EP2 :: Equipo de Propulsión Espacial y Plasmas
background


Equipo de Propulsion Espacial y Plasmas (EP2)

Articles in peer-reviewed Journals

Plasma Space Propulsion

[1] E. Ahedo. Plasmas for space propulsion. Plasma Physics and Controlled Fusion, 53(12):124037, 2011. [PDF].

This file was generated by bibtex2html 1.96.

Hall Effect Thrusters

[1] D. Escobar and E. Ahedo. Global stability analysis of azimuthal oscillations in hall thrusters. IEEE Transactions on Plasma Science, 43(1):149-157, 2015. [PDF].
[2] D. Escobar and E. Ahedo. Low frequency azimuthal stability of the ionization region of the hall thruster discharge. I. local analysis. Physics of Plasmas, 21(4):043505, 2014. [PDF].
[3] E. Ahedo, R. Santos, and F. Parra. Fulfilment of the kinetic bohm criterion in a quasineutral particle-in-cell model. Physics of Plasmas, 17:073507, 2010. [PDF].
[4] S. Barral and E. Ahedo. Low-frequency model of breathing oscillations in hall discharges. Physical Review E, 79:046401, 2009. [PDF].
[5] D. Escobar and E. Ahedo. Two-dimensional electron model for a hybrid code of a two-stage hall thruster. IEEE Transactions on Plasma Science, 36:2043-2057, 2008. [PDF].
[6] E. Ahedo and V. de Pablo. Combined effects of electron partial thermalization and secondary emission in Hall thruster discharges. Physics of Plasmas, 14:083501, 2007. [PDF].
[7] F. I. Parra, E Ahedo, M. Fife, and M. Martínez-Sánchez. A two-dimensional hybrid model of the hall thruster discharge. Journal of Applied Physics, 100:023304, 2006. [PDF].
[8] E. Ahedo and J. Rus. Vanishing of the negative anode sheath in a Hall thruster. Journal of Applied Physics, 98:043306, 2005. [PDF].
[9] E. Ahedo and F. I. Parra. Partial trapping of secondary electron emission in a Hall thruster plasma. Physics of Plasmas, 12(7):073503, 2005. [PDF].
[10] E. Ahedo and F. I. Parra. A model of the two-stage Hall thruster discharge. Journal of Applied Physics, 98:023303, 2005. [PDF].
[11] E. Ahedo and D. Escobar. Influence of design and operation parameters on Hall thruster performances. Journal of Applied Physics, 96(2):983-992, 2004. [PDF].
[12] E. Ahedo, J. M. Gallardo, and M. Martínez-Sánchez. Effects of the radial-plasma wall interaction on the axial Hall thruster discharge. Physics of Plasmas, 10(8):3397-3409, 2003. [PDF].
[13] E. Ahedo, J. M. Gallardo, and M. Martínez-Sánchez. Model of the plasma discharge in a Hall thruster with heat conduction. Physics of Plasmas, 9(9):4061-4070, 2002. [PDF].
[14] E. Ahedo, P. Martínez-Cerezo, and M. Martínez-Sánchez. One-dimensional model of the plasma flow in a Hall thruster. Physics of Plasmas, 8:3058-3068, 2001. [PDF].

This file was generated by bibtex2html 1.96.

Magnetic Nozzles and Helicon Thrusters

[1] Mario Merino and Eduardo Ahedo. Fully magnetized plasma flow in a magnetic nozzle. Physics of Plasmas, 23(2):023506, 2016. [PDF].
[2] M Martinez-Sanchez, J Navarro-Cavallé, and E Ahedo. Electron cooling and finite potential drop in a magnetized plasma expansion. Physics of Plasmas (1994-present), 22(5):053501, 2015. [PDF].
[3] M. Merino and E. Ahedo. Influence of electron and ion thermodynamics on the magnetic nozzle plasma expansion. IEEE Transactions on Plasma Science, 43(1):244-251, 2015. [PDF].
[4] M. Merino and E. Ahedo. Plasma detachment in a propulsive magnetic nozzle via ion demagnetization. Plasma Sources Science and Technology, 23:032001, 2014. [PDF].
[5] Eduardo Ahedo and Jaume Navarro-Cavallé. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances. Physics of Plasmas (1994-present), 20(4):043512, 2013. [PDF].
[6] M. Merino and E. Ahedo. Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas. Physics of Plasmas, 20:023502, 2013. [PDF].
[7] Eduardo Ahedo. Plasma dynamics in a helicon thruster. In Luigi T. DeLuca, Christophe Bonnal, Oskar J. Haidn, and Sergey M. Frolov, editors, Progress in Propulsion Physics, volume IV of EUCASS Advances in Aerospace Sciences, chapter 3, pages 337-354. Torus Press, 2013.
[8] E. Ahedo and M Merino. Two-dimensional plasma expansion in a magnetic nozzle: separation due to electron inertia. Physics of Plasmas, 19:083501, 2012. [PDF].
[9] E. Ahedo and M Merino. On plasma detachment in propulsive magnetic nozzles. Physics of Plasmas, 18:053504, 2011. [PDF].
[10] Mario Merino and Eduardo Ahedo. Simulation of plasma flows in divergent magnetic nozzles. IEEE Transactions on Plasma Science, 39(11):2938-2939, 2011. [PDF].
[11] Eduardo Ahedo. Double-layer formation and propulsive assessment for a three-species plasma expanding in a magnetic nozzle. Physics of Plasmas, 18(3):033510, 2011. [PDF].
[12] E. Ahedo. Magnetic confinement of a high-density cylindrical plasma. Physics of Plasmas, 2011. [PDF].
[13] M. Martínez-Sánchez and E. Ahedo. Magnetic mirror effects on a collisionless plasma in a convergent geometry. Physics of Plasmas, 18:033509, 2011. [PDF].
[14] Eduardo Ahedo and Mario Merino. Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Physics of Plasmas, 17:073501, 2010. [PDF].
[15] Eduardo Ahedo and Manuel Martínez-Sánchez. Theory of a stationary current-free double layer in a collisionless plasma. Physical Review Letters, 103:135002, September 2009. [PDF].
[16] E. Ahedo. Parametric analysis of a magnetized cylindrical plasma. Physics of Plasmas, 16:113503, 2009. [PDF].

This file was generated by bibtex2html 1.96.

Plasma Plumes And Space Debris/Asteroid Manipulation

[1] A. Alpatov, Filippo Cichocki, A. Fokov, S. Khoroshylov, Mario Merino, and A. Zakrzhevskii. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica, 119:241 - 251, 2016. [PDF].
[2] F. Cichocki, M. Merino, and E. Ahedo. Electric propulsion subsystem optimization for ”Ion Beam Shepherd” missions. Journal of Propulsion and Power, 2016. [PDF].
[3] M. Merino, F. Cichocki, and E. Ahedo. A collisionless plasma thruster plume expansion model. Plasma Sources Science and Technology, 24:12pp, 2015. [PDF].

This file was generated by bibtex2html 1.96.

Electrodynamic Tethers and Plasma Contactors

[1] E. Ahedo and J. R. Sanmartín. Analysis of bare-tether systems for deorbiting low-earth-orbit satellites. J. of Spacecraft and Rockets, 39(2):198-205, 2002. [PDF].
[2] V. Lapuerta and E. Ahedo. Dynamic model of a plasma structure with an intermediate double layer, formed outside an anodic plasma contactor. Physics of Plasmas, 7:2693-2703, 2000. [PDF].
[3] E. Ahedo. Current-voltage response of anodic plasma contactors with external ionization. Physics of Plasmas, 3:3875-3884, 1996. [PDF].
[4] E. Ahedo and V. Lapuerta. Weakly three-dimensional model of spherical contactors in unmagnetized plasmas. Physics of Plasmas, 2:3252-3260, 1995. [PDF].
[5] J. R. Sanmartín, M. Martínez-Sánchez, and E. Ahedo. Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power, 9:353-360, 1993. [PDF].
[6] E. Ahedo, J. R. Sanmartín, and M. Martínez-Sánchez. Current collection by an active spherical electrode in an unmagnetized plasma. Physics of Fluids B, 4:3847-3855, 1992. [PDF].
[7] R. I. Samanta-Roy, D. E. Hastings, and E. Ahedo. Systems analysis of electrodynamic tethers. Journal of Spacecraft and Rockets, 29:415-424, 1992. [PDF].

This file was generated by bibtex2html 1.96.

Presheath-sheath structure

[1] E. Ahedo and D. Carralero. Model of a source-driven plasma interacting with a wall in an oblique magnetic field. Physics of Plasmas, 16:043506, 2009. [PDF].
[2] E. Ahedo and D. Escobar. Two-region model for positive and negative plasma sheaths and its application to Hall thruster metallic anodes. Physics of Plasmas, 15:033504, 2008. [PDF].
[3] E. Ahedo. Radial macroscopic model of a plasma flowing along annular dielectric walls. Physics of Plasmas, 9(7):3178-3186, 2002. [PDF].
[4] E. Ahedo. Presheath/sheath model of a plasma with secondary emission from two parallel walls. Physics of Plasmas, 9(10):4340-4347, 2002. [PDF].
[5] E. Ahedo. Plasma-wall interaction in an oblique magnetic field: Model of the space-charge sheath for large potentials and small debye-lengths. Physics of Plasmas, 6:4200-4207, 1999. [PDF].
[6] E. Ahedo. Structure of the plasma-wall interaction in an oblique magnetic field. Physics of Plasmas, 4:4419-4430, 1997. [PDF].

This file was generated by bibtex2html 1.96.

Plasma Instabilities

[1] E. Ahedo and J. Ramos. Supersonic regime of the hall-magnetohydrodynamics resistive tearing instability. Physics of Plasmas, 19:072519, 2012. [PDF].
[2] E. Ahedo and J. Ramos. Parametric analysis of the two-fluid tearing instability. Plasma Physics and Controlled Fusion, 51:055018, 2009. [PDF].
[3] V. Lapuerta and E. Ahedo. The electron-electron instability in a spherical plasma structure with an intermediate double layer. Physics of Plasmas, 10(5):1351-1363, 2003. [PDF].
[4] V. Lapuerta and E. Ahedo. Multistream instabilities in three-species plasmas formed around a strong double-layer. Physics of Plasmas, 9:3236-3244, 2002. [PDF].
[5] V. Lapuerta and E. Ahedo. General parametric analysis of the linear two-stream instability. Physics of Plasmas, 9:1513-1519, 2002. [PDF].
[6] E. Ahedo and V. Lapuerta. Comparison of collisionless macroscopic models and application to the ion-electron instability. Physics of Plasmas, 8:3873-3878, 2001. [PDF].

This file was generated by bibtex2html 1.96.

Other recent publications of interest

Hall Effect Thrusters

[1] A. Domínguez, D. Pérez-Grande, P. Fajardo, and E. Ahedo. NOMADS: development of a versatile plasma discharge simulation plarform for electrinc propulsion. Number SPC-2016-3124869, Rome, Italy, 2016. [PDF].
[2] D. Pérez-Grande, P. Fajardo, and E. Ahedo. Evaluation of erosion reduction mechanisms in hall effect thrusters. In 34th International Electric Propulsion Conference, number IEPC-2015-280, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[3] D. Pérez-Grande, P. Fajardo, and E. Ahedo. Benchmarks for magnetically aligned meshes in electromagnetic plasma thruster simulations. In 34th International Electric Propulsion Conference, number IEPC-2015-203, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[4] D. Escobar and E. Ahedo. Numerical analysis of high-frequency azimuthal oscillations in Hall thrusters. In 34th International Electric Propulsion Conference, number IEPC-2015-371, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[5] D. Escobar and E. Ahedo. Analysing the azimuthal spoke oscillation of Hall thrusters via numerical simulation. In Proceedings of the 50th Joint Propulsion Conference, 2014. [PDF].
[6] D. Escobar and E. Ahedo. Global stability analysis of azimuthal oscillations in Hall Thrusters. In Proceedings of the 33rd International Electric Propulsion Conference, 2013. [PDF].
[7] D. Escobar and E. Ahedo. Low-frequency azimuthal stability analysis of hall thrusters. (AIAA 2012-4180), 2012. [PDF].
[8] R. Santos and E. Ahedo. Transitional regime in the start-up process of conventional hall thrusters. IEPC, (059), 2011. [PDF].
[9] D. Escobar and E. Ahedo. Ionization-induced azimuthal oscillation in Hall effect thrusters. In 32th International Electric Propulsion Conference, Wiesbaden, Germany, IEPC 2011-196, 2011. [PDF].
[10] R. Santos and E. Ahedo. Physical processes governing electric currents in a hall thruster. In Space Propulsion Conference. ESA, 2010. [PDF].
[11] R. Santos and E. Ahedo. Accuracy improvements in a hall thruster pic/fluid code. Number AIAA 2009-4914. AIAA, 2009. [PDF].
[12] R. Santos and E. Ahedo. Implementation of the kinetic bohm condition in a hall thruster hybrid code. Number AIAA 2009-4913. AIAA, 2009. [PDF].
[13] S. Barral and E. Ahedo. On the origin of low frequency oscillations in Hall thrusters. In CP993, PLASMA 2007 (H.-J. Hartfuss, M. Dudeck, J. Musielok, and M. J. Sadowski eds.), pages 439-442, 2008. [PDF].
[14] S. Barral and E. Ahedo. A model for the active control of low frequency oscillations in hall thrusters. Number AIAA 2008-4632. AIAA, 2008. [PDF].
[15] R. Santos and E. Ahedo. Magnetic field effects on secondary electron emission in hall thrusters. Number AIAA 2008-4725. AIAA, 2008. [PDF].
[16] I. Maqueda, D. Escobar, and E. Ahedo. Advances on a Hall thruster hybrid code. In 30th International Electric Propulsion Conference, Florence, Italy, IEPC 2007-066, 2007. [PDF].
[17] J. Ustarroz, I. Caro, P. Corengia, I. Garmendia, J. Marcos, E. Ahedo, and J.G. del Amo. Specific laboratory testing equipment and methodology for sputtering tests of electric propulsion materials. In 30th International Electric Propulsion Conference, Florence, Italy, IEPC 2007-167, 2007. [PDF].
[18] E. Ahedo, A. Antón, I. Garmendia, I. Caro, and J.G. del Amo. Simulation of wall erosion in Hall thrusters. In 30th International Electric Propulsion Conference, Florence, Italy, IEPC 2007-067, 2007. [PDF].
[19] F. Parra, D. Escobar, and E. Ahedo. Improvements on particle accuracy in a Hall thruster hybrid code. In 42th Joint Propulsion Conference, Sacramento, CA, AIAA-2006-4830, 2006. [PDF].
[20] A. Antón, D. Escobar, and E. Ahedo. Contour algorithms for a Hall thruster hybrid code. In 42th Joint Propulsion Conference, Sacramento, CA, AIAA-2006-4834, 2006. [PDF].
[21] E. Ahedo, I. Maqueda, A. Antón, Y. Raitses, and N. Fisch. Numerical simulations of a 2kW Hall thruster. In 42th Joint Propulsion Conference, Sacramento, CA, AIAA-2006-4655, 2006. [PDF].
[22] D. Escobar, A. Antón, and E. Ahedo. Simulation of high-specific-impulse and double-stage Hall thrusters. In Proc. 29th International Electric Propulsion Conference, Princeton, USA, IEPC-2005-040, 2005. [PDF].
[23] J.M. Gallardo and E. Ahedo. On the anomalous diffusion mechanism in Hall thrusters. In Proc. 29th International Electric Propulsion Conference, Princeton, USA, IEPC-2005-117, 2005. [PDF].
[24] F.I. Parra and E. Ahedo. Fulfillment of the bohm condition on the hpHall fluid-pic code. In Proc. 40th Joint Propulsion Conference, Fort Lauderdale, FL, AIAA 2004-3955, 2004. [PDF].
[25] F. Parra, E. Ahedo, M. Martínez-Sánchez, and J.M. Fife. Improvement of the plasma-wall model on a fluid-pic code of a Hall thruster. In SP-555: 4th Spacecraft Propulsion Conference, Sardinia (Italy). European Space Agency, Noordwijk, The Netherlands, 2004. [PDF].
[26] E. Ahedo and J.M. Gallardo. Scaling down Hall thrusters. In Proc. 28th International Electric Propulsion Conference, Toulouse, France, IEPC-03-104, 2003. [PDF].
[27] E. Ahedo and J.M. Gallardo. Low power Hall thrusters: physics, technical constraints and design. In Electric Micropropulsion Workshop, 2002. [PDF].
[28] E. Ahedo, P. Martínez-Cerezo, J.M. Gallardo, and M. Martínez-Sánchez. Characterization of the plasma in a Hall thruster. In Proc. 27th International Electric Propulsion Conference, Pasadena, CA, IEPC 01-17, 2001. [PDF].

This file was generated by bibtex2html 1.96.

Magnetic Nozzles and Helicon Thrusters

[1] B. Tian, E. Ahedo, and M. Merino. Development and validation of a 2D wave-plasma code for helicon plasma thrusters. Number SPC-2016-3124913, Rome, Italy, 2016. [PDF].
[2] B. Tian, E. Ahedo, and J. Navarro. Analysis of plasma impedance in helicon antenna thrusters. In 34th International Electric Propulsion Conference, number IEPC-2015-326, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[3] S. Correyero, J. Navarro, and E. Ahedo. Collisionless electron cooling on magnetized plasma expansions: advances on modelling. In 34th International Electric Propulsion Conference, number IEPC-2015-117, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[4] Mario Merino and Eduardo Ahedo. Towards thrust vector control with a 3D steerable magnetic nozzle. In 34th International Electric Propulsion Conference, number IEPC-2015-414, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[5] Mario Merino, Jaume Navarro, Santiago Casado, Eduardo Ahedo, Victor Gómez, Mercedes Ruiz, Eduard Bosch, and José González del Amo. Design and development of a 1kW-class helicon antenna thruster. In 34th International Electric Propulsion Conference, number IEPC-2015-297, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[6] A. Boxberger, P. Bambach, G. Herdrich, S. Fasoulas, M. Merino, and E. Ahedo. Experimental investigation of steady-state applied-field magnetoplasmadynamic thrusters at institute of space systems. Number AIAA 2012-4012. AIAA, 2012. [PDF].
[7] J. Navarro, M. Merino, and E. Ahedo. Two-fluid and hybrid-pic code comparison of the plasma plume in a magnetic nozzle. Number AIAA 2012-3840. AIAA, 2012. [PDF].
[8] J. Navarro, M. Merino, and E. Ahedo. A fluiddynamic performance model of a helicon thruster. Number AIAA 2012-3955. AIAA, 2012. [PDF].
[9] Jaume Navarro, Mario Merino, and Eduardo Ahedo. Plasma structure inside and outside a helicon thruster. In 29th IEEE International Conference on Plasma Science, 2012. [PDF].
[10] Mario Merino. 2D plasma flow in a magnetic nozzle with a bi-modal electron energy distribution function. In 50th AIAA Aerospace Sciences Meeting, number AIAA 2012-0139, Washington DC, 2012. AIAA. [PDF].
[11] Mario Merino and Eduardo Ahedo. Advanced plasma propulsion with magnetic nozzles: Plasma detachment. In 63rd International Astronautical Congress. IAC-12.C4.4.21, 2012. [PDF].
[12] Mario Merino and Eduardo Ahedo. Magnetic nozzle far-field simulation. Number AIAA 2012-3843, Washington DC, 2012. AIAA. [PDF].
[13] Mario Merino and Eduardo Ahedo. Plasma detachment mechanisms in a magnetic nozzle. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, number AIAA-2011-5999, Washington DC, 2011. AIAA. [PDF].
[14] E. Ahedo. Plasma dynamics in a helicon thruster. In Proceedings of EUCASS 2011, 4-8 July 2011, Saint Petersburg, Russia, paper 118, 2011. [PDF].
[15] E. Ahedo and M. Merino. On electron inertia and current ambipolarity in magnetic nozzles models. In 32th International Electric Propulsion Conference, Wiesbaden, Germany, IEPC 2011-050, 2011. [PDF].
[16] D. Martínez and E. Ahedo. Plasma-wave interaction in an helicon thruster. In 32th International Electric Propulsion Conference, Wiesbaden, Germany, IEPC 2011-047, 2011. [PDF].
[17] M. Merino and E. Ahedo. Toberas magnéticas en futuros motores espaciales de plasma. XXXIII RSEF, 2011. [PDF].
[18] J. Navarro and E. Ahedo. Hybrid model simulation of a plasma plume in a magnetic nozzle. In 32th International Electric Propulsion Conference, Wiesbaden, Germany, IEPC 2011-048, 2011. [PDF].
[19] G.Parissenti, N. Koch, D. Pavarin, E. Ahedo, K. Katsonis, F. Scortecci, and M. Pessana. Non-conventional propellants for electric propulsion applications. In Proceedings of Space Propulsion 2010, San Sebastián, Spain, May 3-6, 2010, SP2010-1841086, 2010. [PDF].
[20] E. Ahedo and M. Merino. Preliminary assessment of detachment in a plasma thruster magnetic nozzle. In 46th Joint Propulsion Conference, Nashville, TN, AIAA 2010-6613, 2010. [PDF].
[21] D. et al. Pavarin. Design of 50w helicon plasma thruster. Number IEPC-2009-205, 2009. [PDF].
[22] E. Ahedo. Cylindrical model of a helicon-generated plasma. In 31th International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC 2009-193, 2009. [PDF].
[23] E. Ahedo and M. Merino. Acceleration of a focused plasma jet in a divergent magnetic nozzle. In 31th International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC 2009-002, 2009. [PDF].
[24] E. Ahedo and M. Martínez-Sánchez. The role of current-free double-layers in plasma propulsion. In 44th Joint Propulsion Conference, Hartford, CT, AIAA 2008-5005, 2008. [PDF].
[25] Eduardo Ahedo and Mario Merino. Two-dimensional plasma acceleration in a divergent magnetic nozzle. In 44th Joint Propulsion Conference, Hartford, CT, AIAA 2009-5361, 2008. [PDF].

This file was generated by bibtex2html 1.96.

Plasma plumes and space debris/asteroid manipulation

[1] F. Cichocki, A. Domínguez, M. Merino, and E. Ahedo. A 3D hybrid code to study electric thruster plumes. Number SPC-2016-3124968, Rome, Italy, 2016. [PDF].
[2] F. Cichocki, D. Rafalskyi, A. Aanesland, and M. Merino. The plume neutralization process of the PEGASES thruster. Number SPC-2016-3124967, Rome, Italy, 2016. [PDF].
[3] M. Merino, A. Proux, P. Fajardo, and E. Ahedo. Collisionless electron cooling in unmagnetized plasma thruster plumes. In 52nd Joint Propulsion Conference, Salt Lake City, UT, AIAA 2016-5037, 2016. [PDF].
[4] F. Cichocki, M. Merino, E. Ahedo, D. Feili, and M. Ruiz. Electric propulsion subsystem optimization for ”Ion Beam Shepherd” missions. In 34th International Electric Propulsion Conference, number IEPC-2015-35, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[5] F. Cichocki, M. Merino, E. Ahedo, Y. Hu, and J. Wang. Fluid vs pic modeling of a plasma plume expansion. In 34th International Electric Propulsion Conference, number IEPC-2015-420, Fairview Park, OH, 2015. Electric Rocket Propulsion Society. [PDF].
[6] F. Cichocki, M. Merino, and E. Ahedo. Modeling and simulation of EP plasma plume expansion into vacuum. In 50th Joint Propulsion Conference, Cleveland, OH, AIAA 2014-3828, 2014. [PDF].
[7] M. Merino, F. Cichocki, and E. Ahedo. Plasma thruster beam expansion and impingement in space debris. (13th Spacecraft Charging Technology Conference), 2014. [PDF].
[8] Claudio Bombardelli, Hodei Urrutxua, Mario Merino, Eduardo Ahedo, and Jesús Peláez. The ion beam shepherd: A new concept for asteroid deflection. AA, 90(1):98 - 102, 2013. [PDF].
[9] Mario Merino, Eduardo Ahedo, Claudio Bombardelli, Hodei Urrutxua, and Jesús Peláez. Ion beam shepherd satellite for space debris removal. In Luigi T. DeLuca, Christophe Bonnal, Oskar J. Haidn, and Sergey M. Frolov, editors, Progress in Propulsion Physics, volume IV of EUCASS Advances in Aerospace Sciences, chapter 8, pages 789-802. Torus Press, 2013.
[10] K. Dannenmayer, S. Mazouffre, Eduardo Ahedo, and Mario Merino. Hall effect thruster plasma plume characterization with probe measurements and self-similar fluid models. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, number AIAA 2012-4117, Atlanta, Georgia, 2012. AIAA. [PDF].
[11] Claudio Bombardelli, Hodei Urrutxua, Mario Merino, Eduardo Ahedo, and Jesús Peláez. Relative dynamics and control of an ion beam shepherd satellite. In James V. McAdams, David P. McKinley, Matthew M. Berry, and Keith L. Jenkins, editors, Spaceflight mechanics 2012, volume 143 of Advances in the Astronautical Sciences, pages 2145-2158. Univelt, 2012. [PDF].
[12] Claudio Bombardelli, Hodei Urrutxua, Mario Merino, Eduardo Ahedo, Jesús Peláez, and Joris Olympio. Dynamics of ion-beam-propelled space debris. In 22nd International Symposium on Space Flight Dynamics, 2011. [PDF].
[13] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, and J. Peláez. Ion beam shepherd satellite for space debris removal. In Proceedings of EUCASS 2011, 4-8 July 2011, Saint Petersburg, Russia, paper 263, 2011. [PDF].
[14] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, and J. Peláez. Hypersonic plasma plume expansion in vacuum and momentum transmission to a far body. In 32th International Electric Propulsion Conference, Wiesbaden, Germany, IEPC 2011-086, 2011. [PDF].
[15] C. Bombardelli, H. Urrutxua, J. Peláez, M. Merino, and E. Ahedo. Space debris removal with an ion beam shepherd satellite: dynamics and control. In 62th IAC, IAC-11-A6.5.9, 2011. [PDF].
[16] Mario Merino, Eduardo Ahedo, Claudio Bombardelli, Hodei Urrutxua, Jesús Peláez, and Leopold Summerer. Space debris removal with an ion beam shepherd satellite: Target-plasma interaction. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, number AIAA-2011-6142, Washington DC, 2011. AIAA. [PDF].

This file was generated by bibtex2html 1.96.

Other Topics

[1] E. Ahedo. Propulsión espacial por plasma. (In Spanish). Revista Española de Física, 25(3), 2011. [PDF].

This file was generated by bibtex2html 1.96.