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This work investigates the implementation of the accurate Bohm condition in a
Hall Thruster hybrid code. First, an extended review of the current PIC weighting
algorithms at boundaries is presented. Second, the accurate Bohm condition for
non-monoenergetic, variable-charge populations is implemented. Third, a general-
ized PIC Mach-Bohm number is defined, based on the PIC weighting formulation
of the kinetic Bohm condition. Fourth, the fulfilment of the accurate Bohm con-
dition is analysed, showing that the best weighting scheme at boundaries lead to
strong numerical oscillations. And finally, several advances in boundary weighting
algorithms are presented aimed at reducing the oscillations of plasma magnitudes.

I. Introduction

In a Hall thruster the plasma is confined in a cylindrical annular chamber. A key factor to
understand the discharge behavior of the plasma is the interaction with the walls, which strongly
affects the efficiency and the lifetime of the thruster. This plasma-wall interaction has been a
subject of research for a long time, from the early work of Tonks-Langmuir in 1929 to the present
day. Tonks and Langmuir14 showed that, in the zero Debye-lenghth limit, the plasma structure
consists of thin non-neutral sheaths tied to the walls whith the Debye-length as the distinguished
scale, and a quasineutral region (the presheath) occupying the bulk of the channel. Bohm showed
that the formation of quasi-steady sheath solutions requires the fulfilment of one condition at the
sheath entrance: the Bohm condition.19

The Bohm condition for a typical negative (i.e. ion-attracting) sheath can be interpreted as
stating that the incoming ion flux is sonic or supersonic (for certain generalized sound speed). In
its simple formulation for a plasma constituted by a cold ion-fluid, the Bohm condition is

M ≡
uni

√

ZiTe/mi

≥ 1, (1)

where Te is the electron temperature, M stands for the ion-fluid Mach number (perpendicular to the
wall), and uni is the ion-fluid velocity perpendicular to the wall (throughout the paper subindex
n refers to the wall-perpendicular direction). More accurate expressions of the Bohm condition
take into account the ion velocity distribution function, the presence of multiple ion species (with
possitive and negative charge), and secondary electron emission from the dielectric walls.

In hybrid (PIC/fluid) quasineutral codes, the Bohm condition is of great relevance because is
the condition to be imposed on the boundaries of the computational domain, which are the edges of
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the Debye sheaths. The Bohm condition is also needed to compute correctly the electric potential
profile in the presheath region.

Our quasineutral hybrid code is an updated version of the HPHall code originally developed by
Fife and Mart́ınez-Sánchez.1,2 It is a time-dependent, axisymmetric code that simulates the plasma
discharge in a Hall thruster chamber and near-plume, and consists of an anisotropic fluid subcode
for the electrons6 and a particle-in-cell (PIC) subcode for the heavy species. The two subcodes
are advanced sequentially in time with a timestep ∆t, and in each temporal advancement, the two
subcodes interchange data in a feedback process: the electric potential and electron temperature
fields, φ(r) and Te(r), are outputs of the electron subcode and inputs of the PIC subcode; recip-
rocally, particle densities and fluxes of neutrals (n) and ions (i), nα, gα ≡ nαuα, (α = n, i), are
outputs of the PIC subcode and inputs of the electron subcode.

In this paper we discuss two issues. The first one is that a more accurate formulation of
the Bohm condition must be used, rather than the simple expression (1), because the actual ion
population in a Hall thruster is constituted of both singly-charged and doubly-charged particles
and a widespread velocity distribution. The second one is how to implement that Bohm condition
in a hybrid code, since there is not an immediate way of imposing the Bohm condition for a PIC
formulation of the ions, and related work9,10 has shown that the Bohm condition is not fulfilled
naturally in PIC simulations. Alternative weighting algorithms at the boundaries nodes11 have
been proposed to solve that question, but most of them suffer from (or lead to) strong numerical
oscillations of plasma magnitudes at boundaries. We report several advances in boundary weighting
algorithms to (i) improve the fulfilment of the Bohm condition, and (ii) to reduce the numerical
noise at boundaries.

The rest of the paper is organized as follows. Section 2 reviews the weighting algorithms at
the boundaries implemented in the different versions of HPHall. Section 3 shows the accurate
formulation of the Bohm condition in a particle-in-cell code. Section 4 discusses the proposed new
boundary weighting algorithm.

II. Review of weighting algorithms

A. About the PIC code

The PIC code21 is a kinetic method widely used to simulate plasmas. In this method the plasma
is simulated as a collection of test particles, where each test particle represents a huge number of
ions, neutrals or electrons. The test particles are moved under the action of an electromagnetic
field, which is updated every timestep, and a Montecarlo’s algorithm (MMC) is used to simulate
the collisional processes (ionization, injection, recombination). A mesh is used for the spatial
discretization of the physical domain. The cell typical length, ∆L, of the standard mesh (fig.
1(a)) is smaller than the expected gradient length of plasma inhomogeneities, but large enough
to reduce the computational cost of the whole code. The electrommagnetic field is computed
in the mesh nodes, and then interpolated to particle positions (gathering process) to push the
particles. Reciprocally, the particle currents are deposited from particle positions to the mesh
nodes (scattering process).

The particles have a spatial distribution or shape functions to avoid too much noise in the
plasma magnitudes. The location and velocity of the particles correspond in fact to the center
of mass of their spatial distribution, and is assumed that particles are non-deformable, that is,
the whole particle moves with the same velocity. The summation of all test particles shows an
approximate velocity distribution function of each species of the plasma.

An important issue in the PIC method is the weighting process, which computes the macroscopic
magnitudes of heavy species at the nodes of the simulation mesh. This process is the PIC-equivalent
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Figure 1. (a) Sketch of a typical simulation domain of HPHall. Two boundary test nodes are red-
marked at locations (in cm) CP1 ≡ (1.25, 5.00), and CP2 ≡ (2.50, 5.65), respectively. (b) Sketch of the
influence region of different nodes for the volumetric (first-order) weighting. (c) The asymmetric volu-
metric (first-order) weighting at the boundary nodes. Weighted plasma magnitudes are representative
of the ’center of mass’ Q’.

to take moments of the distribution function, that yield the density, the flux, the temperature, etc.
of each species of the plasma. Essentially the weighting process is an average of the near particle
properties within a control region of the computational domain.

B. Volumetric Weighting (VW) at internal nodes

This is the standard weighting scheme at the internal nodes of a PIC code. In this scheme, a volume
of influence around an interior grid node is defined, and the properties of the particles within that
volume are averaged. The average computation is done using a weighting function, which is defined
in the volume of influence. This weighting function is identical to the shape function of the particles,
and its role is capital to connect the ’particle’ and ’node’ points of view of the PIC codes.

The volumetric weighting of a property χ of species j at a generic node is

〈χ〉V W =
1

∆V

∑

p

S(zp, rp)
Mp

mi
χp (2)

where the sumation is extended to all particles of species j, χp is the particle property corresponding
to macroscopic property χ, Mp/mi is the number of atoms in the test particle (Mp is the mass
of the particle and mi is the atomic mass), S(zp, rp) is the weight function (and particle shape
function), and ∆V is the volume of influence of the node, weighted with the weight function in
order to take cylindrical effects into account.20

Ion density, ion density current, and ion energy density are defined as 〈1〉V W , 〈eZv〉V W , and
〈

miv
2/2

〉

V W
, respectively, where Z is the charge number and v is the particle velocity.

Generally, the best trade-off between accuracy and computational cost is the shape function
of order one. That bilinear function decreases linearly from 1 at the node location to zero at the
sides of the parallelogram formed by the four neighboring nodes, Fig. 1(b). A higher-order shape
function leads to more accurate computations and less noisy results, but increases considerably the
computational effort. The refinement of the mesh is the alternative way of increasing the accuracy.

Although the volumetric weighting scheme is very useful in internal nodes of the computational
grid, is not well suited for boundary nodes, just where the Bohm condition must be satisfied. In
the original HPHall, Fife2 used the VW at the boundary nodes limiting the volume of influence to
the half-internal side, Fig. 1(b). This asymmetric weighting at the boundary nodes understimates
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Figure 2. Comparison of the four weighting algorithms at the nodes of the outer wall for a standard
simulation mesh. (a) Mach number and (b) ion density current (A/m2).

[overstimates, resp.] magnitudes that increase [decrease, resp.] toward the boundary. The error,
proportional to ∆Ln (i.e. the cell length in the wall perpendicular direction), is large for magnitudes
that present large gradients near the sheath boundary, which is the case of ne and φ (but not gni).

C. Corrected Volumetric Wighting (CW)

Parra and Ahedo10 observed that the application of Eq.(2) to the boundary-node half-volume
of influence yields plasma magnitudes representative of the ’center of mass’ Q′ of that volume
instead of the boundary node. For a linear weight-function, that center of mass is located at
xQ′ = (2xQ + xP )/3, Fig. 1(b). Then, they concluded that the correct volumetric weighting at a
boundary node is an extrapolation of the weightings at points Q’ and P

(χ)CW,Q =
3

2
〈χ〉V W,Q′ −

1

2
〈χ〉V W,P . (3)

The application of this corrected volumetric weighting makes the error proportional to ∆L2
n

and means a clear increase in the Mach-Bohm number and the wall plasma flux, with respect to
the VW, Fig. 2, but the CW is still far from reaching a sonic Mach-Bohm number for a standard
mesh. Besides, an occasional error of this extrapolating algorithm is to yield too low values of the
plasma density.

There are more possible extrapolation schemes to obtain accurate computations of the plasma
magnitudes at boundary nodes. One possibility is to use the information of more nodes, in a similar
way as is done in the finite difference method. Another possibility consists of defining higher order
extrapolation functions that may include in some manner the asymptotic transition to the sheath.
But, although these methods seem to be promising, some numerical experiments suggested other
simpler ways to improve the results.

D. Bohm Condition forcing (BF)

As an alternative to the corrected volumetric weighting, Parra and Ahedo10 proposed an algorithm
that forces the fulfilment of the Bohm condition. The algorithm, to be applied to the plasma
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Figure 3. Bohm condition forcing. Temporal oscilations (in ∽ 10µs) of the (a) Mach number, and (b)
ion density (1/m3) at test points of the outer wall of the thruster. (c) Single-ion distribution function
at test points.

density, is

ne|BF = min

{

gni|W
√

ZTe/mi

, ne|W

}

; (4)

where W means the selected weighting algorithm (VW, CW or the surface weighting algorithm
explained below). This algorithm is based on forcing the ion flux to satisfy the (simple form of
the) Bohm condition whenever the weighting scheme is not able to achieve it. This is performed
in three steps: (i) assuming that the ion macroscopic velocity normal to the walls is the Bohm
velocity, (ii) considering that the weighting scheme yields the correct ion flux at the boundary, and
(iii) correcting the density at the boundary nodes in order to match the computed ion flux. Since
this is just a local adjustment, the ion flux gni is not affected by it. The other plasma magnitudes
are computed in a similar manner using the corrected values of the density and velocity.

Although the BF algorithm represents an intrusive algorithm likewise artificial to the PIC code,
it yields, for a standard mesh, excellent results in terms of plasmas fluxes and the development of
the plasma structure perpendicular to the wall. But the experience shows that the BF can produce
very large oscillations of the plasma magnitudes at the boundary nodes, as Fig. 3(a) and 3(b)
illustrates. The explanation would be that forcing the Bohm condition leads to an overexcitation
in the coupling of the plasma density and the electric potential. These perturbations not only affect
the sheath solutions, but also the presheath solution since the perturbations may travel along the
magnetic lines as ion-acoustic waves.

In an attempt to mitigate the oscillations on the Mach number and to adapt the BF to sim-
ulations with single and double ions, Hofer et al., working with HPHall-2,3 modify the algorithm
Eq.(4) and introduce a couple of tuning parameters that adjust to their satisfaction.

In a likewise context, Hutchinson22 argued that the Bohm condition cannot be applied at each
timestep because the inherent particle fluctuations, and presented a feedback algorithm to adjust
smoothly the potential over several timesteps.

Another objection to the BF algorithm is that Eq.(4) it is not applicable for the kinetic formu-
lation of the Bohm condition, since it is valid only for a cold, single-charged ion population. Figure
3(c) shows the dispersion in the particle distribution function for singly-charged ions.
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Figure 4. Surface Weighting. Temporal oscillations (in ∽ 10µs) of the number of ions crossing the
boundary during each timestep at test points located at the outer wall of the thruster: (a) the middle
chamber, and (b) the exterior front wall.

E. Surface Weighting (SW)

This algorithm was proposed by Parra13 and is based on measuring surface properties instead of
volume properties. The SW algorithm is

〈χ〉SW =
1

∆A∆t

∑

p

S(zp, rp)
Mp

mi

χp

vnp
(5)

where the summation index applies to all particles that cross the boundary node area-of-influence,
∆A, during the time interval ∆t, and S(zp, rp) is the weight-function defined in this area. A zeroth
order weight-function is used because higher orders need the impact coordinates of every particle
crossing the surface.

Ion density, ion density current, and ion energy density are defined as 〈1〉SW , 〈eZv〉SW , and
〈

miv
2/2

〉

SW
, respectively. Nonetheless, observe that the basic magnitudes of the VW and the SW

are the particle density, 〈1〉V W , and the particle flux, 〈vn〉V W , respectively.
For a standard mesh, the SW yields acceptable values of the Mach number, larger than those of

the CW and a bit smaller than those of the BF, Fig. 2. The error associated to the SW algorithm
is only ∆L2

n (due to the discretization of the electric potential, mainly), and the obtained value
〈χ〉SW represents a time average in ∆t of χ.

The SW produces smaller oscillations of the Mach number than the BF, but the current imple-
mentation of the SW is very noisy numerically because the number of particles considered in each
timestep ∆t is small and presents a large dispersion, as Fig. 4 illustrates.

III. The PIC Bohm condition

The electrostatic potential in a thin, collisionless sheath satisfies the Poisson’s equation

d2φ

dz2
= −

e

ǫ0

∑

j

Zjnj(φ), (6)
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Figure 5. Comparison of Mach-Bohm numbers at the outer wall of the thruster in (a) the channel
discharge and (b) the near-plume region, using the SW algorithm. Curve 1 is the simple Mach number,
Eq. (1), for a simulation with singly-charged ions only. Curve 2 is the PIC Mach-Bohm number for
the same simulation than curve 1. Curve 3 is the PIC Mach-Bohm number for the same simulation
but including doubly charged ions.

where subindex j stands for the different species of a multicomponent plasma (with possitive and
negative charge), and Zj for its charge number. The Bohm condition at the sheath edge Q is

∑

j

Zj
dnj

dφ

∣

∣

∣

∣

Q+

≤ 0 (7)

and stems from imposing that the non-neutral solution of Poisson’s equation that starts from Q
corresponds to a locally monotonic potential (i.e. it dismisses oscillatory solutions).

For a negative (i.e. ion attracting) sheath, and a single electron population close to a Maxwell-
Boltzmann equilibrium inside the sheath, the Bohm condition at Q becomes

0 ≤ S ≡
αe

Te

∑

i

Zini −
∑

i

Zi

e

dni

dφ
, (8)

where: summation index i stands now only for ion species, αe − 1 accounts for deviations from the
Maxwell-Boltzmann equilibrium (like a partially depleted Maxwellian), and plasma quasineutrality
at the sheath edge, ne =

∑

i Zini, was invoked. Then, ni(φ) and the Bohm function S depend
on the formulation chosen for the ions. In a Hall thruster, the kinetic formulation for the ions
represents the most suitable choice, and leads to

S =
αe

Te

〈Z〉 −

〈

Z2

miv2
n

〉

, (9)

〈χ〉 =
∑

i

∫ ∞

0
dvnfiQ(vn)χi(vn), (10)

where the summation index i extends to the several ion populations (of different charge numbers,
for instance) vn is the particle velocity perpendicular to sheath and wall, and fiQ is the ion velocity
distribution function after taking moments over the two other velocity components.
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The PIC formulation of the Bohm condition is obtained using the selected weighting scheme
for the computation of 〈χ〉 at the boundary nodes. Thus for the SW one has

S =
1

∆t∆A

∑

p

Zp

vnp

Mp

mi

(

αe

Te

−
Zp

miv2
np

)

. (11)

Notice that the simple Bohm condition (1) is recovered by the kinetic formulation if fiQ(vn) is
a Dirac function, and by the PIC+SW formulation if all particles have the same velocity vnp = uni.

A convenient parameter for evaluating how close the plasma behavior is to the ’sonic’ Bohm
condition S = 0 is the generalized Mach-Bohm number

M =

√

miαe

Te

〈Z〉
〈

Z2v−2
n

〉 (12)

that transforms S ≥ 0 into M ≥ 1. Notice that the velocity involved in this definition is not the

average ion velocity, 〈vn〉, but 〈Z〉
1

2

〈

Z2v−2
n

〉− 1

2 . Particles or ions with low velocities (presumably
created near the boundary) tend to decrease M and make more difficult the fulfilment of S ≥ 0.
This is not a defect of the definition, but the evidence of the physical fact that low-velocity particles
are more affected by decrements of φ and therefore contribute more to increase dni/dφ at the sheath
edge.

Figure 5 shows the difference between the simple Mach-Bohm number, eq. (1), and the gen-
eralized PIC Mach-Bohm number, eq. (12). In the performed simulations, the SW algorithm was
used to weight at boundaries, and two cases were studied: (1) singly-charged ion population and
(2) singly and doubly-charged ion populations. The large oscillations of the electric field at the
exterior front wall of the thruster would be the reason to achieve the observed high value of the
Mach-Bohm number.

IV. Improved weighting at the boundaries

A. Extended surface weighting (ESW)

The main cause for the numerical noise created by surface weighting is the number of particles
crossing a boundary node panel in the time ∆t, which oscillates much and has a small mean value.
The PIC timestep is upper bounded by ∆t ∽(typical-cell-half-length)/(typical-particle-velocity),
with the aim of limiting the statistical noise of the volumetric weighting. But it is immediate that
the reduction of statistical noise of the SW requires a higher timestep for its measurement, such
that enough particles cross the node panel. A simple estimate gives that the minimum timestep for
the zeroth order SW should be about one-order-of-magnitude larger than ∆t for having a similar
level of noise than the first-order VW at internal points.

This suggests that the SW algorithm should sum particles crossing the boundary over several
(say k) PIC timesteps, that is during the time interval k∆t. Thus, an extended or dynamic-mean
surface-weighting algorithm is

〈χ〉SW (D) =
1

k∆t∆A

∑

k

∑

p

Mp

mi

χp

vnp
, (13)

where the summation on k is extended to the last k-timesteps. This algorithm decreases the
numerical noise as k−1, as Fig. 6(b) illustrates. The requirement of memory increases with k but
this is not a severe limitation, since only the boundary nodes are involved. The upper-bound of k
depends on two other criteria. The first one is the level of numerical noise of the rest of the code
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Figure 6. Extended Surface Weighting. (a) Evolution of the mean Mach-Bohm number with k, the
number of timesteps, along the outer wall of the thruster. (b) Dispersion (standard deviation) of the
Mach-Bohm number with respect to k at a test point of the outer wall.

algorithms. The second and possibly more important one is the frequency of physical oscillations
that we want the full code be able to simulate. A reasonable upper-bound for physical oscillations
with this code would be of 1 Mhz or less. Then, for ∆t = 10−8, the upper-bound of k would be
∽ 20 − 50.

Figure 6(a) shows, along the outer wall of the thruster, the mean Mach-Bohm number (12)
using the ESW algorithm for different time intervals k∆t. For k = 1, which is equivalent to use
the original SW algorithm, the Mach-Bohm number is very satisfactory in the channel discharge
(M ∽ 1), but surprisingly high in the near-plume region (M ∽ 10). The case k = 10 represents
a great reduction of the Mach-Bohm number in the low-density regions of the thruster, such as
the near-plume region and the near-anode region, but in the channel discharge the Mach-Bohm
number is half-reduced. And cases k = 50, and k = 100, reinforce the idea that a higher value of k
makes more homogeneous the Mach-Bohm number along the thruster, but reducing it to a value
M ∽ 0.4, in a somehow asymptotic behavior.

The high value of the Mach-Bohm number using the ESW with k below 10 is due to the large
temporal oscillations showed in fig. 7. The mean value of the Mach-Bohm number is increased
by the high picks achieved at some instants in the Mach-Bohm number evolution. The same
large oscillations are obtained in the evolution of the plasma density and the electric potential at
the boundary nodes, but not for the electron temperature, which is not much affected. Figure 8
shows the reduction of these oscillations using fifty PIC-timesteps in the weighting computations at
boundaries. The measured oscillations of the plasma magnitudes have a frequency of ∽ 100Khz,
and they seem to be of physical type.

B. Generalized Bohm forcing and PIC Mach-Bohm forcing

The difficulties of the weighting algorithms to fulfill the Bohm condition suggest the study of other
numerical methods. Since the particles are accelerated by the electric field, corrections of the electric
potential at the boundary nodes will improve the fulfillment of the Bohm condition. Following this
idea, two kind of methods are presented. The first one is the Generalized Bohm forcing, and is
based on a node potential adjustment δφ to make S = 0. This potential adjustment changes the
velocity of a particle crossing the boundary from vnp to v′np, conserving its total energy, that is
miv

′2
np = miv

2
np + 2eδφ. Then, applying S = 0 and the ESW scheme, δφ > 0 is obtained from the
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Figure 7. Extended Surface Weighting with k = 1. Temporal oscillations (in ∽ 10µs) of (a) the PIC
Mach-Bohm number (12), (b) the plasma density, and (c) the electron temperature, at a test point
of the outer wall of the Hall thruster chamber.
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Figure 8. Extended Surface Weighting with k = 50. Reduction of the temporal oscillations (in ∽ 10µs)
of (a) the PIC Mach-Bohm number (12), (b) the plasma density, and (c) the electron temperature,
at a test point of the outer wall of the Hall thruster chamber.

implicit equation
∑

k

∑

p

Zp

v′np

Mp

mi

(

αe

Te
−

Zp

miv′2np

)

= 0 (14)

The solution of eq. (14) leads to a sub-iterative process in each PIC timestep, where the ion particles
crossing the boundary must be updated in each sub-iteration. Other simpler ways to solve eq. (14)
involves the variation of the function S with respect to the electric potential. But these possibilities
are still a subject of research.

The second method to correct the electric potential at boundary nodes is the Mach-PIC forcing,
and is based on a potential adjustment obtained from the equation

δφ =
Te

e
ln (Mγ) (15)

where Te is the electron temperature in eV , M is the PIC Mach-Bohm number (12), and γ is a
parameter tuned for convenience.

This method is purely of numerical type, not based on physical arguments, but is easier to
implement than the Generalized Bohm forcing. The first numerical experiments have shown an
appreciable improvement of the Bohm condition, but further studies must be made in order to
validate the method.
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