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An analytical model of the space-charge sheath around a planar wall is derived for the Gase of
uniform magnetic field incident at any angle into the wallj) large wall potentialgrelative to the
plasma temperature¢,>1, and(iii) Debye length)\ 4, much smaller than thermal Larmor radius

of the attracted speciek,,. It is found that, irrespective of the angle of inciden@gThe potential
threshold for a magnetized sheathfig= O()\ﬁl)\ﬁo; (i) the characteristic magnetic length in the
sheath is}\3m/)\§, much larger thai ,, and proportional tB| ~3 and the plasma flow into the sheath;

(iii ) the electric fieldE increases towards the wall and produces a noncycloidal plasma drift that
breaks down magnetic insulation. Plasma dynamics in a magnetized sheath consisisatibaed

region, a drift region, and B-aligned region. The drift region is relevant only for angles far from
normal incidence and the density profile presents spatial oscillations there; for grazing incidence, the
B-aligned region is not found. Different scaling laws of the sheath thickness versus wall potential
and incidence angle are obtained; in particular, the thickness of a magnetized sheath at parallel
incidence is the local Larmor radius at the wall. The applicability of the model to experiments in the
ionosphere is commented. @999 American Institute of Physid$§1070-664X99)01911-4

I. INTRODUCTION Since the spatial profiles of the solution are universal for
any wall potential, only the sheath structure changes when

In a recent papéwe analyzed the one-dimensioriaD) ¢ is incremented. As the sheath thickness is proportional to

structure of a weakly-collisional plasma close to a charged 3\//4' the sheath is unmagnetized as longdas is not too

plangr surface, in the presence c_)f an uniform magnetic—fiel rge. Some authdts infer that magnetic effects appear in
B oblique to the wall, Fig. @), using a macroscopic model 14 sheath whert.,, becomes of the order of,,. Using

of the plasma. Three length scalessociated to the attracted Child—Langmuir law forL,,, that hypothesis yields that a
specieg were considered in the problem: The thermal Lar-gheath is magnetized when

mor radius,\,,, (which is inversely proportional to the
strengt_h of the magnetic fiel@), _the Debye lengthyq, an_d ¢W>O(Agn‘1”3). 1)
a collision mean free path,., with Ay<\. for weak colli-
sionality. Different plasma structures were found for theyowever, at the sheath entrance the electric field and the
three distinguished limits of the two dimensionless ratios kinetic energy of the plasma change in the soale so, for
Agm=Ag/ Ny Aem=Ne/\p- Agm<1, the characteristic Iength for magnetic effects can be
larger tham\ ,, and the above estimate may not hold. It is also
In particular, for the doubly distinguished limity<<A,  essential to determine, once the sheath is magnetized,
<\, first considered by Chodufahe 1D plasma structure whether the electric field breaks down magnetic insulation:
consists of three asymptotic regions, each one related to @lassical cycloidal drift motion and consequent magnetic in-
different scale length, Fig.(&): First there is the collisional sulation are associated to uniform electric fields, but space-
presheath, then the collisionless Chodura layer, and finallgharge fields produced by a single-species are not uniform.
the space-charge sheath. Their typical thicknesses\ are The goal of this paper is to establish an analytical model
AmSing, and Lsh=7\d¢\3/\//4 (Child—Langmuir law, respec- of a magnetized sheath valid fary,<1, =1, and anyy.
tively, where ¢y is the angle of incidence into the wall and Compared with a particle code approach, this analytical so-
¢ is the potential jump across the sheath, nondimensionalution will determine clearly the influence of the different
ized with the plasma temperature. The macroscopic velocitgimensionless parameters and, in particular, the threshold of
field of the plasma isB-aligned in the presheath, three- ¢, for magnetic effects—which, in fact, will not coincide
dimensional in the Chodura layédue to theEX B and po-  with Eq. (1). Also, it will determine the spatial structure of
larization drift9, and it becomeg-aligned (i.e., unmagne- both electric field and plasma, and will match correctly with
tized in the space-charge sheath. Transitions between twthe Chodura layer. There are few previous works dedicated
asymptotic regionfat pointsC andSin Fig. 1(c)] are related  to the parametric range of interest here. Auebtained the
to particular sonic conditions on the plasma flbw. solution for the particular casg=90° andA y4,,—0, which
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The problem discussed in the paper is typically found in
the ionosphere, like in spacecraft experiments on charge
controf’® or on current collection. Examples of this second
application are recent Tethered Satellite Sys(@®9-1 and

B -1R missions1!2 TSS-1R was biased to dimensionless po-
plasma tentials up to 16 in the F-layer of the ionosphere, where
P Ag4mis about 0.1 and 0.3, at day and night, respectively. In a
0 X different field of research, magnetized sheatht angles
close to grazing incidengare of interest in magnetic con-
finement device$:®
Planar models can analyze the local structure of the
S plasma near the wall but they cannot determine the plasma
| S o flow entering the 1D region, which must be obtained from
| IS - the analysis of the more external, three-dimensiqi3a)
g § = 5 region around the object. This is the rather difficult, yet un-
go ! é" SE’ ) (b) solved, problem of current collection in a magnetized
A > 8 % plasma. The diverse theories on that problem, recently re-
A 3 = 8 viewed by Laframboise and Sonmbrgive a minor role to
! 5 the space-charge sheath. In general, they either ignore totally
= the space-charge field or they consider the sheath as thin and
C S unmagnetized. Furthermore, the experimental results of
| TSS-1 and TSS-1R do not agree with the basic, and exten-
| o = sively invoked, Parker—Murphy thedfyfor magnetized,
g S = % s collisionless plasmas. The collected currents were larger, by
& ! ‘;c’b _e;? E = © a factor of up to 3, than the current upper-bound established
5 . 7; & 3 _% by Parker and Murphy. Diverse effects have been discussed
S a = é A to adapt the theory to satellite ambient conditions. However,
. Vannaroniet al!? have shown that the experimental current-
' voltage response fits better with Langmuir—Blodgett thEory
C for unmagnetized plasmas. Also, measurements with Lang-
. —_ muir probes in the close vicinity of TSS-1R satellite detected
| '02 no magnetization of electrons, despite of satellite potential
s ! 5 = *g bemg well beyond the. thresholq of Ed.). All thls sugg_ests
5 e 3 & g A a revision and further investigation of magnetic theories, and
g 27 g g_? this paper tries to contribute to it.
ﬁ ! ::2 & %‘ @ The paper is organized as follows. Section Il presents the
| ~ g 1D model of a collisionless magnetoplasma fdry,
! & o <0O(1) and the multiple-scale analysis used to study the

asymptotic caseé\ 4,<1 and ¢y>1. Section lll discusses,
FIG. 1. (a) Sketch of the 1D model and reference frame. Plasma regions fo ymp dm ¢W

(b) weak B:Ay<h i~ A, . (0) intermediateB:\y<h <\, and(d) strong for the I|_m|'F Aygm=0, the influence Qf wall potential and
B:Ag~An<\.. Transition point<C andSare singular points of the plasma angle of incidence on plasma dynamics and sheath structure.

equations. This paper is focussed in the internal structure of the sheath fdfinal considerations are presented in Sec. V. The singulari-
the intermediated case(see Fig. 4. ties of the model for grazing incidence are discussed in the
Appendix.

presents singularities for the plasma densitywill be seen

here that thermal effects remove these singulajities Il. MODEL OF THE COLLISIONLESS REGION

Bergmann ran numerical simulations of a supposedly mag-

netized sheath with\ 4,,~0.03—0.06,4\,~ 30, and several A semi-infinite, magnetized plasma is bounded by a pla-
angles of incidencéhowever, we will show that for these nar wall, biased to a potentil,, large enough, compared to
conditions magnetic effects are limited to the entrance conthe plasma temperature, to create a space-charge sheath
ditions to the sheajh Other analyses of magnetized sheathsaround the wall. The magnetic fieRl is uniform and forms
consider parametric domains different from ours, like thean angley with the space-charge electric fieB=E1,, Fig.
kinetic model of Daybelge and Bélor the numerical simu- 1(a). Defining unit vectors

lations of DeWaldet al®, who discussed the rang& 4 _ _

=0(1), |¢w|=0(1), andgrazing incidence. Finally, mod- lo=1ccosy+ 1 singy,  1y=—1Lcsinyg+1,cosy,

els where the electric field is fixed instead of being detery . s

mined self-consistently through Poisson equation, are omit-

ted due to their limited interest. B=Bl,, E=EL=Epl,+E,L,, (2
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with E, andE,, parallel and perpendicular #, respectively; notice that for a monotonic potential it >0, indepen-
the EX B drift is along 1, . The plasma consists of two spe- dently of the sign olJy,. For\4 and\,, much smaller than
cies, one is attracted by the wall potentiahd collected by the collision mean-free path., the dimensionless equations
the wall and the other one is repelled. As in Ref. 1, a two-pertinent to a collisionless plasma 4re

fluid macroscopic model is used for the plasma. d,ah, N,
~ . i 1\dv, d¢ )
T, andV=(V,,V,,V,), be the electric charge, particle mass, V= — | = = == + AgmVy Sing, (8)
density, temperature, and velocity of the attracted species, vy d§  dé
respectively, and-q, N, andT,, the charge, density and dv
temperature of the repelled species. The temperatures of both de_y =Agm(V,COSp—Vv, Siny), 9
species are assumed constalthough this is not relevant
for the sheathand a Maxwell-Boltzmann distribution is as- dv,
sumed for the repelled species. If there is no creation of de_gz_Adiy cosy, (10
particles, the continuity equation for the attracted species
reads d’¢ 1
92 v (13)

NV,=const=T,, 3 £ vk
where the plasma floW', entering into the 1D region is a . —¢ (12)
parameter of the model. Notice, first, that the validity of this Nr=Nrc €Xp t,

one-stream model is restricted to solutions that do not cro . L
S‘f‘he electric and velocity fields are coupled through the den-

V,=0, in which case a multistream or a kinetic model should . . o .
be used. Second. one can write sity of the attracted species=1/v,. The transition poinC

' from the collisional presheath to the collisionless region is

T()=9()Ty, (4)  defined by condition .d¢/dx=cc in the presheath equations

d(not written herg then these equations yield that the plasma
enters sonically an@-aligned into the collisionless regidn.
In variable & and for ¢#90° and A4,<O(1), boundary
ﬁonditions at the collisionless side of poiGtare

wherel'y, is the thermal flow of the undisturbed plasma an
g(¥) is the relative flow, which can b&-dependent. The

determination ofy( ) is beyond the possibilities of a planar
model, and any consistent prediction of it must be based o

the solution of the 3D collection problefthat would include éc=—>, Vvc=cg(cosy,0,siny),
the actual object geomeityA common assumptidrt* is (13)
g(y)eccosy, which means to neglect totally the flow trans- 1 1 d¢ ~0

versal toB. This assumption seems too extreme in practice Ve Agm dé c

and, indeed, leads to no solution for grazing incidence. i ) )
Characteristic magnitudes to nondimensionalize theVith €s=v1+t, the dimensionless sound speed of the

plasma equations are a density plasma, and we sap-=0. Equations(8)—(12) admit two
first integral$ related to the conservation of energy and mo-

N, =T, (m/T)¥?, mentum alongB,
(T is in energy unity the Debye length (v§+v§+v§)/2—ln vy— ¢p=c2/2—Inc,
Ng=(&T/q°N,)"2, 5 1 1 2 (14)
(e is the vacuum permittivity and the thermal Larmor ra- Vx COSY+ v, Sin it V_XHrnf_ E(E) COSY)= 2Cs.

dius These conservation laws reduce by two the order of Egs.
Am=(Tm)*?/qB, 6  (8—(11).
Equations(8)—(13) have a unique and regular solution

B and ¢ can be defined such thgB>0, and it suffices to .
) . . e for any ¢éw, Agm, and ¢ (with ¢+#90°). For Ay,=0(1)
consider angles between 0° and 90%, The Debye-to magnetj[ge solution consists of a practicalBraligned sheatkwith a

length ratio(also the gyro-to-plasma frequency ratie marginal EX B drift) and there is no Chodura layer, Fig.

Agm=|B|Veo/mN,, (7)  1(d). For A4n<1, the solution is more complex and
asymptotic techniques are used to reveal it. First, a two-scale

_analysis shows that the collisionless region is divided into

’ the quasineutral Chodura layer and the space-charge sheath.
The solution for the Chodura layer is obtained by modifying
Egs.(8)—(11), using

which is independent off. Notice that the Debye length
defined in Eq(5) is based on the flow into the planar region
from Eq. (4), it is proportional tog~'? times the Debye
length of the undisturbed plasmay.. .

The first set of dimensionless variables to be used is

= =A
X N Nr qU g X/)\m dmfa
&= 7\_d n= m n =m, T T as spatial variable, instead gfand taking then the quasineu-
tral limit Ay4,—0; in particular, Eq.(11) becomesn=n,.
\Y T, The Chodura layer extends from poi@tto point S where
V: il tr:_;
VT/m T Vys=Cs, dldi|s=*o, ¢dg=dpc—Incosy,
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andvys andv,s are obtained from Eq.14). PointS marks 150
the entrance to the non-neutral sheath, whesethe natural (a)
spatial variable. In this variable, poi®is at és= —« and /
the electric field is 100 Vr
¢ 7
dg/dé]s= Aand/dZ]s=O0. 50 i
: e : 1.5 i
Since pointS is singular for the sheath equations, the 1 7
asymptotic solution at-¢>1 is needed as “initial” condi- - 27 Nim =0
tion for a regular integration of Eq$8)—(11). _040 -20 0
The equations of a magnetized sheath admit simplifica- T + const
tions for ¢>1 that lead to a new analytical solution. Since
N, ~Nic Xp(— @lt;), vy~ ¢1/21 (15

1~ andn, can be dropped from the left-hand side of E&).

and the right-hand side of Eq11), respectively, whenp

>1 (for any A4,). This means to neglect thermal effects, so
the resultant equations correspond to a cold-plaémndy-
personi¢ magnetized sheath. The general solution of these
cold-plasma equationwalid for ¢>1) is

S| =

Vy=1M=(7%/2)cog +1—c, cosy

+(c3SinT—C, COST)SIN Y,
Vy=—7siny+czcosT+C,sinT,
V,=(7%12)cosysing—c, sing

—(cgsinT—C, COST)COSY,

b= f VUyrdt+Cy= 5(VE+V2+V2)+ const,

(16)

7<=fvxdr+c5,
where
X=A3.é V=A3v, S=Al.0, T=Ag2n, (17

are the convenient dimensionless variables for the cold-
plasma model; the independent parameterboth the elec-
tric field

dé/dx=r, (18
FIG. 2. Plasma response fgr=66°, t,=5.5, andA4,,=0, 0.5, 1, and 1.5;

and the transit time in the sheath of a plasma elent@nt 3 _—o. Solid and dashed lines correspond to exact and hypersonic solutions,
average over individual particles in this macroscopic thgory respectively; they have been matcheddat pA 5 2~20 whereV2, V,H,
and constantg, to c; are obtained matching, é}> Agm’ <0.1. In_(c) a_nd_(d): The asterisk represents poi@itand the region to the
solution (16) and the numerical solution of the exact equa-'e" ©f this point is theB-aligned, collisional presheath.
tions.

Figure 2 shows plasma profiles in the whole collisionless;; txe COLD-PLASMA, MAGNETIZED SHEATH
region for differentA y4,,; dashed lines correspond to the con-
tinuation of the exact solution with hypersonic solutid6). From definition(17) one may writeX=x/\y, with
For Agn<<1 the regions to the left and to the right % 2\ mer
=C¢Ajnm (point S) correspond to the Chodura layer and the  A\S=—5=——2"
space-charge sheath, respectively. The casgs<l and \g dB
Agm=0O(1) differ in the regiorix<O(1), close to the en- so A}, is presumably the characteristic length of a cold-
trance, where the motion ig-aligned for A4,<1, and  plasma, magnetized sheath. Also, in the new variatil@s
B-aligned forAy,>1. WhenX>1, the motion isB-aligned  the nonhypersonic regiomy=O(1), corresponds to
for any Ay,,. Notice thatv,(X), caused by th&Xx B drift, is 5 3 - .
quite insensitive to\ 4, (from point C on). 7<O(Agm), X<O(Agp), @<O(Ayy),

(19

(20
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V< 2 200
These features make the hypersonic solufib®) especially ¢
simple and interesting in the asymptotic limit;,,— 0. First, 100 0
scale\;, of the cold-plasma sheath is much larger than
and \,, so both the Chodura layer and the nonhypersonic
sheath subregion, are reduced to the entrance point 0
0 10 T 20 30
7—0, ¢—0, V—0, (21) 20
b
of the cold-plasma solution. Next, these conditions determine % =Ty ®)
. n _
c, to c5 analytically, 10 =0~
C1=CO0S¥, Co,=SiNy, C3=C,=C5=0,
and solution(16) simplifies to 0 >
V= 1M=(7%/2)cog i+ (1—cosT)sir? i, 400 10 7 2 30
V.= (sinT— 7)si C =85 75
V,=(sinT—7)siny, s © 9 4
V,=(7%12— 1+ cosT)cosy siny, (22 50
45
é=(7*18)cog y+ (7?/2+ 1—cosT— sin7)Sir? i,
%=(7%/6)cog ¢+ (7—sin7)sir? . % 0 - 20 30
7
This solution is regular for any>0 and ¢+ 90°. For ¢ 150
=0, it recovers the well-known solution of a cold-plasma, @ =99/ 8
unmagnetized sheath. Fgky>1 andA 4,<1, solution(22) 100
covers practically all the collisionless region, which is finite ] 75
in variableXx. 50 60
Figure 2 depicted solutiof22) for = 66°; one sees that
the cold-plasma solution is a good approximation Ay, 00 10 ~ 20 30
<0.5. Figure 3 shows solutio®2) for different incidence {2 T
angles. A first salient feature is th@} andf present non- “lee)
monotonic profiles for large incidence angles. Fogiven, 0.8
the position and number of the local extremdni@k) corre- @ =
spond todv, /d7=0, that is to the solutions of P 0.4
— 7 tsinr=cof y.
0
The analysis of this equation yields that oscillations appear 0 10 F 20 30

for >66°, approximately (see Fig. 2, and #/2<7
<1/cog ¢, and their number and amplitude increase with
For cosy<1, the first minimum and maximum ar@
~1/(2sirf y)~3 and Ai~1/(2m?cosy), and they are
reached aip~ 72/2=4.9 andd~272=19.7, respectively.

FIG. 3. Cold plasma sheath profiles fg(in degrees=0, 45, 60, 75, 85,
and 90.(a) Potential,(b) inverse of density(c)—(d) plasma trajectoryt

=r/\S,, and(e) angle of penetration. Paf#) also representsy,(Ls,).

The ratio between these extrema is?tahr?, so oscillations

field is the linear combination of the response to the compo-

larger than 100%, relative to the mean value, are observedentsg, and E, of E, Eq. (2): the component- cosy, par-

for =77.3°.

allel to B, yields a parallel velocity

For 4=90°, it isv,=0 at 7 a multiple of 27 yielding ~ )
Ti=o. A detailed analysis of this local problem is presented V= (7°/2)c0syly,
in the Appendix. The inclusion of thermal effects removesand the componentsin, orthogonal taB, produces a drift
the singularity and the local maxima of density are of thevelocity
order of the external onaz=ﬁA§ms O(1). Thecold-plasma
solution is thus asymptotically valid for any wall potential
and incidence angle. Integration of this cycloidal drift velocity yields moncycloi-
In spite of spatial oscillations, it i$>0, so Poisson dal drift trajectory
equation yields that the electric field increases monotonically
from the sheath entrance to the wall for all angles of inci-
dence, Fig. &). At the same time, the nonuniformity of the
electric field characterizes the competition between electrithe plasma trajectory is shown in FiggcBand 3d). There-
and magnetic effects on the plasma motion. The velocityfore, whereas the drift motion is cycloid@nd thus bounded

Vgr=siny] (sint— 7)1,— (1—cosr)1,].

f VgrdT=siny[(1—cost—7%/2)1,~ (r—sinT)1,];
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S The three subregions and their typical thicknesses are
sketched in Fig. @). For small or moderate angles of inci-
dence: cog=0(1), the asymptotic drift region disappears,
and for grazing incidence: c@s=0, there is not &-aligned
region, Fig. 4b). Spatial oscillations of the plasma density

(a) are due to the drift motion and thus take place only in the
drift region. The electric field- is proportional t&x' in the
E-aligned andB-aligned regions but it is practically linear
with X in the drift region(as if i=1 on the average The
angle of penetration of a particle through the sheath,

7

AS
A cos

™

Mail\feos

quasineutral
plasma

3

3

Vy Vy
a=arccos— =arccos——,
W V2
is depicted in Fig. &); it changes from 0 taj, from the
E-aligned to theB-aligned region. Forg= ¢y, « is the
angle of impact with the wall, of interest to evaluate surface
sputtering.
The asymptotic analysis of the sheath subregions con-
FIG. 4. S_tructure c_>f the space-charge sheath and typiE:AaI thickness of eaté]udes that, for any angle of incidence, the sheath is affected
asymptotic subregion fol 4,<1, (@) ¢#90° and¢y> A g tar? ¢, (b) ¢ L ~ .
=90° and¢W>Agn‘§. Region 1 isE-aligned (unmagnetized region 2 is by the magnetic field Whed>>0(1), i.e., when
dominated by theEX B drift, and region 3 isB-aligned. Thermal effects -
affect a sma}I/I layer of thicknessy cgl’ose to pointg only. There are not ¢>O(Adﬂ[}|)‘ (26)
WeI_I-defined transiti(_)ns among the sheath subregior?&i;ﬁsiecreases the At the potential threshold for magnetic effects, the sheath
region most to the right decreases and eventually disappears. . s - . s
thickness turns to bex~N\,,, which confirms thath,
=\3/\3, is the characteristic magnetic length in the sheath.
At any point, the sheath thickness coincides with the local
along1,) for a uniform electric field, the monotonic electric scale of change of the potentiati in U/dx) ™, which is also
field of the sheath breaks down the magnetic insulation ofhe local scale of change of the plasma kinetic energy. An
the incoming plasma. This is essential for grazing incidenceintuitive and correct derivation of conditioi26) is obtained
where only the perpendicular drift can bring the particles toffom equating the sheath thickness taken from the unmagne-

Xy U Al

1
1
1
I
I
1
)
1
1
1
o e
!
!
1
1
1
1
i
I

~_
o
~

plasma

1

quasineutral

.

the wall. tized Child—Langmuir law, to théocal Larmor radius of a
The competition between the componentsEoparallel ~ particle
and perpendicular t8 leads to differenasymptoticsubre- N3\ pl2
. L . d¢ m¢ .
gions within the sheath. For large incidence angles (cos o
<1) there are up to three subregions: Therefore the magnetic field starts to affect where the local

(i) An E-alignedregion fork<1, where magnetic effects Larmor radius becomes of the order of the local scale of
are marginal and the plasma motion is basically al@ng ~ change of the plasma energy. ~

with Since the sheath solution is universal for agy,, the
evolution of the dimensionless sheath thicknedsy,
=Lgn/\S,, With ¢y is given by functiong(X), Fig. 3a).
Asymptotic scaling laws fotg,( ¢y ,#) are obtained from

Egs.(23)—(25)
(ii) A drift region for 1<X<<1/cosy, dominated by the

T=(6%)'3,  $=(8Y32M, V,=1M=(9%?/2)"?,

2
Vy=—%siny, V,=(3%*/32)* cosysiniy. 2

3/4 -4
EX B drift, where the potential and velocity fields verify Na(25"3) 3", for pw<Agm,
~ =4 N22012  for A%< pu<A3cos 2y,
=%, $=%%2, ¥,=1fi=1—cosx+O(Xcosy), Lor=] A i dm < Pw < AamCOS ¥
(24) Na(2%/413) p3i* cod’?y,  for ¢y Agmcos 2.
Vy=—% V,=(1/2%*cosy. (27)

(i) A B-aligned region for %> 1/cosy, where theE The second and third expressions correspond to magnetized
X B drift is marginal again and the plasma moves aldgg sheaths. The third one is still a Child—Langmuir law with

with factor coé’zzp coming from the fact that the plasma moves
_ alongB while spatial gradients are alorify The second ex-
7=(6%/cos )3, p=(81X*/32cod y)'", pression makes sense only for large angles of incidence and,
- in particular, for a magnetized sheath at grazing incidence; it
V= 1= (9%° cos /2)*", says that ¢, is equal to the local Larmor radius of a particle
T/yz—(Gilcos’- ) YBsiny, (25 at the wall. The dependence ay,, instead of on\yq as
Poisson equation suggests, is due to the plasma demsity

V,=(9%? cog y/2)tany. being of ordem /A2,
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102 plasma dynamics. These subregions together with the
I 309 (quasineutral collisional presheath and Chodura layer, Fig.
“f\Bdw 100 -S> 1(c), constitute the complete planar structure of the plasma.
N From the far and weakly disturbed region to the wall, the
10’ ______}QR plasma trajectory changes froBaligned, toE-aligned, and
10 o5 then to B-aligned again. These changes take place in two
------- intermediate regiongone quasineutral and one non-neytral
N — dominated by thé=X B drift. The two drift regions increase
10° B with the angle of incidence; in the drift region within the
0 30 v % 90 sheath(but not in the Chodura layethe nonmonotonicity of

the velocity component perpendicular to the wall leads to a

FIG. 5. Variation of the sheath thickness with the angle of incidence fornonmonotonic density profile. Fap=90°, thermal effects
i‘f‘mgioa/’l‘iﬁ;ﬁi% (f’;)": 1(0104 :gg¢)3}g()i'nac?:h§°f1: é‘figl;/z(‘”) with 9(¥)=1  must be kept around the density maxima to obtain a regular
’ solution. The diversity of sheath regions are explained by the
competition between the local Larmor radius and the local

For plasma flowl", independent of/ [i.e., g(¢)=1 in  Scale of change of plasma energy. At the sheath entrance the
Eq. (4)] Eq. (27) and Fig. 3a) show that larger angles of second scale is the shorter one and the motida-adigned.
incidence imply larger plasma densities, larger electric fieldsSince this scale increases faster than the gyroradius along the
and, therefore, thinner sheaths. Figure 5 shows the variatiotheath, magnetic effects eventually appéarsimilar argu-
of the sheath thickness with the angle of incidence for twoment was valid to interpret the change of plasma trajectory in
different expressions aj(¢); these plots also represent the the Chodura layeh) The finalB-aligned region is also due to
sheath shape around a thick cylinder of axis perpendicular ti€ increasing electric field, which produces a stronger accel-
B. Observe first that, althoughy ) is essential to compute €ration of the plasma along than perpendicular to it.
the current collected at the wall, it has a small influence on ~ The model determines that the threshold ¢af; for a
the shape of a magnetized sheath, as the solid and dash@@gnetized sheath is of the ordendf/\ ¢, much larger, for
lines for gy 30 show. Second, the cagq,~ 3 corresponds dm<1. than estimatel) proposed previously. Indeed the
to a weakly magnetized sheaths the solid line indicates characteristic magnetic length in the sheath is not the thermal

. s _ _2 . .
and the variation of thickness shown by the dashed lind-2MOr radius but ,=AmAqn, Ed.(19), which is propor-
comes from the dependence gnof the flow entering the tional to B~~l',, the dependence ofi, being due to the
sheath(due to magnetic effectsutsidethe sheath The re- influence of the plasma density on the electric field profile.
sults presented by Bergmanwmn magnetic effects in a sheath

As an application of the model let us consider an elec-
correspond to this second case and not to a magnetizdfP" attracting Uy,>0) object in the low Earth ionosphere.
sheath. His numerical simulations use entrance conditio

For Ag~0.25cm and\,~2.5cm as typical parameters at

(13) and g( ) cosi. Applying threshold conditiori26) to dgylight, the characteristi_c magnetic length in th_e sheath _is
his simulation parameters one finds that the sheaths he ofn™2-5M and the potential threshold for magnetic effects is

tained are unmagnetized, with the dependence/dreing Uw~ 1900 V, instead otJW~22V.given by Eq.(l). .The_n,
due to entrance conditions exclusively. Indeed the only scal@t daylight, a sheath two meter thitind quasiplanais still

ing law he found for the sheath thickness was;, unmagnetizeda preliminary estimate suggests that the po-
Ockdoo¢\3,\’,400§l/2 &, which agrees with the first expression of tential threshold can.be'larger for a spherlgal sheddn 'the
Eq. (27) when\g. =N\ gg~ Y3(). other hand, Eq(26) |nd|cates that magnetic gffects in the
sheath depend heavily on the plasma density: In the low
ionosphere, when the density decreases by one order of mag-
nitude from day to night, the potential threshold is reduced to
We have presented a model of the space-charge sheathy~10V.
which completes a planar model of the plasma structure In TSS-1 and TSS-1R experiments, a spherical satellite
around a biased wall, oblique to a uniform magnetic field, forof radiusR=0.8 m was biased to a range of large voltages.
Ag<An<\. and large wall potentials. Except in a thin layer Most experimental observations verified thag(\4/R)*?
of thickness\y, thermal effects can be removed from the =0(1) and qﬁWAjmsO(l) (although some uncertainty on
sheath equations, which then have an analytical solutiom 4/\ 4. must be admitted The first condition means that
Plasma dynamics are the consequence of the spatial profifpherical effects could not be strong in the sheath and the
of the electric field. This is monotonic for any angle of inci- present theory may be applied qualitatively, at least. The
dence(including »=90°) and leads tfv(x)| monotonic and second condition implies that magnetic alignment of the
an unbounded plasma drift, which breaks down magnetiplasma was not strong in the sheath, in agreement with on
insulation. This allows the plasma to be collected at grazingitu measurementswith Langmuir probes of the electron
incidence for any value of the wall potenti@ uniform elec- trajectory. It further implies that the current collected by the
tric field, whatever strong, would lead to a magnetically in-satellite had to be the current that entered into the sheath,
sulated solution fokb,y large enough ang close to 90¥. what could explain the good fitting of the results with the
The inhomogeneity of the electric field produces up toLangmuir—Blodgett scaling lawbased precisely in the
three subregions in the sheath, Figa4 with different  sheath outer boundary as effective collection araithough

IV. FINAL CONSIDERATIONS
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the central issue, how the complex processes in the external 1
region determine the flow functiog(y), remains to be un-

derstood, one may already conclude that both the thick 0.8
sheath and the quasineutral region are influencing the 0.6
current-voltage response. In other words, the rich structure of Agn F
the electric potential should not be ignored by a current col- 0.4
lection theory. A specific analysis of the plasma behavior

around TSS-1R, intended to confirm the above arguments, is 0.2
in progress. 0

0 0.5 1 1.5 2
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APPENDIX: GRAZING INCIDENCE 1 1/dg)?
' +t,n,=const,

Vyt+t — = | ==
o : . vy 2\dé
This is a singular case of both the collisionless,

quasineutral model, Eqs(8)—(13), and the cold-plasma which coincides with the conservation of momentum of an
sheath model, Eq$22). For y=90°, itisv,.=0 at pointC, ~ unmagnetized sheath. Whef>1, the presence of the re-
Eq. (13), and there is no solution of the collisionless, Pelled species is totally negligible; ~exp(- ¢/t,), the inte-
quasineutral model, because there is no mechanism to trarn@tal termJ £n,v,d¢ becomes constant, and E&\1) simpli-
port the plasma alon@,. Collisions must be kept in the fiesto
model to create a diffusion electric field that initiates the 1 v2 2
transversal transpottThere is then a unique set of equations Vit —— Aﬁm—X+A§mln Vy— =
for the whole quasineutral region, which extends fres0 Vx 2 2
to point S For A;>N\>\4 its characteristic extension is with constantc—c, positive and of order,,. Figure 6
Aol In(\/Np)] Y2 and, although there is not a well-defined plots Eq.(A2) for c=2 and several\y,,. The densityn
point C, a collisional and a Chodura subregions are still=A3 /¥, has extrema aF=0; for Ay4,—0, these are

=2c, (A2)

distinguished. A%,/2 andc— \c?—1=0(1). Therefore, the maximum af
For ¢=90° Egs. (8)—(12) are valid for the sheath, is of the order of the density at the entrance to the sheath.
boundary conditions at poirg are This confirms the asymptotic validity of the cold-plasma so-
_ _ lution for =90°.
=—, V,g=Cq, :
& XSS Notice that, forA4,—0, Eq. (A2) recovers the cold-
Vys=—CsV2 IN(\¢/Ny)  Nis=1lcs, dgp/dé]s=0, plasma expression
and we setps=0. Sheath equations are integrated asyfor 5 \73 E?
#90° and conditiong15) are verified wheng>1. There- VxT 5T 720,

fore, the cold-plasma solutiof22) is formally valid also for 5

parallel incidencethis was the particular solution obtained with F=Ay,F=7+V,; this equation is also obtained from

by Auef). However, in this solutiofi becomes infinityi.e.,  solution(22). Finally, asA 4., increases the sheath tends to be
Vv,=0) at 7 a multiple of 2. Since cold-plasma hypotheses B-aligned at smaller potentials and the amplitude and num-
require thal,> A3, further analysis of the regions close to ber of the oscillations decrease, as can be deduced from the

the minima ofv, is needed to accept that solution. curves of Fig. 6.
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