

 1

A 3D HYBRID CODE TO STUDY ELECTRIC THRUSTER PLUMES

Filippo Cichocki
 (1)

, Adrián Dominguez
 (2)

, Mario Merino
 (3)

, Eduardo Ahedo
(4)

(1)
Equipo de Propulsión Espacial y Plasmas (EP2), UC3M, Madrid, Spain, fcichock@ing.uc3m.es

(2)
Equipo de Propulsión Espacial y Plasmas (EP2), UC3M, Madrid, Spain, addoming@ing.uc3m.es

(3)
Equipo de Propulsión Espacial y Plasmas (EP2), UC3M, Madrid, Spain, marmerin@ing.uc3m.es

(4)
Equipo de Propulsión Espacial y Plasmas (EP2), UC3M, Madrid, Spain, eahedo@ing.uc3m.es

KEYWORDS: plasma plumes, hybrid codes, PIC,
structured meshes, IBS, LEOSWEEP

ABSTRACT

A new 3D hybrid particle code is being developed
at the Universidad Carlos III de Madrid, with the
major goal of studying the expansion of an electric
thruster plasma plume into vacuum and its
interaction with either the spacecraft or an object in
front of it. It is a hybrid particle/fluid code, thus
representing a good compromise between a full
particle code (numerically expensive) and a
simplified fluid model approach. The development
status, some of its innovative features and
applications and, finally, the validation and
benchmarking campaign of a preliminary code
version, are here presented and described.

1. INTRODUCTION

Nowadays, the simulation of electric thruster
plumes onboard modern satellites is becoming
extremely important and demanding. Firstly, from a
system engineering point of view, it is necessary to
evaluate the plume interaction with sensitive S/C
surfaces, such as onboard sensors and solar
panels. In fact, the main plume ions and the
secondary ions (generated by charge-exchange
collisions, CEX) can hit such surfaces and damage
them through sputtering or deposition. Secondly, a
refined plume expansion model is also necessary
in the design of active debris removal missions
based on the ion beam shepherd technique (IBS),
whose feasibility is currently being studied with a
European Union funded project, named
LEOSWEEP [1]. In this context, a debris object is
progressively relocated to a different orbit by
means of the ion push of a plasma plume directed
towards it, as illustrated in Figure 1.

For what concerns the plume modeling, this can be
achieved by means of either fluid or kinetic
approaches. The former do not account for the
complexity of the expansion of a near-collisionless
medium. Notwithstanding this, a simplified fluid
treatment can be applied with good results in the
far region of the plasma plume, sufficiently far
away from the thruster exit, as shown in [3] and [4],
where their major limitation consists in the difficulty
of modelling the lateral plume and the detailed
energy distribution functions (strongly influenced

by charge-exchange collisions). Kinetic models, on
the other hand, do not present such limitations but
generally require a much larger computational
power.

Figure 1: The IBS mission concept. Illustration taken

from [2]. The ITT is the Impulse Transfer Thruster, the
ICT is the Impulse Compensation Thruster

In order to study the plume expansion with
reasonable computational power, while covering
the above described phenomena and the
particularities of a rapidly-expanding plasma into
vacuum, we are developing EP2PLUS (Extensible
Parallel Plasma PLUme Simulator). Such code is a
3D hybrid PIC/fluid code and it represents an
intermediate solution between fluid and fully kinetic
simulators. An arbitrary number of heavy species
populations (including multiply charged ions or
neutrals of different species) can be simulated as
in conventional PIC codes, while the ñneutralizingò

electrons are treated as a fluid, thus avoiding the

need to resolve the electron timescales in the

simulation. Heavy species particles are moved with
a conventional particle mover and collisions are
simulated with dedicated Monte Carlo techniques.
The electron fluid properties and the
electromagnetic fields necessary to move the
heavy particles and close the loop are obtained, on
the other hand, by imposing quasi-neutrality and
by either assuming unmagnetized electrons with
simplified thermodynamics (numerical fittings from
kinetic studies, Boltzmann or polytropic laws) or by
solving the electron conservation equations for the
magnetized case.

The 3D architectural choice enables the study of

SP2016_3124968

mailto:addoming@ing.uc3m.es
mailto:eahedo@ing.uc3m.es

 2

interesting non-axially symmetric problems, such
as plumes with a neutralizer (typically on one side
of the thruster and emitting neutral atoms), impact
of the plume on an arbitrary target object, different
S/C shapes and also the effects of an oblique
magnetic field (such as the geomagnetic field) on
the plume expansion.

This paper presents the status of the EP2PLUS
code development. In Section 2, the code goals
and methodologies to reach them are presented.
In Section 3, the general code structure and its key
algorithms are introduced. Section 4 focuses on
some of the major code innovative features, with
an application example in the context of the
LEOSWEEP project, while Section 5 provides the
code validation results, by benchmarking it against
our 2D axisymmetric fluid code EASYPLUME.
Finally, the conclusions are drawn in Section 6.

2. CODE GOALS AND METHODOLOGIES

2.1. Code goals

EP2PLUS has the major goals of:

¶ Simulating the near region plume physics,
which requires detailed modeling of collisional
effects, as these can affect greatly this plume
region, as shown in [3] and [4].

¶ Simulating the interaction of the plume with
arbitrary objects, a requirement coming directly
from the LEOSWEEP project [1]. Such objects
include the target debris of an IBS mission and
the satellite itself (solar panels, sensors,
thruster etc.), affected by the ion deposition
due to the ion backflow (charge-exchange in
the near plume region) and back-sputtering
(erosion of the target debris).

¶ Simulating the 3D effects of an oblique
magnetic field like the Earthôs magnetic field,
which might distort in non-trivial ways a plume
containing electrons, as shown in [5].

¶ Obtaining an accurate description of the
evolution of the properties of a plume that is
rapidly expanding into the vacuum, or in a
vacuum chamber. In this context, EP2PLUS
shall allow extrapolating experimental plume
data, obtained in vacuum chambers with a
known background pressure, to real flight
conditions.

In order to reach the first goal of simulating the
near region plume, EP2PLUS shall simulate the
most relevant collisions between heavy particles.
Such collisions shall be modeled with well-known
approaches like the Monte Carlo Collision (MCC)
or the Direct Simulation Monte Carlo (DSMC)
methods, as well as hybrid approaches, not
belonging to any of the above mentioned families.

For the simulation of the plume interaction with
external objects, EP2PLUS features a structured

mesh, which permits to use much quicker
algorithms than an unstructured mesh, although
being less flexible in terms of simulation
geometries. Such structured mesh is tailored to the
problem at hand, by assigning specific material
flags to some of its surface elements. In this way,
different object geometries can be added to the
simulation domain by simply setting a 3D surface
elements IDs matrix, without even touching the
structured mesh nodes. More details on this can be
found in Section 4.

With the goal of studying the effects of an oblique
magnetic field, it is foreseen to develop a fluid
solver for the electron conservation equations
(continuity and momentum) coupled with Ampereôs
law to study the effect of self-induced electron
currents. For other study purposes, EP2PLUS
does however feature simplified electron fluid
approaches. One is that of assuming polytropic
electrons, a model which can capture pretty well
the major plume expansion features, as shown in
[6]. The other approach is to use numerical fittings
for the electron thermodynamics, coming from
ongoing kinetic studies, like that described in [7]
and [8], for the expansion of a magnetized plasma
plume.

Finally, since EP2PLUS is primarily dedicated to
study plasma plumes, it is specifically optimized to
achieve this goal. In this context, an innovative
expanding structured mesh can be used in order to
reduce the numerical PIC noise and obtain better
plume results, as shown in Section 4.

2.2. Development Methodology

EP2PLUS is being developed following strict
development and validation standards. A test
driven design (TDD) development permits to
validate new modules by designing, in the first
place, dedicated unit and integration tests. In this
way, new code functions are added only when
validated, and the functionality of old functions is
continuously checked throughout the development
phase by running the existing tests suite. At the
same time, a sound documentation is being
generated, and a version control software is being
used.

The code has been developed in such a way that it
is scalable and highly modular, with industry level
input/output formats, like HDF5. The physical unit
is called the CORE and is coded in Fortran, while
the pre-processing (PRE) and post-processing
(POST) units are coded in Python. As clearly
stated by the code acronym, parallelization is
foreseen with Open-MP, to take the advantage of
large shared memory workstations.

In order to maximize the code sharing and
standardization within our research group,
EP2PLUS also shares the same code structure,

 3

interfaces and modules of a hybrid plasma source
axisymmetric code currently being developed
(NOMADS) and presented in [9].

3. GENERAL CODE STRUCTURE AND KEY

ALGORITHMS

3.1. General Code Structure

As mentioned in the previous section, EP2PLUS
presents 3 independent units, as depicted in
Figure 2 and described below:

¶ SET: coded in Python, it is in charge of the
pre-processing tasks, including the generation
of the necessary input files for the CORE. The
simulation settings are specified by a
dedicated input file, set.inp, editable by the
user. The outputs are sim_params.inp, (text
file) containing the simulation parameters, and
SimState.hdf5 (HDF5 format), which contains
the minimum set of variables to start or re-start
the simulation (particle lists data, mesh data,
etc.).

¶ CORE: coded in Fortran, it represents the
simulation core unit, which carries out the
plasma physics simulation. Taking as inputs
both sim_params.inp and SimState.hdf5, it
runs the simulation and generates the output
file PostData.hdf5, containing the plasma
plume properties at given time steps, and an
updated version of the SimState.hdf5 file, at
the last simulation time step.

¶ POST: coded in Python, it reads the CORE
output files and produces different graphical
results (plots and diagrams) as required by the
user, through a dedicated POST input file,
named post.inp.

Figure 2. EP2PLUS tool overall architecture

3.2. The CORE unit algorithms

The CORE unit is composed of different dedicated
modules, each of them in charge of performing
specific simulation tasks and containing the
necessary functions.

The two central modules of the hybrid simulator
are the PIC and the electron fluid modules, as
highlighted in green in Figure 3. The former, which
takes as inputs the electric potential and the
magnetic field at the PIC mesh nodes, is
responsible for propagating the heavy species
(neutrals and ions) one time step forward (through

a leap frog algorithm), colliding them, checking
whether they hit some special domain surface
(external boundary, material surface etc.) and
weighting them to the mesh nodes, thus obtaining
the updated ion/neutral density and particle fluxes.
These values are the inputs for the electron fluid
model, which solves for the new electric and
magnetic field, according to the selected solver
type. The available solution models shall be
described later on.

 Figure 3. Hybrid particle code loop

In general, EP2PLUS has been designed to work
with two different meshes for the PIC and for the
electron fluid, in order to share the same structure
of NOMADS [9], which requires a magnetic aligned
mesh for solving the electron equations. Currently,
for EP2PLUS, the two meshes are the same, so
that the interpolation from one to the other is a
simple identity function.

The main CORE modules are then detailed below:

¶ Interpolation module: responsible of the
bidirectional interpolation of a large number of
plasma variables from the PIC mesh to the
electron fluid mesh and vice-versa. As
previously mentioned, this is a trivial step in
EP2PLUS

¶ PIC module: it advances the heavy species
particles by one PIC time step. In order to do
so, it features both ñparticle-wiseò and ñcell-
wiseò algorithms. The former are algorithms
applied to each of the heavy species particle,
one by one, and include:

o Interpolation of electric and magnetic fields
to the particle position.

o Moving particle with a leap-frog algorithm
o Sorting particles efficiently to the PIC mesh

volume elements.
o Checking whether a particle crosses some

special PIC surface elements (external
boundaries, material surfaces with different
properties etc.). Particles crossing ñspecial
surfacesò are stored in dedicated hit list
arrays.

 4

The latter algorithms are carried out for each
PIC volume element and include:

o Population control to ensure that the number

of macro-particles per cell be within a
specified interval. This algorithm (part of

future work) shall renormalize the velocity

distribution function within th ose cells
featuring a number of particles out of this

interval
o Injection of particles from specific PIC

surface elements, following arbitrary initial
profiles for both the particle density and
velocity (provided by the user).

o Collision simulations between heavy particle
species or with the electron fluid. These
generally follow either an MCC or a DSMC
method.

o Surface interaction of the heavy species
particles (absorption, emission, reflection
etc.).

o Particle weighting, through a trilinear
interpolation, based on the computational
coordinates of the particles contained in
each PIC volume element.

¶ Boundary correction module: it forces Bohmôs
condition in quasi-neutral simulations by
changing the weighted particle density at the
PIC mesh nodes of a material surface. In fact,
as shown in [10], the ion velocity at these
nodes is not constrained naturally to satisfy the
Bohmôs condition (normal velocity greater than
the ion acoustic velocity). Therefore, in order to
guarantee that a stable sheath solution exists,
it is necessary to impose, in hybrid PIC codes,
that these ions be accelerated to this minimum
velocity.

¶ Electron fluid module: this module is in charge
of solving the electron fluid model obtaining the
new electric and magnetic fields to advance to
the next PIC time step, self-consistently.
Different electron fluid models can be selected
as shown below and all of them assume quasi-
neutrality:

o Accurate numerical fittings for the electron
thermodynamics such as Ὕ Ὢὲ , coming
from dedicated kinetic studies for the
unmagnetized plume case. References [7]
and [8] show one of such studies, carried
out for magnetized plumes.

o Polytropic unmagnetized electrons: in this
case, we assume a polytropic relation for the
electrons like the one shown in equation 1,
in which Ὕ and ὲ are the electron
temperature and density at a reference node
of the domain and is the polytropic
exponent (1 for isothermal electrons):

With this assumption, as shown in [3] and
[4], the electric potential can be obtained
from the electron density knowledge as:

o Solution of the stationary electron continuity

and momentum conservation equations,
coupled with Ampereôs law. In this electron
model, both the electric and magnetic field
are computed self-consistently at each time
step.

¶ Sheath module: this module is generally run to
compute the sheath potential drop from the
electron temperature knowledge, thus updating
the impacting ion energies, for appropriate
post-processing of the energy fluxes to
material surfaces.

¶ Post module: this module contains all the
functions dedicated to write the simulation
output files PostData.hdf5 and SimState.hdf5
and update some simulation variables (like the
average values of the plasma properties over a
given number of time steps).

4. INNOVATIVE FEATURES AND EXAMPLES

The EP2PLUS code introduces some innovative
features for the PIC module. First of all, the PIC
uses a structured mesh in which it is possible to
define inner material surfaces that do not coincide
with the external simulation domain. This is a
fundamental capability to enable the simulation of
the plume interaction with inner objects and with
the spacecraft, while maintaining a simple
structured mesh, easier to treat and subject to
lower numerical issues than an unstructured mesh.

Secondly, EP2PLUS can also make use of an
expanding PIC mesh, which naturally follows the
plume expansion and allows obtaining better
results in terms of computational time and results
noise.

These innovative features are further detailed in
the following sub-sections.

4.1. Inner material surfaces

4.1.1. The 3D surface elements IDs matrix

As mentioned before, EP2PLUS has the capability
of including inner material surfaces in the
simulation domain, which are sinks for the ions,
which recombine with electrons into neutral atoms,
and which are specular/diffuse reflection or source
surfaces for neutrals.

Before proceeding with the description of the
approach followed by EP2PLUS, let us first

Ὕ

Ὕ

ὲ

ὲ
 (1)

‰

ừ
Ử
Ừ

Ử
ứ

Ὕ

Ὡ
ÌÎ
ὲ

ὲ
 ÆÏÒ ρ

Ὕ

Ὡ

ὲ

ὲ
ρẗ

 ρ
 ÆÏÒ ρ

 (2)

 5

introduce some key concepts.

First of all, each particle species is represented by
one or more dedicated particle lists (e.g. to
differentiate between slow and fast ions), which are
2D matrices containing the particle properties
along the different columns and a row for each
particle. So the row number specifies the particle
ID in the given particle list. Moreover, as already
mentioned, the tool makes use of a structured PIC
mesh, which means that the mesh nodes can be
clearly identified with integer computational
coordinates, ranging from 0 to the number of
nodes minus 1 along each coordinate direction. So
a particle at the physical coordinates ὼȟώȟᾀ can
also be represented by the computational
coordinates ‚ȟ–ȟ‒ with ‚ɴ πȟὔ ρ, –ɴ

πȟὔ ρ and ‒ɴ πȟὔ ρ with ὔ , ὔ , ὔ the

number of nodes along each coordinate axis. Of
course such computational coordinates assume
integer values at the PIC mesh nodes. In a
structured mesh, a coordinate surface can be
identified by the four neighbouring nodes with a
constant value of one of the 3 computational
coordinates. In order to quickly access such
surface elements, we then define the integer

coordinates ‚ ȟ– ȟ‒ of a coordinate

surface element as shown in Equation 3, where
‚ȟ–ȟ‒ are the computational coordinates of the

surface element centers:

The computational coordinates of some surface
elements of an arbitrary mesh are shown in red in
Figure 4, which is 2D for the sake of clarity (so that
a surface element is represented by a line).

Figure 4. PIC mesh surface elements IDs and particle
crossing check algorithm in 2D, for the sake of clarity

Therefore, by defining a 3D surface element IDs

matrix with dimensions ςὔ ρ ςὔ ρ

ςὔ ρ, we can specify different surface

elements material properties by simply modifying
the corresponding matrix element. For example, an
ID equal to 0 means that the surface is transparent
to ions, while an ID of -1 means that it is a free loss

boundary (particles crossing it are simply removed
from the domain, with no further action). Of course,
by defining other IDs, different types of material
surfaces can be added to the simulation domain,
as shown in Figure 4.

Of course, such an approach requires the
definition of a dedicated algorithm to check surface
elements crossing. This is the particle crossing
check algorithm, which checks if the particle has
crossed any inner, important surface element
along its motion (any surface element with an ID
other than 0). As we are using a leap frog
algorithm for particle motion, the particle trajectory
is a straight line between the initial and final
particle positions (blue line in Fig. 4), which are
stored in memory. The algorithm then checks the
IDs of the surface elements crossed by the
particle, one after the other, in the order dictated
by the direction of motion. If it happens that the
particle crosses a surface element with ID different
from zero, it is collected into a dedicated particle hit
list, containing the particle ID in the corresponding
particle list, the corresponding particle velocity and
the exact crossing point on the surface element.

As for the particle lists, there is one or more
particle hit list for each ionic or neutral species.
These hit lists are used to carry out the necessary
actions with the use of other dedicated algorithms,
which depend on the surface element ID applying
in each particle case: simple removal, removal plus
injection of a neutral, reflection etc. Finally, they
also represent an extremely useful tool for counting
particle fluxes through userôs defined surfaces.

4.1.2. Application to an IBS mission

An example of the above described functionality is
shown below. With a simple Cartesian mesh it is
possible to easily define a relatively complex
geometry like that of an IBS mission scenario. This
is shown in Figure 5. Here the IDs for the external
boundary of the simulation domain (-1), for the
spacecraft (1) and for the object (2) are different,
thus presenting a different shade of grey.

Figure 5. A 3D surface element IDs matrix display,

generated for an IBS mission scenario analysis

(3) ‚ ȟ– ȟ‒ ςẗ‚ȟ–ȟ‒

 6

With this geometry, by adding an injection surface
on the S/C side facing the space debris object, it is
possible to study the interaction of the plasma
plume with it. In this case this object is cubic with
24 cm side and at a distance of 1 m from the
thruster exit plane.

The resulting 3D electric potential is shown in
Figure 6, for a collisionless plume simulation.

Figure 6. 3D electric potential iso-surfaces for an IBS
application study with a cubic object immersed in the
plume

The formation of a wake behind the object and the
corresponding ion number density contours can be
better appreciated in Figure 7, representing a cross
section at ώ 0. The plume, made of singly
charged Xenon ions, is injected with an initial axial
velocity of 40 km/s, following the Parks-Katz plume
profiles [3] with an initial density of 10

16
 m

-3
 and a 5

deg initial divergence angle (for the 95% ion
current streamline). Regarding the electron fluid
model, polytropic electrons with 1.05 have
been assumed with Ὕ 3 eV (electron
temperature at the thruster exit center, where the
plume density is highest).

Figure 7. Symmetric target position results: cross section
at ώ π of the 10 steps averaged ion number density.
The simulated plume, made of singly charged Xenon
ions, is injected at ᾀ π, following Parks-Katz SSM initial
profiles with an initial axial velocity of 40 km/s and a 5
deg divergence angle. Polytropic electrons with 1.05

and Ὕ 3eV are considered

The ions are perfectly absorbed by the material
surface of the space debris, thus generating a

region of near-vacuum behind it (i.e. a plasma
wake). However, the density gradients induced by
the object, also result, through Equation 2, into
large electric potential gradients and hence electric
fields directed towards the plume centerline. For
this reason, the vacuum region quickly disappears
(after approx. 1.5 m in the current example). This
can also be clearly observed in Figure 8, providing
the 2D contour of the x-velocity, again at the ώ 0
plume cross section.

Figure 8. Symmetric target position results: cross section
at ώ π of the 10 steps averaged ion x-velocity. The
simulated plume, made of singly charged Xenon ions, is
injected at ᾀ π, following Parks-Katz SSM initial
profiles with an initial axial velocity of 40 km/s and a 5
deg divergence angle. Polytropic electrons with 1.05

and Ὕ 3eV are considered

Figure 9, shows the ion number density for the
same physical problem, but with a space debris
object displaced by 20 cm in the x direction. The
effect of this asymmetry in the target debris
position reflects into a fully 3D plasma plume
density profile. Once again, a 3D plasma wake
forms that extinguishes again after approximately
1.5 m of distance.

Figure 9. Asymmetric target position results: cross
section at ώ π of the 10 steps averaged ion number
density. The simulated plume, made of singly charged

Xenon ions, is injected at ᾀ π, following a Parks-Katz
SSM initial profiles with an initial axial velocity of 40 km/s
and a 5 deg divergence angle. Polytropic electrons with
 1.05 and Ὕ 3eV are considered

