. For instance, in the simulation for Id1 = 1.5 A with the
5-mm electrode placed at the outer wall, we have jnQ/jinQ ∼
22, and Te ∼ 14 eV, which means that

∫
Aae

henQdA ∼ 100 W.
For the same plasma conditions and the 1-mm-thick electrode,
it would be jnQ/jinQ ∼ 110 and

∫
Aae

henQdA ∼ −140 W,
i.e., the electrode delivers energy into the bulk of the plasma. As
an example, performances corresponding to a simulation with
a 2-mm electrode in the outer wall centered at 16 mm from the
anode are shown in Table I.

Ahedo and Parra consider the active electrode to be infinitely
thin. Then, no electrode sheath needs to be considered, with
the energy exchange with the sheath being included as a source
term in the 1-D equations (proportional to −Id1), and since the
model is 1-D, the electrode potential Vd1 is approximated by
the radially averaged plasma potential (quite similarly to the
way Pérez-Luna et al. treat the electrode in their otherwise 2-D
quasi-neutral model). Therefore, an infinitely thin electrode
operates only on the “high” emission and collection modes.
Furthermore, the floating mode coincides exactly with the 1S
configuration since

∫
Aae

henQdA = 0.

VII. CONCLUSION

The 2-D electron model presented here features relevant im-
provements over the previous version implemented in a hybrid
code for Hall thrusters, which have been summarized already
in Section V-C. The main one is the admission of exchange
of electric current through lateral walls and segmented elec-
trodes, which augments significantly the range of application
of the resulting hybrid code. In order to illustrate the code’s
new capabilities, 2S configurations with an intermediate active
electrode have been simulated and analyzed. The electrode can
operate in (negative)-current-emission and collection modes,
as well as in the floating mode. In the high-emission and
collecting modes, results coincide practically with those of
Ahedo and Parra with a 1-D fully fluid model and an infinitely
thin electrode. Thus, 2-D simulations confirm that efficiency
increases promisingly in the emission mode if the magnetic
field strength is optimized; efficiency decreases in the collection
mode, since the intermediate electrode acts as a first anode
which collects electrons before they reach the ionization region.
Nonetheless, two-dimensionality and electrode finite-size bring
up features not unveiled by the Ahedo–Parra model. The most
illustrative example is the large differences between the 1S and
the floating-mode 2S responses. The stronger plasma–electrode
contact of a thick active electrode in the floating mode modifies
globally the temperature and density profiles, resulting in lower
energy loss and plume divergence, and a larger efficiency.

To conclude, the simulations here illustrate on the potential
benefits of segmented electrodes in order to shape the plasma
response and enhance thruster performances. At the same time,
they show plasma behaviors which are not evident from our
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understanding of 1S discharges. For us, this is another proof
of the strong nonlocal coupling among the various physical
phenomena competing in a Hall thruster plasma and one of
the reasons to explain the difficulties on succeeding with 2S
prototypes. In order to assess correctly the plasma response in
multistage discharges, a more profound and systematic inves-
tigation needs to be carried out, including a wider group of
electrodes. This will also allow one to contrast this 2S model
with the large set of experiments carried out by Raitses et al.
[5]–[7] with different segmented electrodes in different config-
urations, where many aspects are needed of interpretation yet.
For the moment, the model and experiments are not at odds
at least in the following two aspects: the possibility of plume
divergence reduction with segmented electrodes and the large
sensitivity of the plasma to wall and electrode conditions.

ACKNOWLEDGMENT

The authors would like to thank F. Parra for the insightful
discussions.

REFERENCES

[1] E. Ahedo and F. I. Parra, “A model of the two-stage Hall thruster
discharge,” J. Appl. Phys., vol. 98, no. 2, pp. 023 303-1–023 303-11,
Jul. 2005.

[2] J. Pérez-Luna, G. J. M. Hagelaar, L. Garrigues, and J. P. Boeuf, “Model
analysis of a double-stage Hall effect thruster with double-peaked mag-
netic field and intermediate electrode,” Phys. Plasmas, vol. 14, no. 11,
pp. 113 502-1–113 502-10, Nov. 2007.

[3] H. R. Kaufman, “Technology of closed-drift thrusters,” AIAA J., vol. 23,
no. 1, pp. 78–87, Jan. 1985.

[4] R. R. Hofer, P. Y. Peterson, A. D. Gallimore, and R. S. Jankovsky, “A
high specific impulse two-stage Hall thruster with plasma lens focusing,”
presented at the 7th Int. Electric Propulsion Conf., Pasadena, CA, 2001,
IEPC-01-036.

[5] Y. Raitses, L. A. Dorf, A. A. Litvak, and N. J. Fisch, “Plume reduction
in segmented electrode Hall thruster,” J. Appl. Phys., vol. 88, no. 3,
pp. 1263–1270, Aug. 2000.

[6] N. J. Fisch, Y. Raitses, L. A. Dorf, and A. A. Litvak, “Variable operation of
Hall thruster with multiple segmented electrodes,” J. Appl. Phys., vol. 89,
no. 4, pp. 2040–2046, Feb. 2001.

[7] Y. Raitses, D. Staack, and N. J. Fisch, “Plasma characterization of Hall
thruster with active and passive segmented electrodes,” presented at the
38th Joint Propulsion Conf., Indianapolis, IN, 2002, AIAA-2002-3954.

[8] Y. Yamagiwa and K. Kuriki, “Performance of double-stage-discharge Hall
ion thruster,” J. Propuls. Power, vol. 7, no. 1, pp. 65–70, Jan./Feb. 1991.

[9] B. Pote and R. Tedrake, “Performance of a high specific impulse Hall
thruster,” presented at the 27th Int. Electric Propulsion Conf., Pasadena,
CA, 2001, IEPC-01-035.

[10] J. M. Fife, “Hybrid-PIC modeling and electrostatic probe survey of Hall
thrusters,” Ph.D. dissertation, MIT, Cambridge, MA, 1998.

[11] J. C. Adam, A. Herón, and G. Laval, “Study of stationary plasma thrusters
using two-dimensional fully kinetic simulations,” Phys. Plasmas, vol. 11,
no. 1, pp. 295–305, Jan. 2004.

[12] F. I. Parra, E. Ahedo, J. M. Fife, and M. Martínez-Sánchez, “A two-
dimensional hybrid model of the Hall thruster discharge,” J. Appl. Phys.,
vol. 100, no. 2, pp. 023 304-1–023 304-11, Jul. 2006.

[13] E. Ahedo, “Presheath/sheath model with secondary electron emission
from two parallel walls,” Phys. Plasmas, vol. 9, no. 10, pp. 4340–4347,
Oct. 2002.

[14] E. Ahedo, J. M. Gallardo, and M. Martínez-Sánchez, “Effects of the radial
plasma–wall interaction on the Hall thruster discharge,” Phys. Plasmas,
vol. 10, no. 8, pp. 3397–3409, Aug. 2003.

[15] F. I. Parra and E. Ahedo, “Fulfillment of the Bohm condition on the
HPHall fluid-PIC code,” presented at the 40th Joint Propulsion Conf., Fort
Lauderdale, FL, 2004, AIAA 2004-3955.

[16] N. B. Meezan and M. A. Capelli, “Kinetic study of wall collisions in a
coaxial Hall discharge,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 66, no. 3, p. 036 401, Sep. 2002.

[17] S. Barral, K. Makowski, Z. Peradzynski, N. Gascon, and M. Dudeck,
“Wall material effects in stationary plasma thrusters. II. Near-wall and

in-wall conductivity,” Phys. Plasmas, vol. 10, no. 10, pp. 4137–4152,
Oct. 2003.

[18] E. Ahedo and F. I. Parra, “Partial trapping of secondary-electron emission
in a Hall thruster plasma,” Phys. Plasmas, vol. 12, no. 7, p. 073 503,
Jun. 2005.

[19] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and A. Smolyakov, “Ki-
netic effects in a Hall thruster discharge,” Phys. Plasmas, vol. 14, no. 5,
pp. 057 104-1–057 104-11, May 2007.

[20] F. Taccogna, S. Longo, and M. Capitelli, “Plasma sheaths in Hall
discharge,” Phys. Plasmas, vol. 12, no. 9, pp. 093 506-1–093 506-14,
Sep. 2005.

[21] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, “Kinetic
simulation of secondary electron emission effects in Hall thrusters,” Phys.
Plasmas, vol. 13, no. 1, pp. 014 501-1–014 501-4, Jan. 2006.

[22] E. Ahedo and V. de Pablo, “Combined effects of electron partial ther-
malization and secondary emission in Hall thruster discharges,” Phys.
Plasmas, vol. 14, no. 8, p. 083 501, Aug. 2007.

[23] J. M. Fife and M. Martínez-Sánchez, “Comparison of results from a
two-dimensional numerical SPT model with experiment,” presented at
the 32nd Joint Propulsion Conf., Lake Buena Vista, FL, 1996, AIAA-
1996-3197.

[24] J. J. Szabo, M. Martínez-Sánchez, and J. Monheiser, “Application of 2-D
hybrid PIC code to alternative Hall thruster geometries,” presented at the
34th Joint Propulsion Conf., Cleveland, OH, 1998, AIAA-1998-3795.

[25] E. Ahedo, I. Maqueda, A. Antón, Y. Raitses, and N. Fisch, “Numerical
simulations of a 2kW Hall thruster,” presented at the 42th Joint Propulsion
Conf., Sacramento, CA, 2006, AIAA-2006-4655.

[26] D. Escobar, A. Antón, and E. Ahedo, “Simulation of high-specific-
impulse and double-stage Hall thrusters,” presented at the 29th Int. Elec-
tric Propulsion Conf., Princeton, NJ, 2005, IEPC-2005-040.

[27] M. Gamero-Castaño and I. Katz, “Estimation of Hall thruster erosion
Using HPHall,” presented at the 29th Int. Electric Propulsion Conf.,
Princeton, NJ, 2005, IEPC-2005-303.

[28] E. Ahedo, A. Antón, I. Garmendia, I. Caro, and J. González del Amo,
“Simulation of wall erosion in Hall thrusters,” presented at the 30th Int.
Electric Propulsion Conf., Florence, Italy, 2007, IEPC 2007-067.

[29] R. Hofer, I. Mikellides, and I. Katz, “BPT-4000 hall thruster discharge
chamber erosion model comparison with qualification life test data,” pre-
sented at the 30th Int. Electric Propulsion Conf., Florence, Italy, 2007,
IEPC-2007-267.

[30] S. Cheng and M. Martinez-Sanchez, “Modeling of Hall thruster lifetime
and erosion mechanisms,” presented at the 30th Int. Electric Propulsion
Conf., Florence, Italy, 2007, IEPC-2007-250.

[31] G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J. P. Boeuf, “Two-
dimensional model of a stationary plasma thruster,” J. Appl. Phys., vol. 91,
no. 9, pp. 5592–5598, May 2002.

[32] J. P. Boeuf and L. Garrigues, “Low frequency oscillations in a station-
ary plasma thruster,” J. Appl. Phys., vol. 84, no. 7, pp. 3541–3554,
Oct. 1998.

[33] M. K. Scharfe, N. Gascon, M. A. Cappelli, and E. Fernandez, “Compari-
son of hybrid Hall thruster model to experimental measurements,” Phys.
Plasmas, vol. 13, no. 8, pp. 083 505-1–083 505-12, Aug. 2006.

[34] G. J. Hagelaar, “Modelling electron transport in magnetized low-
temperature discharge plasmas,” Plasma Sources Sci. Technol., vol. 16,
no. 1, pp. 57–66, Jan. 2007.

[35] D. Escobar and E. Ahedo, “Improved electron formulation for a Hall
thruster hybrid model,” presented at the 42th Joint Propulsion Conf.,
Sacramento, CA, 2006, AIAA-2006-4326.

[36] F. Parra, D. Escobar, and E. Ahedo, “Improvements on particle accuracy
in a Hall thruster hybrid code,” presented at the 42th Joint Propulsion
Conf., Sacramento, CA, 2006, AIAA-2006-4830.

[37] A. Antón, D. Escobar, and E. Ahedo, “Contour algorithms for a Hall
thruster hybrid code,” presented at the 42th Joint Propulsion Conf.,
Sacramento, CA, 2006, AIAA-2006-4834.

[38] R. D. Hazeltine and J. D. Meiss, Plasma Confinement. Redwood City,
CA: Addison-Wesley, 1992.

[39] J. M. Haas and A. D. Gallimore, “An investigation of internal ion num-
ber density and electron temperature profiles in a laboratory-model hall
thruster,” presented at the 36th Joint Propulsion Conf., Huntsville, AL,
2000, AIAA 2000-3422.

[40] E. Ahedo and D. Escobar, “Two-region model for positive and negative
plasma sheaths and its application to Hall thruster metallic anodes,” Phys.
Plasmas, vol. 15, no. 3, p. 033 504, Mar. 2008.

[41] G. F. Chew, M. L. Goldberger, and F. E. Low, “The Boltzmann equation
and the one-fluid hydromagnetic equations in the absence of particle
collisions,” Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 236, no. 1204,
pp. 112–118, Jul. 1956.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:05 from IEEE Xplore.  Restrictions apply.



ESCOBAR AND AHEDO: 2-D ELECTRON MODEL FOR A HYBRID CODE OF A TWO-STAGE HALL THRUSTER 2057

[42] J. J. Ramos, “Fluid formalism for collisionless magnetized plasmas,”
Phys. Plasmas, vol. 12, no. 5, pp. 052 102-1–052 102-14, May 2005.

[43] G. S. Janes and R. S. Lowder, “Anomalous electron diffusion and ion ac-
celeration in a low-density plasma,” Phys. Fluids, vol. 9, no. 6, pp. 1115–
1123, Jun. 1966.

[44] A. I. Morozov, Y. V. Esipchuk, G. N. Tilinin, A. V. Trofimov,
Y. A. Sharov, and G. Y. Shchepkin, “Plasma accelerator with closed
electron drift and extended acceleration zone,” Sov. Phys.—Tech. Phys.,
vol. 17, no. 1, pp. 38–45, Jul. 1972.

[45] E. Ahedo, V. de Pablo, and M. Martínez-Sánchez, “Effects of partial ther-
malization and secondary emission on the electron distribution function
of Hall thrusters,” presented at the 29th Int. Electric Propulsion Conf.,
Princeton, NJ, 2005, IEPC-2005-118.

[46] G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J. P. Boeuf, “Role of
anomalous electron transport in a stationary plasma thruster simulation,”
J. Appl. Phys., vol. 93, no. 1, pp. 67–75, Jan. 2003.

[47] J. W. Koo and I. D. Boyd, “Modeling of anomalous electron mobility in
Hall thrusters,” Phys. Plasmas, vol. 13, no. 3, pp. 033 501-1–033 501-7,
May 2006.

[48] J. Fox, A. A. Batishcheva, O. V. Batishchev, and M. Martinez-Sanchez,
“Adaptively meshed fully-kinetic PIC–Vlasov model for near vacuum hall
thrusters,” presented at the 42th Joint Propulsion Conf., Sacramento, CA,
2006, AIAA 2006-4324.

[49] I. Maqueda, D. Escobar, and E. Ahedo, “Advances on a Hall thruster hy-
brid code,” presented at the 30th Int. Electric Propulsion Conf., Florence,
Italy, 2007, IEPC 2007-066.

[50] D. Escobar, E. Ahedo, and F. I. Parra, “On conditions at the sheath
boundaries of a quasineutral code for Hall thrusters,” presented at the 29th
Int. Electric Propulsion Conf., Princeton, NJ, 2005, IEPC-2005-041.

[51] M. A. Raadu, “The physics of double layers and their role in astro-
physics,” Phys. Rep., vol. 178, no. 2, pp. 26–97, Apr. 1989.

Diego Escobar received the Diploma and Advanced
Studies degrees in aeronautical engineering from the
Universidad Politécnica de Madrid, Madrid, Spain,
in 2005 and 2007, respectively.

From 2005 to 2007, he was a Part-Time Student
combining his studies with a professional experience
at GMV S.A. He is currently a Contractor Staff with
the European Space Operations Center, European
Space Agency, Darmstadt, Germany. His research
background includes modeling and simulation in
Hall thrusters and satellite orbit dynamics and nav-

igation in the professional field.

Eduardo Ahedo received the Diploma and Doc-
torate degrees in aeronautical engineering from
the Universidad Politécnica de Madrid (UPM),
Madrid, Spain, in 1982 and 1988, respectively.
From 1989 to 1990, he was a Postdoctoral Scholar
with the Massachusetts Institute of Technology,
Cambridge, MA.

He is currently a Professor of aerospace engineer-
ing with the Escuela Técnica Superior de Ingenieros
Aeronáuticos, UPM. His research background in-
cludes modeling and simulation in plasma propul-

sion, electrodynamic tethers, plasma contactors, plasma–surface interactions,
plasma instabilities, and plasma–laser interactions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:05 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


