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E. Bello-Beńıtez developed the code, prepared the simulations, processed the

results and wrote the paper. E. Ahedo contributed with comments and

revisions. This article has been published in the peer-reviewed journal Plasma

Sources Science and Technology and is wholly included in Chapter 3 of this

Thesis. Whenever material from this source is included in this Thesis, it is

singled out with typographic means and an explicit reference.
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Abstract

The problem of anomalous electron transport is one of the great open questions

in the physics of Hall and other E × B plasma discharges. Understanding and

characterizing this phenomenon is fundamental to further promote the development

of electron transport laws for efficient and predictive numerical simulations. From

a theoretical and simulation perspective, this Thesis contributes to the current

knowledge on instabilities in Hall discharges and their relevance regarding the

electron transport. This problem is restricted here to the axial-azimuthal plane

of the discharge and is faced using two different electron formulations, kinetic and

macroscopic, which usually lead to different families of instabilities.

Using a particular macroscopic electron model, this Thesis explores the existence

of axial equilibrium solutions and analyzes their global stability. For solving the

equilibrium problem, an extended version of the well-known 1D-axial-stationary

model of Ahedo et al. is proposed. This new model considers several additional

physical phenomena: electron azimuthal inertia, gyroviscosity, a finite cathode layer

and the far-plume physics. Which allows us to discuss several subjects relevant

to Hall discharges, such as the possible contribution of electron inertia to electron

transport. A linear perturbation global model is used to study the stability of

some of these equilibrium solutions; which, compared with the existing literature,

fully considers the effects from electron inertia and pressure. The stability analysis

is limited to mid-to-high frequencies (100 kHz-10 MHz). Within this range two

different mode families are obtained with the potential of producing a cross-field

electron transport. The dominant mode develops in the near plume with 1-5

MHz and seems to be attached to regions with negative magnetic gradient. A

subdominant mode with 100-300 kHz shows close to the anode and is much more

dependent on the parameters.

In order to study kinetic instabilities and their non-linear behaviour, one of the

main contributions of this Thesis is the development of an electrostatic 2D particle-

in-cell (PIC) model that is able to simulate oscillations in several E × B plasma

discharges. This code has been developed together with Alberto Maŕın-Cebrián

and is also a contribution of his Thesis, which focuses in plasma-wall interaction

phenomena in Hall thrusters. The PIC program has been optimized during a

viii



research stay at LAPLACE laboratory supervised by Dr. Laurent Garrigues and

participates in an international benchmark of similar codes simulating a Penning

discharge. Partial results of this benchmark are shown in this Thesis in two scenarios:

collisionless and with ionization collisions.

When adopting a kinetic electron formulation and wave propagation perpendic-

ular to the magnetic field, the electron-cyclotron drift instability (ECDI) is the fun-

damental theoretical result obtained in the literature using a linear local approach.

The in-house 2D PIC code is used to study the trigger and non-linear behaviour of

the ECDI. We first try to simulate conditions as close as possible to the hypothesis

of the classical dispersion relation, using a fully periodic domain. However, this

kind of configuration does not yield a long-term electron cross-field transport in our

simulation. Then, axial boundary conditions are replaced with injection/absorbing

boundaries, being a finite scenario more similar to the Hall discharge. In this case,

several regimes are possible depending on the value of the ion residence time (con-

trolled by the injection conditions) compared to the characteristic saturation time of

the ECDI. When these two times are close to each other, the plasma holds sustained

oscillations and electron transport, even for long simulation times.
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Chapter 1

Introduction

Electric propulsion (EP) comprehends several technologies for in-space applications,

which is an interesting alternative to the more traditional chemical propulsion

(CP) thrusters. The EP concept was firstly proposed by Robert Goddard in

1906 and Konstantin Tsiolkovsky in 1911 [4–7]; but the consolidation of modern

technologies, such as the gridded-ion thruster (GIT) and the Hall-effect thruster

(HET), started in the 1970s in the USA and the USSR. Today, HET and GIT devices

are well consolidated in the market of space propulsion and EP is an attractive

choice for many applications (e.g., station keeping of telecommunication satellites

in geostationary orbit). In the field of telecommunications, European companies

such as Airbus, Thales or OHB, have been using EP for station keeping in the last

years. These companies have been also supporting the development of all-electric

propulsion platforms. Other future commercial application, is the access to global

internet broadband services offered by the Starlink (SpaceX) and OneWeb (counting

with the partnership of Airbus) satellite constellations, which rely also on EP. There

are also examples of EP in scientific missions, e.g.: GOCE, DAWN or Bepi-Colombo.

The advantage of EP compared to CP is readily understood when looking at the

Tsiolkovsky rocket equation

Mfinal

Minitial

= exp

(
−∆v

Isp

)
, (1.1)

which relates the initial Minitial and final mass Mfinal of a spacecraft with the total

impulse ∆v of the mission and the specific impulse Isp of the thrusters (in velocity

units). Maximizing the Isp minimizes the propellant requirements. The Isp is a

measure of the exhaust velocity of the gases in the thruster; which, in CP thrusters,

is limited by the energy released by the exothermal reaction of the propellant gases,

leading to values in the range from 1 to 5 km/s. On the other hand, EP devices

overcome this limitation using a external power source to accelerate a plasma (i.e., an

ionized gas made of ions, electrons and neutral particles) using electric and magnetic
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Figure 1.1: Schematic representation of a HET, taken from reference [1].

fields generated with external devices. This allows to achieve much larger Isp, in the

range from 10 to 100 km/s depending on the technology. If less propellant is needed,

the initial weight of the spacecraft can be reduced (minimizing also the launching

cost) or more ambitious ∆v can be considered. However, EP devices are limited by

the available power P , which limits the thrust F = 2ηFP/Isp (being ηF the thrust

efficiency) to values generally smaller than with CP; making EP not eligible for

every application and suitable for in-space applications only.

As already mentioned, among the EP mature technologies we find the GIT and

HET devices. The GIT generates plasma inside a chamber and accelerates the ions

out of the thruster using grids at different electric potential. This device shows

typically [7] the greatest efficiency (40 to 80%) and specific impulse (25 to 36 km/s),

but the provided F is limited. The HET technology delivers higher thrust, at the

cost of lower ηF (35 to 60%) and Isp (15 to 20 km/s). Moreover, HET devices are

simpler from the technological point of view compared to GITs, although the plasma

physics involved are very challenging.

Figure 1.1 shows a schematic representation of a conventional HET. Conventional

HETs have a cylindrical shape with an annular channel. Many models exploit the

axial symmetry of the HET geometry. A neutral gas (usually xenon) is injected

through the anode and ionized by collision with electrons. These electrons are

injected out of the chamber (in the plume) through the cathode; some of them are

accelerated inwards, highly contributing to ionization, while others move outwards.

The ions generated from ionization are accelerated out of the channel. The motion of

electrons and ions is driven by a mainly-axial electric field E, induced in the plasma

by the electrical connection of the anode and the cathode with a voltage source

providing the discharge voltage Vd. The counter-streaming axial flows of charged

particles generate a net current Id (i.e., the discharge current) in the plasma, which is

also the current in the electrical circuit. Part of the cathode electrons naturally flow
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downstream together with the ions to neutralize them, yielding a current-free plume.

This process is possible because electrons are axially confined with a mainly-radial

external magnetic field B, which traps the electrons and increases their residence

time, otherwise too small to provide significant ionization. The magnetic field is

strong enough to magnetize the electron particles but ions barely feel its effect.

Electrons, feeling bothE andB, develop a motion in the azimuthalE×B direction.

It is the interaction between the currents of the thruster magnetic circuit and electron

E ×B motion what generates the thrust.

The electron motion can be decomposed, in a very simplistic view and accepting

that E is axial and B is radial, in different contributions:

• The electrons are able to move almost free in the radial direction, parallel to

B, since there is no magnetic confinement in this direction.

• The gyromotion around the magnetic field lines, in the axial-azimuthal plane,

perpendicular to B. This is the characteristic motion of charged particles

describing circular orbits under the action of a magnetic field.

• The azimuthal drift in the E×B direction. The combined action of E and B

leads to the drift of the centre of the gyro-orbits. The only action of the fields

E and B does not yield an axial drift, effectively confining the electrons.

• There is an axial drift of the electrons, in the direction opposite to E. The

classical explanation for the axial transport is based on collisions, i.e., when

the electrons collide they are able to jump among magnetic lines, breaking

the confinement. However, the experimentally measured electron transport is

too large compared with what predicted by collisional diffusion only [8]. This

phenomena is called the anomalous electron transport and is one of the great

open questions in the physics of HETs.

This Thesis is intended to contribute to the understanding of anomalous

transport in Hall and other E × B plasmas, from a simulation and theory point

of view. Plasma oscillations and instabilities are one of the main candidates to

explain it. As introduced by Janes and Lowder in 1966 [8], the development of

correlated oscillations of plasma density and electric field in the E ×B direction is

a mechanism that could induce an axial electron drift. The number of different

instabilities that have been proposed in the literature of Hall plasmas is quite

extensive [8–15], being a large relative drift between electron and ions the base

destabilizing requirement. Collisions or plasma inhomogeneities can also participate

in the instability mechanisms. A detailed literature review on instabilities in Hall

plasmas can be found in Chapters 3 and 6 of this Thesis and in reference [10], which

I co-author (but is not included in the Thesis but closely related).
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The simulation and theoretical study of plasmas can be faced using different

types of models [16]. The plasma species can be treated statistically with a kinetic

formulation, meaning that their behaviour is described with the distribution function

of particles in the 6D phase space of position and velocity. The moments of the

distribution function give macroscopic magnitudes commonly used in fluid dynamics;

e.g., density, flows or pressure. This function is governed by the Boltzmann equation,

which can be solved directly as a transport equation in phase space [17–19]. This

approach is quite costly due to the high dimensionality of the problem and the

modelling of collisions is challenging. The particle-in-cell (PIC) technique [20–24]

is a Lagrangian-Eulerian alternative that discretizes the distribution function in

macroparticles representing certain region of the phase space and their motions

are solved instead, which actually coincide with the characteristic lines of the

Boltzmann equation. The large number of macroparticles needed to have statistics

with reasonable noise and the disparity among the smallest and biggest scales of the

problem make this method still very computationally intensive.

The computationally-cheaper alternative to the kinetic description is the

macroscopic or fluid formulation [16, 25–29]; which works directly on the evolution

of macroscopic properties, governed by fluid equations obtained by taking the

moments of the Boltzmann equation. This formulation, however, involves the

problem of closure [16,30,31]: each moment of the Boltzmann equation has unknown

magnitudes governed by higher-order moments. Therefore, in order to close the

system, important assumptions need to be made. The usual closures are valid for

species with Maxwellian-like distributions, which is not necessarily the case of low-

collisional scenarios such as the Hall discharge. In addition, the macroscopic models

sacrifice some kinetic effects that are relevant in the study of plasma instabilities,

e.g., inverse Landau damping [32, 33] or Bernstein modes [34]. Consequently, fluid

and kinetic models may predict different types of instabilities.

1.1 Thesis objectives

This Thesis is expected to contribute to the further understanding of the main

instability mechanisms present in Hall (and other E ×B) discharges and their role

in the anomalous electron transport, from a theoretical and simulation point of view.

This knowledge is expected to guide future efforts in the development of anomalous

transport laws for fast and efficient simulations with fluid electron models (e.g.,

with EP2’s HYPHEN tool [35]). In this Thesis the problems of plasma instabilities

and transport are tackled from different perspectives, including fluid and kinetic

description of the electrons, which lead to different instability mechanisms.

With a macroscopic electron model, this Thesis covers the existence of
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equilibrium solutions of a Hall-discharge plasma model and discusses their global

stability. In the equilibrium side, the 1D-axial stationary model developed for this

Thesis [28] extends previous works by Ahedo and co-workers [27, 36, 37] with a

number of additional physical effects. The stability of an equilibrium solution is

studied with a global linear perturbation model [38], which extends previous efforts

by Escobar and Ahedo [39, 40] to fully account for electron inertia and pressure

terms.

With a kinetic electron description, one of the main objectives of this Thesis

has been the development, optimization and verification of a 2D particle-in-cell

(PIC) code for the simulation of plasma oscillations in Hall and other E × B
discharges. The successful development has been achieved in close collaboration with

Alberto Maŕın-Cebrián, who is applying this code to study plasma-wall interaction

phenomena in Hall thrusters as topic of his PhD Thesis. The code has been subjected

to a thorough optimization process, with the valuable guidance of Dr. Laurent

Garrigues during a research stay at LAPLACE laboratory and is participating in

an international benchmark to compare results from Penning-discharge simulations

with other groups [41].

The classical dispersion relation for propagation perpendicular to the magnetic

field yields the electron-cyclotron drift instability (ECDI) [11, 12]. However, the

linear theory does not capture the saturated non-linear behaviour of the plasma,

which can be indeed studied with the in-house PIC code. This is used to simulate

fundamental scenarios close to the hypotheses of the classical ECDI, in an attempt to

characterize the non-linear behaviour of the theoretical instability and the influence

of boundary conditions [24].

1.2 Thesis outline

The Thesis is organised as follows:

• Chapter 2 reproduces the peer-reviewed article [28] published in Plasma

Sources Science and Technology. The chapter introduces the 1D-axial three-

fluid equilibrium model of a Hall discharge. New effects are added to the

well-known model of Ahedo and co-authors [27, 36, 37]: electron azimuthal

inertia, a finite cathode-emission layer and the far-plume region. This has also

allowed us to assess several aspects of interest for Hall-thruster modelling, e.g.:

the role of electron inertia on cross-field transport, the relevance of gyroviscous

forces and the far-plume physics.

• Chapter 3 reproduces the peer-reviewed article [38] published in Plasma
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Sources Science and Technology. The chapter presents a 2D axial-azimuthal

linear perturbation model of a Hall discharge, which is used to study the

stability of equilibrium solutions using a global approach, suited to highly

inhomogeneous equilibria. The model, targetting mid-to-high frequencies,

keeps fully the electron pressure and inertia terms, which is the main novelty

with respect to previous works [40,42]. The dominant unstable modes develop

in the near-plume region, where the magnetic-field gradient is negative, and

have frequencies in the range 1-5 MHz. A subdominant mode, with lower

frequencies in the range 100-300 kHz, grows close to the anode and is much

more sensitive to design and operation parameters. Both of these modes have

the potential to yield a cross-field electron transport.

• Chapter 4 describes the developed in-house 2D PIC code, which is a central

contribution of this and A. Maŕın-Cebrián’s Theses. The main program

includes the PIC routines, a Poisson solver and a collision module. The

main PIC routines are conventional and well-known but are explained for

completeness. The Poisson solver may use two different schemes depending

on the boundary conditions: spectral and finite-difference discretization. The

collisions are treated with a Monte-Carlo collision (MCC) method.

• Chapter 5 describes the process of optimization of the PIC program, achieved

during a research at stay in LAPLACE under the supervision of Dr. Laurent

Garrigues. The optimization techniques applied involve: particle sorting,

changing the linear solver for the Poisson module, new parallelization, the

use of the Intel®Fortran compiler and exploring OpenMP parallel affinity

options. Each of these aspects is analysed by comparing computational times

in a simple simulation scenario. The final part of the Chapter presents results

of a collisionless Penning-discharge benchmark case organized by L. Garrigues

(LAPLACE) and A. T. Powis (Princeton Plasma Physics Laboratory) among

many groups at international level [41]. Here, the comparison is limited to

EP2 and LAPLACE results. Preliminary results for a Penning-discharge with

ionization collisions are also presented.

• Chapter 6 reproduces the contents of a manuscript, currently under peer-

reviewing. Preliminary results were shown in the conference paper [24]. In

this chapter, we show results obtained with the 2D PIC code in scenarios close

to the theoretical conditions of the ECDI. After revisiting the ECDI linear

theory, the first part of the Chapter is devoted to the simulation of the non-

linear evolution of the classical ECDI in a fully periodic domain. This type

of configuration does not induce a long-term transport of the electrons in our

simulations. The second part of the Chapter, replaces periodic axial conditions

by injection/absorbing boundaries. If the ion residence time (controlled by

injection conditions) is chosen to be close the ECDI characteristic saturation
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time, sustained oscillations are observed that yield a significant electron

transport. Other aspects discussed here are the energy conservation and the

scaling with domain length and ion mass.

• Chapter 7 gathers the main conclusions of the Thesis and suggests guidelines

for future steps.
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Chapter 2

Fluid modelling of Hall-thruster

discharges: Equilibrium

This Chapter reproduces the contents published in the peer-reviewed journal Plasma

Sources Science and Technology [28]. The typography has been adapted to the style

of this Thesis.

Abstract

One-dimensional axial models of the plasma discharge of a Hall thruster provide

a valuable picture of its physical behaviour with a small computational effort.

Therefore, they are very suitable for quick parametric analyses or as a support

tool for analyzing the impact of modelling decisions. This paper extends a well-

known drift-diffusion stationary, quasineutral model by adding electron azimuthal

inertia (EAI), a non-zero thickness cathode layer, and the far-plume region where

electrons demagnetize and cool down. The EAI dominates on the far plume and

affects positively to thrust. For a small ion backstreaming current, EAI modifies

much the electron velocities and density near the anode, but has no discernible

effect on the electron cross-field transport. Electron axial inertia and azimuthal

gyroviscosity are estimated. The thick cathode layer connects quasineutrally the

near and far plumes but the coupling between these two regions is weak. The far

plume region is sensitive to the decay length of the magnetic field, the downstream

boundary conditions on the electron currents, and the stray electric currents.
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2.1 Introduction

In a set of consecutive papers, Ahedo and co-workers [27,36,37] presented a complete

stationary, axial fluid model of the Hall-effect thruster (HET) discharge between

the anode and an external surface simulating the cathode electron emission. The

model considered three fluids, plasma quasineutrality (except for a Debye sheath

at the anode), the electron energy equation (including heat conduction), and an

empirical model for wave-based anomalous electron transport. Auxiliary radial

models [43–45], distinguishing primary and secondary electrons from the wall were

developed to characterize, in the axial model, the source terms simulating the plasma

losses to the lateral dielectric walls. The analyses with that axial model were able

(i) to describe at very low computational cost, the interplay among main physical

phenomena, the sonic transitions of the ion flow, the three regions of the discharge

(ion-backstreaming, ionization, and acceleration), and (ii) to provide good estimates

of thruster performances and the different sources of thrust inefficiency.

A stationary model is a very suitable tool for carrying out extensive studies on (i)

the influence of design and operation parameters on Hall thruster performances [46],

(ii) more complex HET configurations [47] and (iii) linear stability studies both

local [10,42,48–51] and global [38,39] unveiling the longitudinal and azimuthal fluid

self-modes developing in a HET discharge.

1D stationary solutions can be obtained also from time-dependent fluid models.

Barral et al. [52] developed a model similar to reference [27] with time-dependent

terms. They obtained both fully-stationary solutions and others bearing saturated

breathing and ion-transit modes [53–56]. It is worth to note that (i) the time-

averaged features of these last ones are similar to the fully-stationary solutions and

(ii) numerical integration schemes are different for stationary and time-dependent

formulations. With small variations, the model of Barral et al. continues to be

amply used for longitudinal oscillations studies, such as recent references [57–60].

Both references [27, 36, 37] and [52] focused their studies on the so-called drift-

diffusion approximation (DDA) [61,62], which neglects totally electron inertia (i.e. it

corresponds to the limit of massless electrons). Nonetheless, reference [37] already

pointed out that electron azimuthal inertia (EAI) could be relevant (in both the

momentum and energy equations) and reference [52] noted that EAI could dominate

in the near-anode region. Ahedo and Rus [63] extended the quasineutral DDA model

by including EAI in the near-anode region and found that, at a low ion-reverse

current (i.e. a few percentage of the discharge current Id), the azimuthal velocity, uye,

is upper bounded to values of the order of the electron thermal velocity. Although

the axial velocity, |uze|, also grows, EAI makes the ratio |uye/uze| to be in that region

much less than the Hall parameter χ (defined as the ratio between electron cyclotron

9



and collisional frequencies). Their results agreed with experimental observations by

Dorf et al. [64].

The above models include the electron azimuthal inertia but neglect the electron

axial inertia, based on their axial velocity being much smaller than the azimuthal

one. Ahedo and Escobar [65] analyzed in detail the near anode region and found that

axial electron inertia becomes relevant only when the ion-reverse current becomes

very small and the anode sheath transits from normal (electron-confining) to inverse

(ion-confining). For xenon, this would happen for an inverse ion current at the anode

equal to about 0.5% of the discharge current Id. They also showed that in that

parametric range, the bulk discharge is still quasineutral but the Bohm condition

defining the anode sheath edge involves both the ion and electron axial flows. This

is a consequence of a change on the mathematical structure of the problem and its

singular points when including electron axial inertia.

Azimuthal electron inertia can be relevant also around the channel exit where the

axial ambipolar electric field, Ez, is maximum. Haas and Gallimore [66] measured

around the channel exit plane of a 5kW laboratory HET, an electron drift energy

of the same order of their thermal energy. 2D simulations of a conventional

HET by Domı́nguez-Vázquez et al. [67] have found the same result around the

electron-emitting cathode for certain operation conditions. With a complementary

perspective, Cappelli et al. [68, 69] speculated that a strong azimuthal shear (i.e.

duye/dz) would lead to a local suppression of the electron anomalous cross-field

transport around the channel exit. They and later works [69,70] included the shear-

based effect in the empirical anomalous transport expression of a DDA model.

In a recent work, Sahu et al. [71] develop a time-dependent, non-neutral, ‘full-

fluid-moment’ model (i.e. including both axial and azimuthal electron inertia). They

analyze a stationary test case and confirm (i) the effect of inertia on limiting uye
near the anode and the channel exit, and (ii) the fulfilment of the quasineutral and

drift diffusion approximations away from those regions. They find the discharge

current Id (constituted mainly by the electron axial current at the anode) to be

0.5% higher with the full-fluid model than with the DDA, thus claiming that the

shear component of the electron momentum contributes to the electron transport

across the magnetic field lines.

This paper extends the stationary, quasineutral model with EAI of Ahedo and

co-workers to the far plume by connecting the near and far plumes with an electron-

emitting layer. This is a more realistic approach to electron emission by a real

cathode than a surface or boundary cathode, unanimous in 1D models cited so far.

In fact, in our model the surface cathode is obtained as a limit case. Other important

subjects treated in the paper are: the role of EAI on cross-field transport suggested

by Sahu et al. [71], the connection of the coupling plume region with the rest of

10



the discharge, and the possible relevance of electron azimuthal gyroviscosity in the

solution.

The analysis of the far plume will highlight the central role of EAI there, linked

to electron demagnetization. The discussion of far plume boundary conditions is

relevant, since they substitute the boundary-cathode conditions of previous models

and affect both the far and near plumes. This subject is also of interest to 2D

numerical models using fluid electrons [67, 72] where computational affordability

limits the extension of the simulated plume and thus the analysis of electron

demagnetization and cooling.

Electron axial momentum is not included in the stationary model we propose, due

again to the mathematical complexity it introduces and the limited applicability: in

practice a good plasma attachment to the anode requires a normal anode sheath [73].

The fluid theory of collisionless (or weakly collisional) magnetized plasma species

(here applying to electrons) demonstrates that, in the small Larmor radius (SLR)

expansion, electron inertia and the electron (non diagonal) gyroviscous tensor are

formally of the same order [31, 74–76]. As far as we know, in fluid models of HET

discharges, gyroviscosity has been considered and found relevant only in local linear

stability studies [10,51]. Here, we will assess from the results of our non-linear model

the possible importance of the azimuthal electron gyroviscous force.

The paper is organized as follows. Section 2.2 presents the extended axial

stationary model. Section 2.3 analyzes the solution for a reference case. Section

2.4 discusses the EAI effects, their role in cross-field transport, and evaluates the

gyroviscous force. Section 2.5 deals with far-plume aspects. Section 2.6 gathers the

main conclusions.

2.2 Formulation of the axial stationary model

Let us assume axial symmetry and study the axial evolution of radially-averaged

plasma variables, with the divergence operator (acting on an arbitrary flux vector

v) expressed as

∇ · v =
1

A

d

dz
(Avz) + v′w (2.1)

where z stands for the axial coordinate, A(z) for the cross-sectional area of the

plasma beam, and v′w accounts for lateral wall fluxes, expressed as source terms in

this paraxial model. As shown in figure 2.1, the quasineutral simulation domain

includes the complete plasma region in-between the anode Debye sheath edge (B)

and an arbitrarily far downstream boundary (∞). The point A stands (with zA = 0)

for the real anode wall, which (we assume) has attached an infinitely thin electron-
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A B D S E
N

Figure 2.1: Schematic of the axial model of an annular HET. ṁ is the (anodic)

mass flow, Vd is the discharge voltage, Id the discharge current, and I∞ is the far-

field total current. A is the anode wall, B is the anode sheath edge, D is the ion

stagnation point, S is the ion sonic point, E is the chamber exit, N is the centre

of the neutralizer layer, and ∞ is the far-field downstream boundary. A(z) is the

effective cross-section area of the plasma beam.

repelling sheath from A to B (i.e. zB ' 0 in the quasineutral scale) accounted for

through an auxiliary sheath model that gives plasma conditions at B. The thruster

exit is located at point E (z = LE) and the electron emitting sheet (which we

will name ’cathode’) is centred at point N (z = LN). The distance from N to the

boundary ∞ of the simulated plume is LN∞. Notice that a 1D model (either with a

boundary or a volumetric cathode) cannot reproduce the 2D coupling between the

cathode’s electron emission and the ion beam; thus, the associated voltage coupling

is neglected here.

Under these assumptions and following a standard notation, the set of

quasineutral (ni = ne) macroscopic equations for the three species to be considered

is
1

A

d

dz
(Annuzn) = −ne(νp − νw), (2.2)

1

A

d

dz
(Aneuzi) = ne(νp − νw), (2.3)

1

A

d

dz
(Aneuze) = ne(νp − νw) + Sc, (2.4)

nnuzn
duzn
dz

= −neνw(uzn − uznw) (2.5)

miuzi
duzi
dz

= −edφ

dz
+miνp (uzn − uzi) , (2.6)

0 = e
dφ

dz
− 1

ne

dpe
dz

+me (ωceuye − νeuze) , (2.7)

uze
duye
dz

= −ωceuze − νeuye, (2.8)
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dPze
dz

= −Ie
dφ

dz
+ A (ScEc − neνpEinel − neνwEw) . (2.9)

The continuity equations (2.2) to (2.4) include the production (or ionization)

frequency νp, the wall-recombination effective frequency νw and the cathode source

Sc of electrons around N. Two combinations of them yield, first, the conservation of

the anodic mass flow

ṁ = Ami(nnuzn + neuzi) = const (2.10)

and, second, the evolution of the axial electric current I = Ii + Ie ≡ eAne(uzi− uze)
as

dI/dz = −eASc. (2.11)

Equations (2.5) to (2.7) are obtained from the species axial momentum equations:

ion and neutral pressure are neglected; ion magnetization is neglected; uznw is

the effective axial velocity of wall-born neutrals, φ is the electrostatic potential,

ωce(z) = eB/me is the electron gyrofrequency, and νe is the total electron collision

frequency. This one reads

νe = νen + νei + νwm + Sc/ne + νt, (2.12)

where the contributions on the right side, from left to right, are due to electron-

neutral collisions, electron-ion Coulomb collisions (both with negligible effect

on heavy species), lateral-wall collisionality, cathode injection, and wave-based

turbulence.

Equation (2.8) derives from the electron azimuthal momentum equation, and

includes on the left side the non-linear electron azimuthal inertia term. When

neglecting the inertia term we get

− uye/uze = χ ≡ ωce/νe, (2.13)

with χ the Hall parameter. If `z is the typical axial gradient length, azimuthal inertia

effects matter in the unmagnetized far plume and in regions with uze/`z ≥ O(νe).

The electron energy equation (2.9) has, on the right side, the work of the axial

electric field, the inelastic and wall losses, and the energy injected at the cathode.

Here Ec, Einel and Ew stand for the characteristic energy per particle involved in

cathode injection, inelastic and wall losses, respectively. The left side is the variation

of the axial flow of total electron energy,

Pze =
(1

2
meu

2
yeneuze +

5

2
Teneuze + qze

)
A, (2.14)

sum of the axial flows of kinetic energy (with u2
e ' u2

ye), thermal energy, and

conduction heat. After manipulating the Fourier’s law qe = −¯̄κe · ∇Te for the

13



heat flux vector, with ¯̄κe the thermal conductivity tensor of magnetized electrons,

the axial heat flux satisfies [16,37]

qze = −κ⊥e
dTe
dz

, κ⊥e =
5neTe
2meνe

1

1 + χ2
. (2.15)

The cathode electron source term Sc in equations (2.4) and (2.9) is assumed

Gaussian,

Sc(z) =
Id − I∞

eA(z)
√
π`c

exp

[
−(z − zN)2

`2
c

]
, (2.16)

with 2`c the effective emission thickness of the cathode, Id = I(0) the discharge

current between anode and cathode, and I∞ = I(∞) the electric current in the

far plume. This last one is typically zero, except if the plume interaction with

spacecraft surfaces drives some stray current into the anode-cathode circuit [77].

Applying equation (2.16) into (2.11) and integrating yields

I(z) = I∞ +
Id − I∞

2
erfc

(
z − zN
`c

)
. (2.17)

If IiN is the ion current crossing the cathode layer, the electron currents flowing

downstream and upstream the cathode layer are IiN − I∞ and Id− IiN respectively.

Except in section 2.5, the plume is assumed current-free, i.e. I∞ = 0. Since the

quasineutral model applies to the zero-Debye-length asymptotic limit, the solution

is expected to be quasineutral across a cathode layer of non-zero length.

Axial inertia effects were neglected in equation (2.7) based on assuming u2
ze � c2

e.

This condition, amply fulfilled by the solutions presented later, allows to preserve

the mathematical structure of the quasineutral DDA model, where it can be said

that equation (2.7) solves for φ, the sum of equations (2.6) and (2.7) plus equation

(2.3) solve for ne and uzi, and equation (2.11) solves for uze,

uze = uzi − I/Aene. (2.18)

In contrast, the mathematical structure of the time-dependent, non-neutral, full-

fluid model of reference [71] differs substantially from this one.

The magnetic field enters in this model exclusively in the electron momentum

equations through ωce(z). A piece-wise Gaussian shape is assumed for the radial

magnetic field,

B(z) = Bm exp

[
−(z − zm)2

`2
m

]
, (2.19)

with Bm the maximum magnetic field, zm the location of that maximum, and `m
the characteristic length of magnetic decay; different values of `m will be taken at

the internal (`m1) and external (`m2) sides of zm. It can be said that `m1 and `m2

are determined by the magnetic circuit of the HET, while the strength Bm can be
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Table 2.1: Simulation parameters, based on a SPT-100-type thruster, for the

reference cases I.

ṁ 4.75 mg s−1 uznA 300 m s−1

Vd 300 V I∞ 0

Te∞ 1 eV Ec 7.5 eV

A(0) 40 cm2 R 4.25 cm

Bm 265 G zm 2.5 cm

`m1 1.5 cm `m2 1.0 cm

2`c 1 cm LN∞ 10 cm

LE 2.5 cm LN 3.35 cm

tuned for each operation point so that |IiA|/Id is relatively small and the discharge

is both stable and efficient [46].

The (time-averaged) turbulent transport is modelled as the collisional contribu-

tion [36, 78] νt = αtωce, where αt is a phenomenological parameter, which is taken

constant in the simulations here. Expressions for

νp, νw, νen, νei, νwm, uznw, Einel, Ew,

are given in Appendix 2.A.

The accumulated thrust at a cross-section z = const is defined as the axial flow

of axial momentum of the whole plasma,

F (z) ≡
(
mineu

2
zi +minnu

2
zn + pe

)
A, (2.20)

and the total thrust is F (∞). Applying the previous equations for continuity and

momentum, the accumulated thrust satisfies

F (z) = FpB − Fw(z) + Fm(z) + Fd(z), (2.21)

with FpB = F (zB) the pressure force at B, Fw(z) =
� z
zB
nemiνw(uzi− uznw)A dz the

drag in the lateral walls, Fd(z) =
� z
zB
pe(dA/dz) dz the beam expansion contribution,

and Fm(z) =
� z
zB
eneBuyeA dz the magnetic force, which is the main contribution

and imprints the electromagnetic character to thrust in HETs.

This section is concluded discussing the boundary conditions. While references

[27,36,37] used an infinitely thin cathode boundary, with the anode-cathode region

decoupled from the far plume solution, all regions of the plasma are mathematically

coupled with a thick cathode layer. Boundary conditions used in those works are

adapted accordingly to the present model. Equations (2.3), (2.6), (2.7) and (2.15)

can be combined to obtain an explicit expression for duzi/dz free of derivatives of

other plasma variables, which reads

mi

(
c2
s − u2

zi

) duzi
dz

= G, (2.22)
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Case
Vd
[V]

Bm

[G]
αt

neB
[1017 m−3]

|uzeB|
[km/s]

uyeB
[km/s]

Ii∞
[A]

I ′eN
[A]

IiA/Id
[%]

eφAB/TeB
ηcur

[%]

ηF
[%]

Ia 300 265 0.01 1.604 51.33 1130.0 3.143 1.987 2.87 1.699 61.26 53.6

Ib 300 265 0.01 2.094 39.61 604.8 3.146 1.988 3.54 1.903 61.28 55.1

IIa 300 271 0.01 0.708 113.49 2637.7 3.142 1.934 1.40 0.996 61.90 53.8

IIb 300 271 0.01 1.097 73.70 880.0 3.145 1.936 1.93 1.313 61.90 55.2

IIIa 600 406 0.01 1.684 47.89 1413.3 3.143 1.864 3.23 1.814 62.77 53.3

IIIb 600 406 0.01 2.094 38.71 717.3 3.147 1.859 3.79 1.968 62.87 55.4

IVb 300 95 0 1.918 36.05 404.2 3.073 1.193 3.86 1.985 72.03 61.8

Table 2.2: Input and output parameters for simulation cases considered in the

paper. Cases with ’a’ correspond to the DDA model (without EAI) and cases with

’b’ correspond to the model including EAI. For all cases, input parameters not cited

here are those of Table 2.1. Case IV without inertia (i.e. IVa) is not included since

it does not yield a stationary solution.

with cs =
√
Te/mi and

G = Te (νp − νw)+uzi

[
miνi (uzi − uzn)−me(ωceuye+νeuze)−Te

d lnA

dz
− qze
κ⊥e

]
. (2.23)

Therefore, there will be singularities of uzi and other plasma variables at sonic

points uzi = ±cs, unless G = 0 there. By including electron azimuthal inertia in

the model, equation (2.8) yields uze = 0 (within the cathode layer) as singular point

unless uye = 0 there.

Based again on [27,36,37], boundary conditions are imposed at: the anode sheath

edge B, the regular sonic point S, the cathode N, and the plume boundary ∞. At

point S, we impose [BC1] GS = 0 where uziS = csS. At the sheath edge B, located

at z ' zA = 0 in the zero Debye length limit, we impose: [BC2-BC3] the mass flow

ṁ and uznB = uznA are known; [BC4] the Bohm condition

uziB = −csB (2.24)

valid as long as |uzeB| � c̄eB and the axial electron inertia is negligible [65]; [BC5]

the sheath potential fall

φAB =
TeB
e

ln
c̄eB

4|uzeB|
, (2.25)

assuring the electron current continuity across the sheath, with c̄e =
√

8Te/πme,

and yielding φB = Vd + φAB with Vd the (known) discharge voltage; and [BC6] the

heat flux

qzeB = nBuzeB (eφAB − TeB/2) (2.26)

obtained from the electron energy equation across the sheath and the energy flux

2TeBnBuzeB deposited at the anode. At the cathode centre N, z = zN , it is: [BC7]

φN = 0; and [BC8] uye = 0 where uze = 0 (always within the cathode layer). At

the plume boundary ∞, [BC9] Te∞ is known. The downstream electric current I∞
is known too, while the discharge current Id is an output.
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In the electron inertialess model, which we will compare with the present one,

equation (2.8) reduces to (2.13) and the point uze = 0 is no longer singular. Thus,

the inertialess model does not need the boundary condition [BC8]. Still equation

(2.13) assures that the inertialess solution satisfies uye = 0 where uze = 0.

From equation (2.25), the normal anode sheath vanishes for |uzeB| = c̄e/4.

Applying quasineutrality and the Bohm condition on ions at B, there is a normal

anode sheath (and the model is valid) for

|IiA|/Id >
√

2πme/mi. (2.27)

Appendix B explains the numerical method implemented to integrate the set of non-

linear ordinary differential equations and the benchmarking with other works and

numerical approaches.

2.3 Overview of the plasma discharge

A SPT-100-type Hall thruster operating with xenon is used for the simulations.

Table 2.1 summarizes the main parameters of the reference cases Ia (without EAI)

and Ib (with EAI). For the purposes of this paper, the turbulent parameter αt(z)

is just assumed constant and equal to 0.01, and the effective cross-section of the

plasma beam outside the channel follows the law [36]

dA/dz = 4πRcsE/uzi, (2.28)

with R the channel mid-radius. The numerical method described in Appendix 2.B is

applied to a grid with 1000 nodes to solve the extended model. Table 2.2 summarizes

the main cases simulated here. Notice that in all cases: (1) there is a normal

anode sheath, with eφAB/TeB between 1 and 2, and scaling with |IiA|/Id; and (2)

|uzeB| � uyeB, thus justifying that axial inertia is negligible near the anode. It will

be later shown that it is negligible everywhere.

Figure 2.2 depicts the axial profiles of the main plasma variables for cases Ia (red

dash-dotted lines, no EAI) and Ib (black solid lines, with EAI). We start overviewing

briefly the main features of the discharge for both models. [The differences between

them are analyzed in Section 2.4 and far plume characteristics are commented

in Section 2.5.] First, we must highlight that the location of (regular) points D

(uziD = 0), S (uziS = +csS), and uye = 0 (this last one slightly upstream of point

N) are part of the solution. The three of them mark the approximate limits of the

different plasma regions [36].

In figure 2.2(a), the magnetic strength profile, B(z), is an input, and χ(z) with

χm ' 100 shows that electrons are magnetized until beyond the cathode layer.
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Figure 2.2: Stationary plasma response for cases Ia (dash-and-dot, red, without

EAI) and Ib (solid, black, with EAI) from anode to z = 6 cm. Asterisks correspond

to points defined in plot (a). The locations of points D, S, and uye = 0 are part of

the solution. In (a): B(z) is an input and χm = 100.

Between S and N, χ ≈ χm = α−1
t and the electron collisionality is fully dominated

by the (empirical) turbulent transport; the small decrease of χ around E is due

to a high wall collisionality caused by a large SEE. The electric potential profile,

φ in figure 2.2(b), shows that the main acceleration region is downstream of the

sonic point S, it extends into the near plume, and the cathode layer is quasineutral.

The profile of uzi in figure 2.2(c) corresponds approximately to free acceleration

under the electric potential. In the region upstream of D, backstreaming ions are

driven by the small electric field, while the electron magnetic force is balanced

mainly by the pressure force. Figure 2.2(d) for nn shows that the neutral gas is

depleted monotonically along the chamber, since volumetric ionization dominates

wall recombination. Figure 2.2(e) for ne shows that the main ionization region is
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between points D and S.

Looking next at Te(z) in figure 2.2(f), electrons moving inwards are Joule-heated

first, then they are cooled down due to both wall losses and ionization. Downstream

the cathode, there is also some Joule heating but Te tends quickly to the downstream

boundary Te∞. In figure 2.2(g), uze follows equation(2.18). Its non-monotonic

behaviour inwards the cathode is just the consequence of electron flow continuity

and the creation of new electrons in the ionization region. The azimuthal electron

velocity, figure 2.2(h), of outward electrons decays in the far plume, while, for

inwards electrons and like for uze, is non-monotonic. Both uze and uye, change sign

at a single point within the cathode layer, thus distributing correctly the fractions

of electron current flowing inwards and outwards. The solution also confirms that

the plasma discharge remains quasineutral while crossing the cathode layer.

Figure 2.3 provides information on the different forces and collisionalities. Figure

2.3 (a) shows the accumulated thrust, which increases both in regions D to S, and

S to N. The blue line makes clear that the axial magnetic force dominates almost

totally the thrust production, while the pink line shows that the axial electron

momentum flow contributes to thrust only in the innermost region of the channel.

Figure 2.3(b) plots the different contributions to the electron collisionality along

the discharge for the reference case discussed in this section. The Hall parameter

becomes 1 at z ' 4.36 cm, slightly downstream of the cathode. The region upstream

of χ = 1 can be considered magnetized (for electrons). There, turbulent diffusion

dominates amply the electron cross-field transport; except in the near anode region,

dominated by νen, and close to the cathode, where Sc/ne is of the same order. In the

far plume, with χ < 1, electron-ion collisions are dominant for weakly magnetized

electrons, that tend to dominate for low temperature as predicted by the well-known

Spitzer law [79].

Figure 2.3(c) evaluates the different contributions to the electron axial

momentum equation (2.7). Expressing formally that equation as

0 = fzm + fze + fzp + fzc, (2.29)

i.e. as the balance of, respectively, magnetic, electric, pressure, and collisional

(including νt) force densities (with fzm = meωceneuye, etcetera), the following

reduced balances are found: 0 ≈ fzm + fzp, near the anode (i.e. uye is a diamagnetic

drift); 0 ≈ fzm + fze, from the main ionization region to the cathode (i.e. uye is an

E × B drift); 0 ≈ fzm + fzp, past the cathode; and 0 ≈ fze + fzp, in the far plume

(i.e. the Boltzmann relation applies). Collisional forces are fully marginal in the

axial direction.

Figure 2.3(c) also plots for the reference case the axial inertia force, fzi =

−meneuzeduze/dz, computed in post-process, which is found negligible everywhere;
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Figure 2.3: Reference case Ib. (a) Accumulated thrust, magnetic thrust

contribution, and electron thrust contribution F (e) = peA. (b) Main collisional

frequencies. (c, d) Main axial and azimuthal forces on the electron fluid, with

solid and dash-and-dot lines standing for positive and negative values, respectively.

Subplot inserted in plot (a): comparison of the accumulated thrust in the far plume

for cases Ia (dash-and-dot, red) and Ib (solid, black).
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Figure 2.4: Reference case Ib. Energy balance of electrons showing: (a) the

contributions to the total energy flow in equation (2.14); and (b) the different terms

in the total energy equation (2.9).

the same result is found in the other cases. This completes the validation of Ahedo

and Escobar’s postulate [65] on axial electron inertia being negligible as long as a

normal anode sheath is established. The full-fluid momentum model of Sahu et

al. [71] includes the direct computation of the electron axial inertia, but all the

stationary solutions they discuss bear, as long as we understand, a normal anode

sheath, so axial inertia should be negligible.

Figure 2.3(d) evaluates the contributions to the azimuthal momentum equation

(2.8), which we express formally as

0 = fym + fyc + fyt + fyi, (2.30)

i.e. the balance of magnetic, collisional (here excluding νt), turbulent, and inertial

force densities (with fym ≡ −meωceneuze, etcetera); the additional gyroviscous force

fyg plotted in Figure 2.3(c) is discussed in a later section. The figure shows that:

the full balance applies around the cathode layer; 0 ≈ fym + fyt + fyc applies from

the anode to the vicinity of the cathode, implying equation (2.13); 0 ≈ fym + fyi
applies in the far plume, implying

uzeduye/dz ' −νeiuye (2.31)
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and thus the progressive vanishing of uye. Notice that the terms of this azimuthal

equation are typically χ times smaller than the ones in the axial equation. This

implies that the analysis of the electron momentum vectorial equation must be done

separately for each component equation.

Figure 2.4(a) shows the total axial energy flow Pze and the different contributions

to it. The direction of the energy flow changes at the cathode location, as expected.

The contribution of the flow of kinetic energy is negligible everywhere. In the main

region, inward of the cathode, Pze is mainly constituted by the enthalpy (inward) flow

(5/2)peuzeA, while the subdominant heat flow qzeA, changes sign at the temperature

peak. In the current-free plume, the two contributions are outward, with the heat

flow dominating only in the far plume where electrons are already demagnetized and

thermal perpendicular conductivity is much stronger, while the remaining enthalpy

is small.

Figure 2.4(b) plots the axial profiles of all the terms involved in the electron

energy equation (2.9), with dPze/dz moved to the right side. The dominant terms

change along the discharge. Around the cathode there is the energy input from

the injected electrons. Then, except in the ionization region where −dφ/dz is very

small, the work of the axial electric field is a dominant contribution, which changes

Pze (i.e. produces electron heating or cooling) in the near and far plume and next

to the anode. However, in the outer part of the channel the work of the electric field

compensates mainly energy losses at the walls.

In the far, unmagnetized plume, the electron dynamics reduce approximately

to the the energy conservation law A[(5Te/2 − eφ)neuze + qze]=const, and the

electrostatic balance enedφ/dz ' dpe/dz. The weak outwards electric field there

is behind the mild re-acceleration of the ions.

2.4 Electron azimuthal inertia effects on the

discharge

2.4.1 Comparison with inertialess solution

The comparison of cases Ia and Ib shows that the EAI reduces the gradients of uye
in three regions: across the cathode layer, in the far plume, and near the anode.

At the two sides of the cathode layer, the local maximum and minimum of uye are

limited by the EAI. In the far plume, EAI changes substantially the profile of uye
due to the progressive cancellation of the magnetic force in equation (2.8). Once

electrons are demagnetized, electron-ion or electron-neutral collisions there, damp
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Figure 2.5: Profiles of several magnitudes in the near-anode region for cases I and

II (left and right plots, respectively).

uye to zero. The change of sign of uye in the far plume makes the magnetic thrust

contribution negative there. This penalty is smaller in the EAI model due to a

milder force density |Buye|. This effect is well illustrated in the zoom inserted in

figure 2.3(a), where the accumulated thrust for cases Ia and Ib is shown, with the

EAI model yielding a total thrust about 1.4% higher.

Figure 2.5 (left) depicts the near-anode region of some of the variables of figure

2.2. As in reference [71], the EAI reduces the growth of both uye and −uze towards

the anode, but in a different proportion: while the inertialess solution yields a

velocity ratio uye/|uze| equal to the Hall parameter, the EAI-modified solution yields

uye/|uze| lower than χ. The EAI also reduces the decay of ne in such a proportion

that jze = −eneuze and thus Ie are practically unaffected by the EAI. [This last

point, essential to discuss the cross-field transport, is absent in reference [71].] Table

2.2 shows that for cases Ia and Ib, the EAI reduces by 87% the value of uyeB and
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modifies by 30% the values of uzeB and neB, while |IeA| in figure 2.5 increases by a

mere 0.5% with EAI, in agreement with reference [71].

The effects of the EAI around the anode are more pronounced the higher is

uyeB. This is illustrated by cases IIa and IIb of Table 2.2 and figure 2.5 (right) with

Bm = 271 G instead of 265 G (i.e. just an increase of 2.2%). Now, the EAI reduces

by 300% the value of uyeB and by 54% the value of uzeB. Looking for a situation

with higher axial electric fields around the thruster exit E (and thus larger uye there)

cases IIIa and IIIb with Vd = 600V (and an adjusted Bm) of Table 2.2 were run. No

appreciable differences were observed with respect to previous cases.

Hence we can conclude that, the electron azimuthal inertia, which is simple to

add to the DDA model, has relevant effects on the discharge and should not be

disregarded. On the contrary, the electron axial inertia, which, in addition, requires

a more complex mathematical model, is negligible for all cases considered here:

post-processing the solution for case IIb, the most critical one for this matter, yields

that the axial momentum inertia is below 1% of the dominant (electric or magnetic)

force along the whole discharge.

2.4.2 On cross-field transport

The electron cross-field transport determines the axial electron current density jze
in the main discharge (from A to N) and its integral over the beam cross section, Ie.

The absolute and relative parameters most suitable to measure the intensity of the

(global) cross-field transport are, respectively, I ′eN = Id− Ii∞, which (for Ii∞ ' IiN)

is the cathode electron current drifting inwards, or the current efficiency

ηcur =
Ii∞
Id
≡ Ii∞
Ii∞ + I ′eN

. (2.32)

Table 2.2 for Cases I to III show that these parameters have variations of ± 0.1-0.2

% when adding EAI, so the global effect of the EAI on the cross-field transport

(when this is dominated by the presence of the turbulent force) is negligible.

Nonetheless, the same Table shows that including EAI increases the thrust efficiency,

ηF = F 2/(2ṁIdVd) by 1-1.5 %. This increase is due to the lower (negative) magnetic

thrust in the plume with EAI commented previously.

References [68,69,71] claim a ’shear-induced’ electron transport based on duye/dz

in equation 2.8, which can be expressed as

uye
−uze

=

(
1 +

duye/dz

ωce

)
χ.

We have seen that the presence and sign of duye/dz modify certainly the local

velocity ratio, and as a result, the electron velocities and density, but not the (global)
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cross-field transport. This same result leads us to opine that there is no basis to

introduce |duye/dz| as a contribution to the turbulent parameter αt, as proposed in

reference [68].

According to the azimuthal balance equation (2.30), the inclusion of the

azimuthal turbulent force fyt increases the azimuthal magnetic force fym = Bjze
and thus jze in the main discharge. The empirical selection of αt is indeed based on

fitting experimental values for I ′eN . In order to complete the analysis of EAI effects

on cross-field transport, we consider the hypothetical case IVb of Table 2.2 without

an azimuthal turbulent forces (i.e. αt = 0), and Bm reduced to 95G, in order to

keep neB similar to case Ib. Figure 2.6(a)-(d) and Table 2.2 compare the plasma

solutions for cases Ib and IVb. As expected, the most important difference is the

reduced cross-field transport with I ′eN decaying from 1.9A to 1.1A and ηcur increasing

from 61% to 72%. As a result ηF increases from 55% to 62%. In spite of the

smaller magnetic field the maximum Hall parameter has increased from χm = 100

to χm = 2300. However, the maxima of uye increase only four times due, partially

to a smaller uze and mainly to inertial effects, which tend to set uye = O(ce). Since

our fluid model also considers anomalous thermal conductivity, κ⊥e decreases much

in case IVb, explaining the larger gradients of Te around its maximum. In turn, the

new Te profile explains the shift in the location of the ionization region. Finally,

figure 2.6(d) analyze the relative importance, in the absence of the turbulent force,

of electron inertia and collisionality in the cross-field transport inward from the

cathode. While in the balance of Figure 2.3(c) for case Ib, inertial effects where

marginal (except perhaps very locally at the cathode), in case IVb electron inertia

dominates in the near plume while collisions (with ions and neutrals) dominate

inside the channel. The gyroviscous force continues to be globally modest compared

to inertia.

The effects of EAI on cross-field transport have been discussed, but this paper is

not on cross-field transport in itself. This explains that the analysis has been limited

to simple cases with αt(z) constant. In the literature there are many examples of

tailoring αt(z) to best fit an experimental plasma profile (e.g., φ and uzi) or some

performances figures [72, 80]. In some of these cases, inertial effects could have a

less marginal role in cross-field transport.

2.4.3 Effect of cathode thickness

A cathode with non-zero thickness 2`c allows to connect continuously the main

discharge (from point B to N−) and the far plume (from point N+ to ∞), and how

conditions at infinity influence the main discharge, both in the inertial and inertialess

models.
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Figure 2.7: Effect of the cathode thickness for reference case Ib.

Instead, the widely-used boundary cathode model separates sharply the main

discharge and the far plume, and the solution of both regions are solved

independently. Since all electron emission is concentrated in a discontinuity surface,

Sc = 0 is used in the equations of section 2.2. In the main discharge, boundary

conditions are the same as in the previous section, except for: the regularizing

boundary condition [BC8] at the electron stagnation point (i.e., uye = 0 when

uze = 0) is not required and, in the inertial model, is substituted by uyeN− = 0 (note

that uzeN− 6= 0); and (2) the condition [BC9] is substituted by the value of TeN− . The

main plume is solved with boundary conditions at N+ that guarantee the continuity

at point N of every plasma variable, (in particular uyeN+ = 0, TeN+ = TeN−), except

for uze and qze. The resultant curves are, however, not differentiable at N . The

value of uzeN+ is set according to equation (2.18) and I∞. The value of qzeN+ is such

that the far-field boundary condition is satisfied.

Figure 2.7 compares the plasma solution for zero-thickness cathode and two

different non-zero thickness cases. There is a continuity on the plasma response with
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parameter `c. A thicker cathode smooths the gradients of uze and uye in the vicinity

of N. The rest of variables, as ne illustrates in plot (c) are practically unaffected

around the cathode. Figure 2.7 also compares the inertial and inertialess models for

`c = 0: the only observation is that the inertial model allows the continuity of uye
across the cathode, which mitigates the role of inertia in the solution.

Apart from the local behaviour close to point N, Figure 2.7 shows that the

cathode thickness has some secondary effects on the plasma behaviour near the

anode, where the evolution of uye and uze are also smoothed when increasing `c.

This behaviour seems to be a side effect of `c on the ionization region, that seems to

be shifted towards the anode when increasing `c. The result is a larger anode density

(and ion current) that mitigates the effect of the anode sheath-edge singularity.

2.4.4 Gyroviscosity

As pointed out in the Introduction, the inclusion of azimuthal electron inertia term

raises the question of whether gyroviscous part of the electron pressure tensor, ¯̄pGV ,

could also be relevant, transforming equation (2.8) into

uze
duye
dz

= −(ωceuze + νeuye)−
(∇ · ¯̄pGV )y
mene

. (2.33)

With the postulates used in our model, the fast-dynamics ordering approximation

[31, 74] estimates the force produced by the non-gyrotropic part of the pressure

tensor as [10]

∇ · ¯̄pGV = ∇×
[
(∇ · ue)

mepe
2eB2

B
]

+∇
[mepe

2eB2
B · (∇× ue)

]
−
{[
∇×

(mepe
eB2

B
)]
· ∇
}
ue, (2.34)

where we assume a purely radial magnetic field and disregard heat flow, particle

flows, and gradients in the parallel direction. This expression was already considered

in Hall-thruster linear stability studies [10,51].

For the one-dimensional case under consideration, the only azimuthal contribu-

tion comes from the first term of the right-hand side of equation (2.34) and reads

fyg ≡
(
∇ · ¯̄pGV

)
y

=
d

dz

(
mepe
2eB

duze
dz

)
. (2.35)

If ce =
√
Te/me, rLe = ce/ωce, and `z is characteristic length of axial gradients, the

ratio of gyroviscous versus inertial azimuthal forces is

fyg
fyi
∼ rLe

`z

ce
uye

. (2.36)
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This ratio is O(1) if uye/ce = O(rLe/`z), as assumed by the small Larmor radius

theory. Here, figures 2.3(d) and 2.6(e) show fyg along the discharge, calculated

by post-process from the solution without gyroviscosity. In general, it can be said

that: azimuthal inertia and gyroviscosity are of the same order between anode and

cathode; both are negligible except locally around anode and cathode, where large

gradients develop; and, in the far plume, the azimuthal inertia is the dominant force

while the azimuthal gyroviscosity is fully negligible.

Taking into account that the gyroviscous force introduces second-order deriva-

tives of uze and products of first order derivatives, which complicate much the math-

ematical model to be solved, the above behaviour of the forces justifies including

inertia and neglecting gyroviscosity in the fluid model. (Still, the gyroviscous force

could be included as a source term in the present first-order model and iterate until

convergence.)

2.5 Far plume behaviour

The plasma discharge in the far plume (downstream the cathode) presents different

characteristics from the main discharge: it is current-free (or almost), variations of

the electric potential are much milder (of the order of Te there), and the azimuthal

electron inertia takes a major role, as electrons become demagnetized. Some aspects

related to the far plume are investigated here.

The first one is numerical, related to the length LN∞ of the simulated plume

domain. In an expansion to free-space the plume is infinite, but in our numerical

model it is necessarily bounded. The second aspect, related to this one, is the

condition on Te at the end of the domain. Two standard possibilities have been

tested: we can set either Te∞ (as done up to here in the paper) or (dTe/dz)∞.

Figure 2.8(a)-(c) analyzes the sensitivity of the solution, at a point P, 5 cm

downstream the cathode (i.e. zP = 8.35 cm) to both LN∞ (from 5 cm to 40 cm) and

the boundary condition on Te. When we set Te∞ = 1eV, φP is nearly invariant and

(dTe/dz)P can be considered small: about 1eV/m, smaller than Te∞/LN∞. When,

instead, we set (dTe/dz)∞ = 0, there is about a 14% of variation in φP and a 40%

in TeP as LN∞ goes from 5 cm to 40 cm; also, Te∞ ' TeP (about 3-5 eV) is larger

than expected in real far plumes. Figure 2.8(d) shows the influence of the boundary

condition and plume size on uye(z), where again the sensitivity of the solution to

LN∞ when imposing (dTe/dz)∞ is observed. The conclusion is that imposing the

boundary condition on Te∞ seems more adequate. Furthermore, we have studied the

response for Te∞ between 1 and 5 eV, and found no special sensitivity to that value,

with electron-ion collisions dominating the far plume for the whole range. Since νei
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Figure 2.8: Variation with the far plume length of: (a) (dTe/dz) (b) Te, and (c) φ,

evaluated at z = 8.35 cm, when using different downstream boundary conditions.

Rest of parameters as in reference case Ib.

scales as T
−3/2
e , the azimuthal velocity decays much faster the lower Te is.

While the type of downstream condition on Te is important in the far plume,

it has been checked for the cases of figure 2.8, that it has little effect on the main

discharge and performance figures, even when the cathode layer is relatively thick.

The same is true for the other downstream condition we can impose in the model:

the electric-current I∞ driven by the far plume. This current circulates just in a loop

between N and ∞ and modifies only electron magnitudes there. As I∞ increases,

|uze| increases according to equation (2.18), uye increases with |uze| [equation (2.13)],
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Figure 2.9: Effect of a far-plume current I∞ in the far-plume profiles. Point N is

located at the left end. Rest of parameters as in reference case Ib.

and the same is true for φ∞ [equation (2.7)]. Figure 2.9 illustrates these behaviours.

To end this investigation on the quasi 1D-plume, we show that the decay length

of the magnetic field has a strong effect on the far plume. Figure 2.10 illustrates

this. In the case of reference `m2 = 0.7 cm, it was BN = 58 G, the demagnetization

went quite fast and there was not a significant electron heating at the beginning

of the far plume. However, for `m2 = 1 cm (and Bm = 260 G to help convergence

of the solution), it is BN = 126 G and, similarly to the electron behaviour in the

near plume, electron heating and increase of φ develop downstream the cathode,

which can decelerate much the ion beam and thus reduce thrust. This heating is

related to the degree of magnetization at the cathode injection region, because of the

reversal in the electron flows across the cathode. Cathode injection with relatively

big BN leads to more energetic plumes that hold larger qze in the far-field region,

being the enthalpy flow (5/2)Teneuze limited by the far-plume boundary condition.

Nonetheless, it must be noted that such large electron heating past the cathode is

partially an exaggeration of the 1D model, caused by whole plasma beam crossing the

electron injection surface. This large heating is not observed in 2D simulations [67]

where the injection region only covers a small fraction of the beam cross-section.
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Figure 2.10: Effect of the outer axial magnetic gradient in the plasma discharge.

Rest of parameters as in reference case Ib.

An interesting remark observing figure 2.10 and also figure 2.7 is that changes

in plume related-parameters, seem to affect little the main ionization region, but

end affecting the plasma discharge near the anode, which indicates that the near

anode region is a very sensitive one, and can be more prone to oscillatory behaviours

(outside of the scope of this model).

2.6 Conclusions

A 1D, stationary, drift-diffusion, quasineutral model of the plasma discharge in a

HET has been extended by adding the effects of electron azimuthal inertia and
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gyroviscosity, a finite thickness cathode emission layer, and the far-plume region.

These additions affect the mathematical formulation of the problem, by: adding

singular points when accounting for EAI; the coupling between the main and far-

plume regions when considering a finite-thickness cathode, and the displacement of

boundary conditions to the far-plume boundary. The plasma remains quasineutral

within the cathode layer.

For the several cases analyzed, the solutions of the extended model in the main

region (chamber and near-plume) are very similar except for EAI having a smoothing

effect on uye across the cathode layer and near the anode. In this last region EAI can

produce large variations of the two electron velocities and the plasma density but

the electron axial current density remains practically unaffected. In the far plume,

the EAI becomes always relevant since the electron fluid demagnetizes, leading to

the progressive vanishing of the azimuthal drift. This reduces the negative magnetic

thrust in the far plume and has a non negligible effect on the thrust efficiency (around

1-1.5 percentage points in our simulations).

While EAI affects the local plasma response and dynamics, it has been shown

that its inclusion leads to no discernible effect on the (global) electron cross-field

transport, measured for instance with the current efficiency (or alternatively, with

the inwards flow of electrons from the cathode). Instead, a test simulation without

an azimuthal turbulent force confirms both a large improvement on the current

efficiency and a minor role of electron azimuthal inertia on cross-field transport.

This leads us to conclude that there is not a ‘shear-induced’ effect on cross-field

transport.

The effect of axial electron inertia in the plasma response has been estimated.

It has been found negligible in all the simulations presented here. This advises

against using a full-fluid model, due to its higher mathematical complexity, unless

necessary (e.g. for anode sheath vanishing). The azimuthal gyroviscous force has

been estimated too. In some regions of the discharge it could be of the same order

than azimuthal inertia. Since gyroviscosity involves second order derivatives of the

velocity, which would modify drastically the mathematical model, it is suggested to

include them as a source-like, small term.

The plasma response in chamber and near-plume is found to be little sensitive to

far-plume conditions, such as the downstream boundary condition on the electron

temperature, the presence of stray currents, the thickness of the cathode layer,

the decay length of the magnetic field. On the contrary, regarding the far-plume

response: a far-field boundary condition based on Te (and not on its gradient)

provides solutions much less sensitive to the plume size; the stray currents change

the potential drop; and a stronger magnetic field in the plume does lead to significant

electron heating and ion deceleration in the near plume past the cathode, with
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the corresponding detriment of performance, although the comparison with 2D

simulations suggests that this is probably a consequence of the 1D nature of the

model.

Future work could use the stationary solutions of the present model as the

equilibrium plasma state in global linear stability analyses. This was achieved in

reference [38] with a domain including the anode-to-cathode region only. Including

the far plume in the stability analysis is doubly interesting. First, cathode emission

in a thin layer induces strong gradients of uye that could lead to Kelvin-Helmholtz-

type instabilities [48]. Second, such a stability analysis would check the reliability

of dominant near-plume instability modes found in reference [38], with oscillations

concentrated in a very thin region close to the cathode.
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Appendices

2.A Auxiliary collisional models

The models introduced in this section are a summary of those used in references

[27,36,37]. Such an overview was already given in [38].

The ionization or production frequency, νp, is modelled as νp = nnc̄eσ̄ion, with

σ̄ion = σion,0

[
1 +

TeEion

(Te + Eion)2

]
exp

(
−Eion

Te

)
(2.37)

where Eion stands for the primary ionization energy. For xenon: Eion = 12.1 eV,

σion,0 = 5× 10−20 m2. The effective energy loss due to ionization, Einel, satisfies

Einel

Eion

= 2 +
1

4
exp

(
2Eion

3Te

)
(2.38)

The elastic electron-neutral collisions frequency is νen = nnc̄eσen. Here, the

cross-section σen is taken approximately constant and equal to σen = 27× 10−20 m2

for xenon.

The electron-ion (Coulomb) collision frequency is νei = neRei, with Rei given by

Rei

10−12m3s−1
= 2.9 ·

(
1 eV

Te

)3/2

ln Λ (2.39)

and

ln Λ ≈ 9 +
1

2
ln

[(
1018 m−3

ne

)(
Te

1 eV

)3
]
. (2.40)

The ion-neutral (charge-exchange) collision frequency is νin = nncinσin, with

cin = |uzi − uzn| and

σin = σin0

[
1− 0.2 log10

cin
1 km/s

]2

(2.41)

and σin0 = 81 · 10−20 m2 for xenon.
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The wall-loss frequency of particles is

νw = ν̃w
2πR

A
cs (2.42)

with ν̃w being a constant. The value ν̃w = 0.17 is used here, based on the parametric

analysis of reference [27]. The effective axial velocity of wall-born neutrals from ion

recombination is

uznw = awuzn + (1− aw)uzi (2.43)

where aw is a velocity accommodation factor; aw = 0.85 is used here. The wall-loss

frequency for momentum and energy are νwm = βmνw and νwe = βeνw, respectively

with

βm =
δw

1− δw
, βe = 5.62 +

1.65

1− δw
, (2.44)

for xenon. Here, δw is the effective secondary electron emission yield from the wall,

which is modelled as

δw(Te) =
√
Te/T1 if Te < T ∗e (2.45)

and δw = δ∗w =
√
T ∗e /T1 if Te ≥ T ∗e , where T1 is the temperature leading

(theoretically) to a 100% yield (which depends on the wall material) and T ∗e is

the temperature where the charge-saturation limit is reached at the wall. Here:

T ∗e /T1 = 0.967, δ∗w = 0.983, and T1 = 37 eV.

2.B Numerical integration method

The numerical method used here to solve a boundary-value problem (BVP) on

a system of non-linear ordinary differential equations (ODEs) is a basic finite-

difference approach, as similarly done in reference [38] for a linear system but

adapted to solve non-linear equations by using also a Newton solver. The method has

been verified to show numerical stability and provide a solution to the discretized

system that satisfy the fluid equations within certain tolerance. The system of

stationary axial fluid equations (and any other auxiliary differential expression) can

be written in the form of a general system of non-linear ODEs

dx

dz
= gf (x), (2.46)

where x = x(z) is the vector of states, of length m, that contains the macroscopic

variables. In our case, x generally contains the variables φ, nn, ne, uzn, uzi, uze, uye,

Te, qze and A. In addition, we have m boundary-condition equations

gbc(x) = 0. (2.47)

The method benefits from the use of conservation laws, such as the conservation

of ṁ that can be obtained by combining equations (2.2) and (2.3). One of the
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Figure 2.11: Grid convergence study on: (a) anode density (b) thrust.

plasma unknown variables can be directly computed in terms of ṁ, other variables

and parameters. For example

uzi =
ṁ− Aminnuzn

Amine
. (2.48)

The conservation of ṁ allows to eliminate one variable from the system, reducing the

dimensionality of the system and thus the computational workload. Moreover, this

approach has been seen to produce better quality solutions by eliminating ripples

that appear otherwise. When doing so, uzi is no longer an independent unknown

and can be left out of x. The differential ion continuity equation (2.3) is substituted

by the algebraic expression (2.48). Also, the use of (2.48) guarantees that the mass

flow is conserved and, thus, [BC2] can be removed from the set gbc.

The system (2.46) is discretized in an axial grid with n nodes at constant spacing

∆z. The vector of unknowns X of the discretized problem gathers the values of x

at the grid points and has a length mn. The discrete system to be solved is achieved

by evaluating (2.46) on the n− 1 midpoints between nodes, that yields

dX∗

dz
= Gf (X

∗), (2.49)

where X∗ stands for a vector of m(n − 1) elements gathering the state vector x

evaluated at every midpoint and Gf is defined equivalently for the right-hand side

gf . The values in X∗ are approximated by those in X through

xj+1/2 =
xj+1 + xj

2
, (2.50)

which can be used to compute the coefficients of an averaging matrix M̄ such that

X∗ = M̄ ·X. Similarly the scheme for gradients at midpoints is(
dx

dz

)
j+1/2

=
xj+1 − xj

∆z
, (2.51)
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which determines the coefficients of a finite difference matrix F̄ such that dX∗/dz =

F̄ ·X.

The finite difference scheme converts the ODEs (2.49) into the algebraic system

of m(n− 1) equations

Gε(X) ≡ F̄ ·X −Gf (M̄ ·X) = 0 (2.52)

that together with the m boundary conditions gbc(X) = 0 can be solved for the

n unknowns in X. The system formed by Gε(X) = 0 and gbc(X) = 0 is solved

in MATLAB with the built-in Newton solver fsolve with function tolerance 10−5.

The two regularizing conditions [BC1] and [BC8], included in gbc(X), are evaluated

on the sonic and uze = 0 points taking their temporary positions at each iteration

of the Newton method. To start the method, an initial guess has to be carefully

selected close enough to the final solution to facilitate convergence of the solver.

Convergence of the solution with the number of nodes is shown in figure 2.11 for

several plasma parameters.

As aforementioned, sometimes it has been found convenient to have a fixed

anode-sheath-edge density neB while freeing Bm. In this case, the equation

ne(0)− neB = 0, (2.53)

with given neB, is added to the system. The parameter Bm becomes an unknown

and it is added to X.

As already mentioned, the stationary problem considered here is a BVP on a

system of non-linear ODEs, which is the same exact type of mathematical model

as in previous works by Ahedo et al. [27, 36, 37]. In those papers, the stationary

problem was numerically solved by integrating the regularized set of ODEs with a

Runge-Kutta scheme, while using shooting techniques to match boundary conditions

and ensure continuity of variables and derivatives across the sonic point. While still

applicable to the present case, this approach becomes cumbersome when including

azimuthal electron inertia due to the additional singularity on the uze = 0 point.

For this reason, we opted for the finite-difference Newton-solver approach.

The MATLAB code implementing the method described in this Appendix has

been doubly benchmarked, what gives confidence on the validity of the results

presented. First, without the electron inertia term, solutions from the finite-

difference approach have been verified to yield the same solution as the former

Runge-Kutta shooting method in references [27, 36, 37]. And second, with EAI

included and fixed operation conditions, solutions of the present stationary model

have been successfully compared with stationary solutions from a time-dependent

model [29].
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This second verification case is specially interesting, since time-dependent models

work with the absolutely different framework of partial differential equations (PDEs)

and, thus, numerical methods used in this work can be hardly compared with those

in, e.g., references [29, 71]. An evidence of the different mathematical nature of

steady and time-dependent problems is that working with PDEs avoids the problem

of dealing with internal singularities, which is one of the main challenges of the

stationary model. Even if the two problems are mathematically different, when

the same physics are considered, solutions from both the time-dependent [29] and

stationary models are in excellent agreement.
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Chapter 3

Fluid modelling of Hall-thruster

discharges: Global stability

This Chapter reproduces the contents published in the peer-reviewed journal Plasma

Sources Science and Technology [38]. The typography has been adapted to the style

of this Thesis.

Abstract

Axial-azimuthal instabilities of a Hall-thruster plasma discharge are investigated

using fluid model and a linear global stability approach, appropriate to the large

axial inhomogeneity of the equilibrium solution. Electron pressure and electron

inertia are considered in both the equilibrium and perturbed solutions. Fourier

transform in time and azimuth are taken and the dispersion relation for the resultant

Sturm-Liouville problem governing the axial behaviour of the modes is numerically

obtained. The analysis, focused in mid-to-high frequencies and large wavenumbers

identifies two main instability types. The dominant mode develops in the near plume

at 1-5 MHz and azimuthal mode numbers ∼ 10-50, has a weak ion response and

seems to be triggered by negative gradients of the magnetic field. The subdominant

mode develops near the anode at 100-300 kHz and azimuthal mode numbers ∼ 1-

10, and seems of the rotating-spoke type. Both instabilities are well characterized

by investigating their oblique propagation, the influence of design and operation

parameters, and the effects of anode-cathode electric connection, electron inertia,

and temperature perturbations. The possible impact of these instabilities on electron

cross-field transport is estimated through a quasilinear approach, which yields a

spatially-rippled turbulent force.
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3.1 Introduction

Instabilities and their role in electron cross-field transport is the main open problem

in Hall-effect thruster (HET) discharges. Although oscillations modes within a

large range of frequencies and wavevectors have been observed in experiments and

simulations [82] there is not yet a fully established classification and characterization

of them. Among all oscillation modes, azimuthal ones are potential candidates

to contribute to cross-field transport through, at least, a net azimuthal electric

force coming from correlated oscillations of plasma density and azimuthal electric

field [1, 8].

Among the different lines of research, linear stability analyses provide the basic

stage in order to identify the instability modes and characterizing them physically.

Linear stability studies can be based on either kinetic or fluid formulations, and they

can be local (generally limited to a given axial section of the HET discharge) or global

(dealing with the whole extension of the discharge). Kinetically based studies are

generally local, due to their high complexity, and, in the context of HET plasmas,

lead to dispersion relations for the electron-cyclotron drift instability [3, 11, 83, 84]

and the modified two-stream instability [85–87]. Fluid formulations are amenable to

local and global studies and the modal families resulting are quite diverse. Global

analyses, which take into account the large inhomogeneity of the plasma discharge,

are more consistent and localize the regions where instabilities develop.

A stationary axial model of the inhomogeneous HET discharge [27,46] was used

by Escobar and Ahedo to carry out linear global stability studies at both low-

frequencies (the 10-100 kHz range, say) and high-frequencies (the 1-10 MHz range,

say), with azimuthal wavemodes of order unity [39, 40]. The papers included an

extensive literature review on the subject, that we, thus, omit here. The low-

frequency global analysis [39] was quite extensive: equilibrium and perturbation

models kept all relevant terms, the central role of ionization instabilities was

highlighted, as well as the relation with experimental evidence, and the comparison

with a previous local analysis [50] was made.

The high-frequency global analysis [40], centred in the MHz range, was more

limited in scope. First, several simplifications were applied to the perturbation

model in order to recover the global dispersion relations of previous studies on

Rayleigh and lower-hybrid instabilities by Litvak and Fisch [48] and Kapulkin et

al. [88, 89]. Second, the analysis was limited to low azimuthal mode numbers. And

third, electron pressure was ignored, which is now believed an important shortcoming

inside the HET chamber. More recently, Sorokina et al. [42] discussed the existence

of drift-gradient, near-anode modes using typical plasma-parameter profiles and a

global dispersion relation that coincides with the collisionless limit of reference [40]
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except for the treatment of the compressibility of the electron velocity field; both

models ignore the electron pressure. Marusov et al. [90] apply the same logic as in

references [40] and [42] to a magnetron-type geometry with a constant magnetic field.

Romadanov et al. [91] have also discussed a global perturbation model aiming at the

regimes of drift-gradient and lower-hybrid instabilities [13, 92]. The model has the

peculiarity of being applied to a fully empirical equilibrium solution, where 7/8 of the

domain corresponds to the external plume, and, similarly to references [40, 42, 90],

the perturbation problem is simplified into a second-order differential equation for

the electric potential perturbation.

The present work analyzes global fluid instabilities of the inhomogeneous HET

discharge in the mid-to-high ranges of both frequency and azimuthal wavenumber,

but always respecting the limits of validity of the multi-fluid formulation,

i.e. frequencies and wavenumbers much smaller, respectively, than the electron

gyrofrequency and the inverse of the electron gyroradius. Compared to the

previously mentioned global analyses, the axial-azimuthal model considered here

keeps fully the effects of: (i) the electron pressure, in order to cover both the subsonic

and supersonic regions of the discharge; and (ii) the electron inertia, in order to

assess their relevance in equilibrium and perturbation solutions, and turbulence-

based forces. In references [40,42,90,91], electron inertia was included directly as a

small correction to the leading E×B drift velocity in the final mathematical model.

Several studies with non-linear particle-in-cell simulations are proposing the

turbulent electric force generated by electron-drift kinetic instabilities as the

main driver of the anomalous cross-field transport of electrons in HET discharges

[1,84,93–95]. The fluid instabilities discussed here develop in a frequency range not

far from the above kinetic ones. This has motivated us to consider the quasilinear

extension of the global fluid model, based on estimating the quadratically correlated

terms in the electron momentum equation, in order to speculate on the possible

contribution to anomalous transport of the electric and inertia forces generated by

those fluid instabilities.

The zeroth and first-order formulations of the axial-azimuthal model, and

the equilibrium solution are presented in Sec. 2. The fluid model assumes

quasineutrality except at the anode sheath. The inclusion of electron azimuthal

inertia in the equilibrium solution is rather novel. Since the low frequency range is

out of the scope here, neutral dynamics are disregarded in the first-order problem.

Sections 3 and 4 analyze the eigenvalues and eigenmodes of the global dispersion

relation of a ‘nominal model’, with no electron inertia effects in equilibrium and no

temperature perturbations. This case is very comparable with the majority of local

analyses in the literature [13, 14, 51] and shows a manageable number of unstable

branches. A dominant near-plume and a subdominant near-anode instabilities are
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identified. The quasineutrality and axial-wavenumber spectrum of these instabilities

are checked, and an investigation of design and operation parameters is conducted

in order to assure the robustness of the characterization of these instabilities.

Section 5 investigates how the dispersion relation and the resulting eigenmodes

are modified in ‘off-nominal models’, in particular when zeroth-order electron inertia

is included or when electron temperature perturbations are allowed. Section 6

analyzes the dominant perturbation forces in the electron momentum equation and

attempts to estimate the relevance of the instabilities studied here in the electron

cross-field transport.

3.2 Model Formulation

A time-dependent, axial-azimuthal, fluid model of a Hall thruster is considered.

Since the radial direction is excluded, plasma magnitudes will be in fact radially-

averaged values, while the plasma interaction with radial walls is included as source

terms in the axial-azimuthal model. In particular, for a generic vector variable

v(z, y, t), its divergence will be expressed as

∇ · v = ∇̂ · v + v′w, ∇̂ · v =
∂vy
∂y

+
1

Ac

∂

∂z
(Acvz) , (3.1)

where: y = Rθ is the azimuthal arc (with R the annular channel mid-radius), z is

the axial coordinate, Ac is the cross-sectional area of the plasma beam, and v′w is

the radial wall contribution to magnitude v(z, y, t). As sketched in figure 3.1, the

plasma domain goes from the anode A (at z = 0) to the chamber exit E (at z = LE)

and the external cathode (at z = LN), which is treated here as an infinitely-thin

source of electrons. This assumption decouples the current-free region downstream

of the plume, which is here left out of the analysis. Since the radial direction is

omitted, the plasma is quasineutral everywhere except at the infinitely-thin Debye

sheath next to the anode, B being the sheath edge in figure 3.1.

The plasma is constituted of neutrals, singly-charged ions and electrons, with

subscripts n, i, and e, respectively. The equations for the quasineutral plasma are

based in previous works by Ahedo and co-workers [27]. Using conventional notation,

they are the following:

∂nn
∂t

+ ∇̂ · (nnun) = −n(νp − νw), (3.2)

∂n

∂t
+ ∇̂ · (nui) = n(νp − νw), (3.3)

∂n

∂t
+ ∇̂ · (nue) = n(νp − νw), (3.4)
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Figure 3.1: Schematic representation of the plasma discharge in a Hall thruster.

ṁ is the mass flow, Vd is the discharge voltage, Id the discharge current, and IiN is

the ion current flowing downstream. The electron current flowing from anode A to

neutralizer N, −Id, splits into the downstream neutralizing current, IN+ = IiN, and

the upstream ionizing current IeN− = Id− IiN. E is the chamber exit, B is the anode

sheath edge, D is the ion stagnation point, and S is the ion sonic point. Ac(z) is the

effective cross-section area.

minn

(
∂un
∂t

+ un · ∇un
)

= min[νw (unw − un) + νin (ui − un)] (3.5)

min

(
∂ui
∂t

+ ui · ∇ui
)

= −en∇φ+minνi (un − ui) , (3.6)

men

(
∂ue
∂t

+ ue · ∇ue
)

= −∇ (nTe) + en (∇φ− ue ×B)−menνeue, (3.7)

∂

∂t

(
3

2
nTe

)
+∇̂·

(
5

2
nTeue + qe

)
= ue·∇ (nTe)−nνpEinel−nνweTe+menνeu

2
e, (3.8)

0 =
5

2
nTe∇Te + eqe ×B +meνeqe. (3.9)

In equations (3.2)-(3.4): νp is the plasma production (i.e., ionization) frequency, and

nνw is the source term for particle losses at radial walls. Equations (3.5)-(3.7) are

a combination of the corresponding species momentum and particle conservation

equations. In equation (3.5): unw is the effective neutral velocity from plasma

recombination at lateral walls, νin is the frequency of charge-exchange collisions,

and neutral pressure has been neglected. In equation (3.6): φ is the electrostatic

potential, ion pressure and magnetization have been neglected, and νi = νin + νp is

the total collision frequency for ions. In equation (3.7): B is the applied magnetic

field and

νe = νen + νei + νwm + νt (3.10)

is an effective collision frequency for electrons, which includes contributions

from electron-neutral collisions (νen), electron-ion collisions (νei), effective wall-

collisionality (νwm), and turbulent transport (νt). In equation (3.8): Einel is the

effective ionization-plus-excitation energy cost per ionization event, and nνweTe
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accounts for energy losses at lateral walls. The closure heat equation (3.9) for the

electrons derives from Boltzmann equation [16], after assuming: negligible dynamical

terms, Maxwellian distribution and a Krook collisional operator. Appendix A

compiles the auxiliary models for all the collisionality terms included in the model.

The effective cross-section area of the beam, Ac, is taken constant inside the channel

and follows dAc/dz = 4πR(TeE/mi)
1/2/uzi in the plume.

Azimuthal fluxes are considered relevant only for electrons, so that

un = uzn1z, ui = uzi1z, ue = uye1y + uze1z,

and the electron heat flux is qe = qye1y + qze1z. The magnetic field is approximated

as

B(z) = 1r Bm exp

[
−(z − zm)2

L2
m

]
, (3.11)

where zm (generally at the thruster exit zm = LE) is the location of the maximum

field Bm, and Lm determines the rate of decay of the magnetic field in the thruster,

which is generally different inside (Lm,in) and outside (Lm,out) the thruster.

Axial-azimuthal oscillatory modes in a Hall thruster discharge are studied as

small perturbations of the axisymmetric equilibrium solution of the above model.

Under this approach, the plasma variables are expressed as

ϕ(y, z, t) = ϕ0(z) + ϕ̃1(y, z, t), (3.12)

where ϕ represents every plasma variable, ϕ0 is the equilibrium part and ϕ̃1 is the

perturbation part, satisfying |ϕ̃1| � |ϕ0|. When expanding equations (3.2)-(3.8)

in this way, the leading (or zeroth) order yields a system of ordinary differential

equations that determines the axial equilibrium solution. The next order yields

the set of linear perturbation equations with axially-varying coefficients, which

depend on the equilibrium solution. Since the equilibrium solution is azimuthally

homogeneous, the Fourier transform in both t and y of the perturbation equations

can be taken, which is equivalent to write every first-order variable as

ϕ̃1(z, y, t) = Re{ϕ1(z, ky, ω) exp (−iωt+ ikyy)}, (3.13)

where ky is the real azimuthal wavenumber, ω = ωr + iγ is the complex (angular)

frequency, and ϕ1(z, ky, ω) is the complex amplitude of the perturbations, which

keeps the axial dependence. Formally, due to azimuthal periodicity only integer

mode numbers kyR can exist, but this restriction will add nothing relevant to the

analysis hereafter.
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3.2.1 Equilibrium solution

The stationary (∂/∂t = 0) axisymmetric (∂/∂y = 0) form of the set of equations

(3.2)-(3.8), governing the plasma equilibrium solution, reads

− d

dz
(Acnn0uzn0) =

d

dz
(Acn0uzi0) =

d

dz
(Acn0uze0) = Acn0 (νp − νw) , (3.14)

minn0uzn0
duzn0

dz
= min0 [νw (uznw − uzn0) + νin (uzi0 − uzn0)] , (3.15)

min0uzi0
duzi0
dz

= −en0
dφ0

dz
+min0νi (uzn0 − uzi0) , (3.16)

0 = − d

dz
(n0Te0) + en0

dφ0

dz
+ en0uye0B −men0νeuze0, (3.17)

men0uze0
duye0

dz
= −en0uze0B −men0νeuye0, (3.18)

d

dz

(
5

2
n0Te0uze0 + qze0

)
= uze0

d

dz
(n0Te0)− n0νpEinel − n0νweTe0

+men0νeu
2
e0 −

(
5

2
n0Te0uze0 + qze0

)
d lnAc

dz
, (3.19)

qze0 = −5n0Te0
2me

νe
ν2
e + ω2

ce

dTe0
dz

. (3.20)

In equation (3.17), axial electron inertia has been discarded since it is always

negligible. However, azimuthal electron inertia can be relevant and has been kept

in equation (3.18). In equation (3.20), ωce = eB/me stands for the electron

gyrofrequency and the azimuthal heat flow equation has been used in order to

eliminate qye0 from the system. The continuity equations (3.14) can be combined

by pairs and integrated to yield

Acmi (nn0uzn0 + n0uzi0) = const = ṁ, (3.21)

Acen0 (uzi0 − uze0) = const = Id, (3.22)

being ṁ and Id, the total mass flow and the electric current flowing between

anode and cathode, respectively. The discharge current is also the current flowing

through the external anode-cathode circuit, since the plume downstream of point N

is assumed current-free.

The rearrangement of the above ordinary differential problem, shows the possible

existence of singularities at sonic points, defined by uzi0 = ±cs0, with cs0 =√
Te0/mi. For instance, the equation for the derivative of the ion velocity reads

(
Te0 −miu

2
zi0

) duzi0
dz

= G0, (3.23)

46



with

G0 = Te0 (νp − νw)− uzi0Te0
d lnAc

dz
− eBuzi0uye0

+miνiuzi0 (uzi0 − uzn0)− 2me

5n0Te0

ν2
e + ω2

ce

νe
uzi0qze0. (3.24)

The axial boundary conditions for the equilibrium problem are the following.

1. The total mass flow ṁ injected at the anode is known.

2. The injection velocity of neutrals at the anode uzn0A is known and the sheath

is transparent for neutrals.

3. The ion velocity is backwards and sonic at the anode sheath edge, uzi0B =

−cs0B.

4. The electric potential is set zero at the cathode, φN = 0.

5. Taking then φ0A = Vd, the electric potential at the anode sheath edge is

φ0B = Vd + φ0AB, φ0AB =
Te0B

e
ln

c̄e0B

4|uze0B|
, (3.25)

where c̄e =
√

8Te/πme is the electron thermal velocity.

6. The heat flux at the anode sheath edge is [37]

qze0B = n0Buze0B

(
eφ0AB −

1

2
T0eB

)
. (3.26)

7. There is a regular forward sonic transition inside the channel, at an unknown

location S, satisfying

uzi0S = cs0S, G0S = 0. (3.27)

8. The temperature of injected electrons at the cathode N, Te0N, is known.

9. The electrons are emitted at N with null azimuthal velocity, i.e. uye0N = 0.

Since Vd is an input, the discharge current Id is an output. The opposite choice is

valid too. The circuit boundary condition does not change the equilibrium solution

but it does on the perturbation modes, as it will be shown later.
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Table 3.1: Nominal simulation case parameters, based on a SPT-100-type Hall

thruster, used in this work and defined in the main text. Ac,in is the chamber

cross-section area.

ṁ 4.75 mg s−1 Vd 300 V

Bm 251 G zm 2.5 cm

LE 2.5 cm LN 3.35 cm

Ac,in 40 cm2 R 4.25 cm

TeN 5 eV uznB 300 m s−1

Lm,in 1.5 cm Lm,out 0.5 cm

The parameters of the nominal simulation case, based on previous works [39,40],

are gathered in table 3.1. The resulting stationary solution is plotted in figure

3.2. The main features of this solution were thoroughly discussed in [27, 36, 37].

The only interesting novelty here is the inclusion of azimuthal electron inertia.

This is motivated by consistency, since electron azimuthal inertia is known to be

important in high-frequency, short wavelength perturbation modes, such as lower-

hybrid oscillations [13, 96]. To assess the relevance of electron azimuthal inertia

in the stationary solution, figure 3.2 plots the solution for two different models.

First, there is Model 0A excluding the azimuthal electron inertia, when the electron

azimuthal momentum equation (3.18) reduces to the algebraic relation

uye0 = −ωce
νe
uze0, (3.28)

(and the ninth boundary condition above is not applied). Then, there is Model 0B,

which includes the electron azimuthal inertia term. The comparison of Models 0A

and 0B shows that, in Model 0B, unmagnetized electrons emitted from the cathode

with zero azimuthal velocity adapt, within a thin region, to the solution of Model

0A. Also, close to the anode, the near singularity of duye0/dz makes uye0 significantly

lower when inertia is considered; this reduction near the anode affects uze0 too. For

the rest of regions and plasma variables, Models 0A and 0B yield practically the

same solution.

Neglecting the small collisional contribution to the axial momentum equation

(3.17), this states that azimuthal electron velocity is approximately the sum of the

E ×B and diamagnetic drifts,

uye0 = − 1

B

[
dφ

dz
+

1

en0

dpe0
dz

]
> 0.

Figure 3.2(g) shows that each of these contributions dominates in separated regions

of the discharge and both yield an azimuthal current along +y (notice that both

drifts are negative only in regions where they are not dominant). The dominance
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Figure 3.2: Stationary axial response of Model 0B for parameters in Table 3.1. Ion-

stagnation (D), ion-sonic (S) and channel exit (E) are marked with crosses. Only

B(z) is an input, its maximum being at E. In (a)-(f), red dashed lines correspond

to the inertialess-electron Model 0A. In (g): the two forces contributing to the

azimuthal electron drift. In (h): relative gradient lengths of n, uzi, uze, and uye.

of pressure gradients over the electric field in the inner part of the chamber, and

the ion sonic transition there are two clear features highlighting the importance of

electron pressure effects in a stability analysis of the global discharge.

A second aspect highlighting the importance of a global analysis is the high

inhomogeneity of the equilibrium solution. Figure 3.2 (h) depicts the inverse of the

local gradient length of main plasma magnitudes,

kϕ(z) =

∣∣∣∣ 1

ϕ0

dϕ0

dz

∣∣∣∣ (3.29)

for a generic plasma variable at equilibrium, ϕ0. Leaving apart the singular

behaviours near the anode sheath edge and the ion stagnation point (uzi0 = 0),
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the plasma profiles have kϕR = O(10). A local stability analysis is fully justifiable

only for perturbation modes with axial wavenumbers kz satisfying the Boussinesq

approximation kzR� kϕR = O(10). Otherwise only the global analysis of stability

is fully consistent.

In order to evaluate spatial and time scales in the perturbation modes, typical

values of the equilibrium solution are: ne0 ∼ 1018 m−3, Te0 ∼ 20 eV, B ∼ 150

G, ion sound velocity cs0 ∼ 3.8 km s−1, electron thermal velocity c̄e0 ∼ 1900 km

s−1, cyclotron frequency fce = ωce/2π ∼ 400 MHz, lower-hybrid frequency flh ∼ 0.86

MHz, axial-transit frequency fz ∼ uzi0/2πLN ∼ 90 kHz, azimuthal transit frequency

fθ ∼ uye0/2πR ∼ 3.5 MHz, Debye length λD ∼ 33 µm, and electron gyroradius

`e ∼ 720 µm. This yields R/`e ∼ 60 and `e/λD ∼ 22.

3.2.2 Linear perturbation model

As aforementioned, the evolution of small perturbations to an equilibrium plasma

is governed by the first-order expansion of equations (3.2)-(3.8). Nonetheless,

perturbations of collision frequencies have been ignored (which is not fully consistent

in all cases), as well as, the perturbations of neutral variables (which is correct for the

high-frequency range of interest here). Then, the first order equations for continuity

and momentum of ions and electrons are

uzi0
dn1

dz
+ n0

duzi1
dz

=

(
iω − duzi0

dz
+ νp − νw

)
n1 −

dn0

dz
uzi1 ≡ F1, (3.30)

uze0
dn1

dz
+ n0

duze1
dz

=

(
iω − ikyuye0 −

duze0
dz

+ νp − νw
)
n1

− dn0

dz
uze1 − ikyn0uye1 ≡ F2, (3.31)

uzi0
duzi1
dz

+
e

mi

dφ1

dz
=

(
iω − duzi0

dz
− νi

)
uzi1 ≡ F3, (3.32)

uze0
duze1

dz
+

Te0
men0

dn1

dz
− e

me

dφ1

dz
+

1

me

dTe1
dz

=

(
iω − ikyuye0 −

duze0
dz
− νe

)
uze1

+
eB

me

uye1 +
Te0
men2

0

dn0

dz
n1 −

1

men0

dn0

dz
Te1 ≡ F4, (3.33)

uze0
duye1

dz
= (iω − ikyuye0 − νe)uye1 −

(
duye0

dz
+
eB

me

)
uze1

− iky
Te0
men0

n1 + iky
e

me

φ1 − iky
1

me

Te1, (3.34)
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and the energy equations for electrons are

dqze1
dz

+
3

2
uze0n0

dTe1
dz

+
3

2
uze0Te0

dn1

dz
+

5

2
n0Te0

duze1
dz

=

(
iω

3

2
Te0 − iky

3

2
uye0Te0

− 3

2
uze0

dTe0
dz
− 5

2
Te0

duze0
dz
− νpEinel − νweTe0 +meνeu

2
ye0

)
n1

+

(
−3

2

dn0Te0
dz

+ 2meνen0uze0

)
uze1 +

(
−iky

5

2
n0Te0 + 2meνen0uye0

)
uye1

+

(
i
3

2
ω − iky

3

2
uye0 −

3

2

uze0
n0

dn0

dz
− 5

2

duze0
dz
− νwe −

5

2

Te0
meνe

k2
y

)
n0Te1

+ iky
ωce
νe
qze1, (3.35)

5

2
n0Te0

dTe1
dz

= −5

2
Te0

dTe0
dz

n1 −
5

2
n0

(
dTe0
dz

+ iky
ωce
νe
Te0

)
Te1

−me
ν2
e + ω2

ce

νe
qze1 ≡ F5, (3.36)

Under the limits of cold electrons (implying hypersonic ions) and

duzi0/dz, kzuzi0, kzuze0 � ω, kyuye0, νe � ωce

(with kz an effective axial wavenumber) the mathematical complexity of the problem

gets significantly reduced and the perturbation problem resembles the one by

Escobar and Ahedo [40]. Furthermore, if electron collisions are assumed to be even

smaller (i.e., νe � ω, kyuye0 � ωce) the perturbation problem becomes collisionless

and similar to that of Sorokina et al. [42].

The boundary conditions for the perturbation model are perturbations of those

for the equilibrium problem, and are homogeneous for the stability analysis. They

are the following.

1. The ion velocity satisfies the Bohm condition at B,

uzi1B = − cs0B

2Te0B

Te1B = − 1

2mics0B

Te1B. (3.37)

As it will be shown, the first-order problem is singular at the anode-sheath

edge. This condition ensures the validity of the small-perturbation assumption

close to the anode singularity [97]. The numerical solution of the perturbation

problem verifies that this is required for moderate growths of perturbations

around B and for good convergence behaviour with a suitable number of grid

points.
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2. The potential perturbation is zero at the anode, φ1A = 0. Then, assuming

an instantaneous response of the anode sheath to perturbation, the linearized

sheath potential-fall condition yields

φ1B = φ1A +

(
eφ0AB

Te0B

+
1

2

)
Te1B

e
− Te0B

euze0B

uze1B. (3.38)

3. The heat flux at the sheath edge satisfies

qze1B =

(
eφ0AB −

1

2
Te0B

)
uze0Bn1B

+

(
eφ0AB −

3

2
Te0B

)
n0Buze1B +

eφ0AB

Te0B

n0Buze0BTe1B. (3.39)

4. A regularizing boundary condition at point S is required to ensure smooth

behaviour close to the sonic point, similarly to the equilibrium problem. The

system of first order fluid equations written in the form of equations (3.30)-

(3.36) hides the role played by sonic points in the model. From equations

(3.30)-(3.33) and (3.36), the derivative of uzi1 satisfies

n0

(
Te0 −miu

2
zi0

) duzi1
dz

= G1,

G1 = Te0F1 +meuze0uzi0F2 − n0uzi0

(
miF3 +meF4 −

2

5

F5

n0Te0

)
,

where uze0 � c̄e0 was used, and functions F1 to F5 are defined in equations

(3.30)-(3.33) and (3.36), respectively. Thus

G1S = 0 (3.40)

is required to avoid a singularity at the zeroth-order interior sonic point in

the perturbation problem (the anode-sheath edge is, however, singular). The

interior sonic point of the perturbed plasma is shifted with respect to the

zeroth-order position [97] but this displacement is not needed to solve the

perturbation problem and can be computed in post-processing.

5. The perturbation of the discharge current is zero at the cathode,

Id1N ≡ AcNe [(uzi0N − uze0N)n1N + n0Nuzi1N − n0Nuze1N] = 0. (3.41)

The alternative case of zero perturbation of the cathode potential, φ1N = 0,

will be treated later too.

6. The azimuthal electron velocity perturbation is zero at the cathode, uye1N = 0.

7. The temperature of electrons injected at N is known, yielding Te1N = 0.
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Figure 3.3: Nominal model. Main eigenvalues of global dispersion relation. Each

unstable branch is tagged with a number and an instability type. Red and blue

colours denote propagation along +y and −y, respectively.

For a given equilibrium solution, the parameters of the linear perturbation

problem (defined in the complex plane) are the real wavenumber ky and the complex

frequency ω ≡ ωr + iγ. For each ky, the problem admits eigenvalues ω and

eigenmodes (i.e. non-trivial solutions) in the form of the perturbation magnitudes

ϕ1(z, ky, ω) in equation (3.13). Eigenmodes with γ > 0 are unstable. Modes with

phase velocity ωr/ky > 0 propagate in the +uye0 (i.e +y) direction. It is enough to

analyze the parametric region ky > 0 since, as demonstrated in Appendix 3.B, the

region ky < 0 yields the same perturbation modes. The numerical method to solve

this eigenvalue (or Sturm-Liouville) problem is explained in the Appendix 3.C.

3.3 Near-plume and near-anode instabilities

Stability results will be hereafter analyzed for several simulation settings. This

and next section discuss a, say, nominal model (or Model I) consisting of (i)

the stationary, inertialess-electron Model 0A, and (ii) the perturbation model

with zero electron temperature perturbations (i.e. Te1 = 0), thus consisting of

equations (3.30)-(3.34), and (iii) the perturbed boundary conditions defined before.

Parameters of table 3.1 will be used, except in sections 3.4.3 and 3.4.4, devoted

to parametric investigation where the effects of varying the magnetic field slope,

the discharge voltage, the mass flow and the channel length, are analyzed. Three

off-nominal models (II, II, and IV) are defined and discussed in Section 3.5.

In Sturm-Liouville problems, such as the present one, the number of eigenvalues

of the global dispersion relation can be, in principle, infinite. The interest is, of

course, in the most unstable modes. The instability analysis here will be centred in

unstable modes with: (real) frequencies f = |ωr|/2π ∼ 0.5 − 50 MHz, well below
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the electron gyrofrequency (ωce/2π ∼ 400 MHz); and azimuthal mode numbers

kyR < 50 (i.e azimuthal wavelengths down to λy ≡ 2π/ky ∼ 5 mm), also within the

applicability range of the present fluid formulation.

The unstable solutions of the dispersion relation for the nominal model are

plotted in figure 3.3. There are up to 3 families of high-frequency unstable modes

plus a low-frequency (f ∼ 7.5 kHz) unstable family. This last one [branch 0 in figure

3.3] is characterized by intense density oscillations in the ionization region, which

correspond to the breathing and rotating-spoke modes of Ref. [39] but incompletely

characterized in the present mid-to-high frequency model (which neglects neutral

density perturbations). Hereafter that low-frequency mode will be omitted from

figures and discussions.

Then, in the range f > 100 kHz of interest, there are three branches of unstable

modes. Based on the region where these modes develop preferentially, they are

named Near-Anode Instability (NAI) [branch 1 in figure 3.3] and Near-Plume

Instability (NPI) [branches 2 and 3]. Figure 3.3 states that the global perturbation

response of the nominal model is dominated by the NPI mode in branch 2 with

kyR = 23 (i.e. λy = 1.16 cm) and f = 2.87 MHz. In addition, the NAI mode

of branch 1 with kyR = 3 (i.e. λy = 8.90 cm) and f = 241 kHz is considered a

subdominant mode, since it develops in a different region of the discharge and thus

can still be present in the long-time response. Branch 3 is just a second NPI mode,

likely overshadowed by branch 2 in the long-time response.

3.3.1 The subdominant Near-Anode Instability

The NAI in figure 3.3 presents low azimuthal mode numbers, kyR = 1.3-6.0

(λy ∼ 4.4-21 cm), and mid-frequencies f = 160-290 kHz. Instantaneous 2D spatial

profiles of the main NAI mode (kyR = 3) are shown in figure 3.4. The plots represent

perturbation solutions, i.e. the eigenmodes defined in equation (3.13). They scale

linearly with, say,

φ̃1,max = max{φ̃1(y, z, t)} ∀y, z. (3.42)

which has been set to equal to 1 volt in figure 3.4.

It is clearly observed that the NAI develops mainly in the near-anode region

(from B to D in figure 3.2), but some remnants are observed in the rest of the

discharge, in particular for φ̃1 around the thruster exit E. Azimuthally, the NAI

propagates with an azimuthal phase velocity ωr/ky = 21.5 km/s for kyR = 3 in the

+uye0 direction; remind that this velocity is a diamagnetic drift near the anode. The

axial propagation of the NAI is not identical for all plasma variables as the change

of inclination of the wavefronts in figure 3.4 illustrates. A Fast Fourier transform
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Figure 3.4: Nominal model. Instantaneous spatial response for the subdominant

NAI mode, with kyR = 3 (i.e. λy = 8.90 cm) and f = 241 kHz. In this and similar

figures, only three azimuthal wavelengths are plotted; which in this specific case

coincide with the azimuthal length 2πR. Perturbations amplitudes correspond to

φ̃1,max = 1 volt.

(FFT) analysis discussed later will identify the main axial wavenumbers kz of the

perturbed variables. Near the anode, ñ1, ũzi1, and φ̃1 propagate axially outwards

(i.e., the dominant term in the FFT has kz < 0), while electron velocities do not

propagate. Around the chamber exit, the propagation of φ̃1 has changed and is

directed towards the plume (i.e. kz > 0).

The high-frequency global analysis by Sorokina et al. [42] discusses the existence

of a near-anode modes with kyR from 1 to 5, frequencies of 260-670 kHz and

propagation in the +uye0 direction. There are however differences with the present

case, that could be related to model limitations (some of them also common to

the global models of [40] and [90]), such as the lack of pressure forces on both the

equilibrium and perturbation problems and the assumption of marginal electron

inertia effects. Also, the local analysis by Marusov et al. [98] predicts near-anode

instabilities within similar frequency range and suggests that pressure force has a

non-negligible impact on the resultant wavelengths, frequencies and growth rates of
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the unstable modes.

Rotating-spoke instabilities are also near-anode oscillations propagating in the

+uye0 direction with similar λy but generally at frequencies below 100 kHz [8, 99].

An exception are rotating spokes with f ∼ 79-210 kHz observed in a cylindrical

HET [100]. This discrepancy with respect to experimentally observed frequencies

of near-anode modes was already noted in reference [42]. The formation of wave

packets with a reduced envelope frequency, when unstable modes with similar ωr
and γ co-exist, was identified as a possible explanation.

3.3.2 The dominant Near-Plume Instability

For the nominal model, figure 3.3 shows that the main NPI branch [number 2 in

figure 3.3] develops at higher mode numbers and frequencies than the NAI. It has

kyR ∼ 19-23 (i.e., λy ∼ 1.40-1.16 cm), and f ∼ 1.1-3.3 MHz. The azimuthal

propagation is along +uye0, which is now due to the E × B drift. Instantaneous

2D spatial profiles of the dominant NPI mode, with kyR ∼ 23 and f = 2.87

MHz (thus, ω/ky ' 45.9km/s) are shown in figure 3.5. The oscillations develop

almost exclusively in the near plume, which coincides here with the region having

dB/dz < 0. Concerning the direction of propagation of the waves, ñ1 and ũzi1
propagate obliquely inwards (i.e. with positive kz). The propagation of φ̃1, ũze1 and

ũye1 is azimuthal. For ũye1, there is an abrupt change of phase, close to 180◦, at the

mid-plume. This event takes place when dφ̃1/dz changes sign, due to the inversion

of the azimuthal E×B drift component in the perturbation problem. Additionally,

ũye1 presents small-amplitude short-wavelength axial waves.

The NPI modes of branch 3 in figure 3.3 propagate azimuthally along −y. Since

they develop in the same discharge region of branch 2 with a smaller γ they will not

be observed in the long-term perturbed plasma response, so they are dropped from

the discussion here.

The NAI and NPI modes present interesting differences on the relative

perturbations of the different plasma magnitudes. First, ñ1/φ̃1 and ũzi1/φ̃1 decrease

by two orders of magnitudes from the NAI to the NPI, suggests that the NPI is

mainly an ‘electron mode’. Second, ñ1/n0 � eφ̃1/Te0 for the NPI mode, which has

consequences on fulfilling quasineutrality (see Sec. 3.4.1). Third, while the NAI has

ũze1 � ũye1, the NPI has ũze1 ∼ ũye1, implying that ũze1/uze0 � ũye1/uye0, so that

the perturbed axial electron inertia is as relevant as the azimuthal one for the NPI

mode (see Sec. 3.6.1).

The development of oscillations in the discharge region where dB/dz < 0

suggest a connection of the (global) NPI with (local) high-frequency drift-gradient
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Figure 3.5: Nominal model. Instantaneous spatial response for the dominant NPI

mode: kyR = 23 (i.e. λy = 1.16 cm) and f = 2.87 MHz.

instabilities [13, 51, 98], originally analyzed by Esipchuk and Tilinin [96]. The

dispersion relation for these waves points at density and magnetic gradients as the

main instability mechanisms. In the local stability analyses, the values of dB/dz

and dn0/dz leading to instabilities do not follow simple criteria and depend on the

model assumptions and other local properties of the plasma. For example, the local

analysis by Marusov et al. [98] shows near-plume drift-gradient modes, within the

wide frequency range 0.01-12.16 MHz, that are only unstable when accounting for

finite electron temperature. The effect of the magnetic field shape on the NPI modes

is further investigated later.

Finally, counter-propagating azimuthal oscillations have been observed in some

empirical results in the literature [101], which resemble the main and secondary NPI

modes here. These observations have been made in the frequency range 0.9-6 MHz,

but in the context of the electron-cyclotron drift instability. The azimuthal scales

are smaller, generally satisfying ky`e ≥ O(1), outside the range of analysis of the

fluid models here.
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(a) Nominal model, NAI
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(b) Nominal model, NPI
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(c) Model III, NPI

0 1 2 3

z [cm]

100
102
104
106
108
1010
1012
1014

D
en

si
ty

p
er

tu
rb

at
io

n
s
[m

!
3
]

jni1 ! ne1j
jn1j

(d) Model IV, NPI
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Figure 3.6: Assessment of quasineutrality in main instability modes. (a)

Subdominant NAI in nominal model. (b) Dominant NPI in nominal model. (c)

Dominant NPI in Model III, having kyR = 37.4 and f = 27.2 MHz. (d) Dominant

NPI in Model IV, having kyR = 25.1, f = 14.2 MHz. The noise in the electric

charge is due to the numerical second derivative of φ1 used for its computation.

3.4 Further investigation of the NAI and NPI

instabilities

This section analyzes more in detail the characteristics of the NAI and NPI modes

for the nominal model.

3.4.1 Plasma quasineutrality

The perturbation model has assumed the zero-Debye length limit, so perturbations

are quasineutral except in the perturbed anode sheath. Once the solution is known,

the level of compliance with quasineutrality can be assessed. The perturbed Poisson

equation allows to estimate the charge separation as

e (ni1 − ne1) = ε0

(
k2
yφ1 −

d2φ1

dz2

)
, (3.43)

and to compare it with the quasineutral estimated charge density, en1. A value of

λD, based on n0 and Te0, very small compared to any other characteristic length
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of the problem is enough to ensure the validity of the quasineutral assumption

in the equilibrium solution. For the kyR range considered in this work, kyλD is

always very small. However, in the first-order problem, and assuming kz ≤ O(ky),

quasineutrality requires

ky
√
ε0φ1/en1 � 1, (3.44)

which is a more severe condition than kyλD � 1 when n1/n0 � eφ1/Te0, a situation

happening for the dominant NPI.

For the NAI and the NPI modes of the nominal model, figure 3.6 (a) and (b)

plot both (ni1 − ne1) and n1, showing that |ni1 − ne1| � |n1|, thus validating the

modes are quasineutral. However, figures 3.6(c)-(d) for off-nominal models discussed

in section 3.5, will show that the dominant NPI modes present non-neutral effects,

which should be included in the global perturbation model. That inclusion is far

from immediate since the perturbation model is built upon a stationary solution

which is quasineutral, except for the anode sheath.

3.4.2 Axial wavenumbers

A standard local stability analysis solves the complex eigenfrequency for given

azimuthal and axial wavenumbers, that is ω(ky, kz). The present global stability

analysis provides the complex eigenfrequency for each azimuthal wavenumber ω(ky)

and the complex eigenmodes as functions of z. These eigenmodes do not correspond

generally to normal modes with a single kz. Indeed, the analysis of the NAI and

the NPI in figures 3.4 and 3.5, respectively, showed that the axial propagation is

dependent on both the variable and the region within the discharge.
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Figure 3.7: Nominal model. Axial wavenumbers of n1, φ1 and uze1 from the

(normalized) axial FFT of the perturbed solution, for (a) the subdominant NAI

mode and (b) the dominant NPI mode.

The dominant axial wavenumbers of the instability modes can be obtained from
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the axial FFT. The kzR-spectrum goes from a minimum of 2πR/LN ' 8 to a

maximum of πR/∆z ≈ 4000, where ∆z ≈ LN/1000 is the cell size used here to

solve the Sturm-Liouville problem. The axial FFTs of the modes of figures 3.4 and

3.5 are plotted in figure 3.7. The FFTs are done on complex amplitudes and yield,

in general, nonsymmetrical spectra on kz for each ky. The sign of the dominant

kz determines the principal direction of axial propagation. The FFTs in figure 3.7

for each global mode show that the dominant kz is different for several perturbation

variables. The trends already identified in figures 3.4 and 3.5 are confirmed here: for

the NAI, the negative oblique propagation of ñ1, the positive and negative oblique

propagations of φ̃1, and the purely-azimuthal propagation of ũze1; for the NPI, the

positive oblique propagation of ñ1, a secondary high-kz mode on electron velocities

(out of the kzR limits of the figure), etcetera. The comparison of figures 3.2(h) and

3.7, yields that the Boussinesq approximation, kz � kϕ, that could justify a local

axial analysis, is not satisfied.

3.4.3 Influence of the magnetic field slope

The previous analysis has shown that the NPI develops only outside point E, which,

for the chosen configuration, is both the thruster chamber exit and the location of

the maximum magnetic field. In this subsection the location of Bm is shifted away

from the chamber exit (still point E) in order to elucidate whether the change of the

plasma jet area and collisionality or, more likely, the slope of B(z) are driving the

NPI. All the equilibrium plasma variables are recomputed in every case according

to the equilibrium equations in section 3.2.1. Figure 3.8 shows the dominant NPI

mode for two magnetic profiles with zm = 1.5 cm, i.e. 1 cm inwards of E. The

left case keeps constant the axial decay length Lm,out, and the right one smooths

that decay. The corresponding dominant NPI modes have (kyR, f) equal to (25.1,

2.36 MHz) and (15.3, 1.46 MHz), respectively. In the first row, together with B(z),

uye0(z) is depicted, showing a maximum to the right of zm. The other three rows

plot the perturbation solution for the dominant NPI mode showing that while ñ1

and (unplotted) ũzi1 oscillations spread all over the dB/dz < 0 region, the electron-

related oscillations are bounded approximately between the maxima of B(z) and

and uye0(z). The eigenvalue spectrum of the case with the slowest decay of B(z)

(unplotted), shows a significant shift of the NPI to smaller wavelengths kyR ∼ 13-19.

The behaviour of the NPI under variations of B(z) reinforces the idea that these

modes are strongly related with dB/dz being negative. Local fluid instabilities,

in the same order of frequencies, driven by negative gradients of B (and n0) were

studied by Esipchuk and Tilinin [96] and have been recently revisited by several

authors [13, 51].
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Figure 3.8: Nominal model. Variation of the magnetic field profiles. In left plots,

the magnetic field has (zm, Lm,out) = (1.5 cm, 0.5 cm), and the dominant NPI

eigenmode has (kyR, f) = (25.1, 2.36 MHz). In right plots, one has (zm, Lm,out) =

(1.5 cm, 1 cm) and (kyR, f) = (15.3, 1.46 MHz). First row: Axial profiles of B and

the stationary azimuthal electron velocity. Rows 2 to 4: instantaneous profiles of

the dominant mode. Green dash-dotted and cyan dashed vertical lines indicate the

locations of the maxima of B and uye0, respectively.
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3.4.4 Investigation of operation and geometrical parameters

In order to check the dependence of the NAI and NPI on the zeroth-order solution,

the perturbation problem is solved for different equilibrium solutions, obtained by

modifying discharge voltage, mass flow, or channel length. In order to have in each

case an optimal magnetic strength (with the plasma well attached to the anode)

the maximum amplitude of the magnetic field is tuned according to conditions of

reference [46]. In each case, the rest of parameters are as in table 3.1.

Figure 3.9 (top row) plots the influence of the discharge voltage, through cases

Vd = 200 V, 300 V and 700 V. The NAI is favoured by a low Vd, when its range

of kyR is wider and the growth rate is larger; its frequency increases slightly with

Vd. The NAI is practically absent for Vd = 700 V. As suggested before, those

features are typical of rotating spoke instabilities, as reported experimentally [102]

and numerically [39]. With respect to the NPI modes, as Vd increases, there is a

shift on kyR toward higher wavenumbers but both the amplitude of the kyR-range

and the maximum growth rate do not change practically. The frequency increases

slightly with Vd, which agrees with empirical evidence on high-frequency oscillations

in Hall thrusters [103].

Figure 3.9 (middle row) plots the influence of the mass flow rate, simulating

three different flows. For the NAI, the kyR range is very sensitive to ṁ: at low

values, the NAI disappears; at high values, the range becomes wide and can even

overlap the one of the NPI. At low mass flows, the frequency of the oscillations

decreases mildly. Similar trends were identified in reference [39] for rotating spokes

due to the displacement of the ionization region. Nonetheless, NPI continues to be

the dominant mode and presents a mild shift of kyR with mass flow changes.

Figure 3.9 (bottom row) plots the influence of the channel length, LE, while

keeping constant the distance from exit to cathode (i.e. LN − LE). The ratio

B(0)/Bm is also kept constant throughout the cases, by adjusting Lm,in, in order to

prevent the long-channel case from having unrealistically low magnetic field close

to the anode. The NAI gets less unstable as the channel is shorter and, indeed,

that unstable branch disappears for LE = 1.4 cm. This is coherent with findings

on the rotating spoke: they were observed originally in a long-channel (∼ 10 cm)

thruster [8] and PIC simulations suggest that they appear if the anode-cathode

distance is large enough [1]. The frequency and growth rate of the dominant NPI do

not change much with the chamber length but the mode number kyR shifts towards

higher values when reducing LE as a consequence of modifying the decay of B(z)

inside the channel. This points out that the near-plume instability is not totally

alien to gradients inside the chamber. An interesting novelty is the presence, for the

shortest channel, of a new pair of NPI branches with lower wavenumbers [’new NPI’

in figure 3.9(bottom row)]. Interestingly, their dominant mode has a growth rate
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Figure 3.9: Nominal model. Effects on the dispersion relation of parametric

variation. In each case, parameters of table 3.1 are used except those explicitly

specified below. Contrary to other similar figures, for each case, only the most

unstable mode at each kyR is plotted. All eigenvalues correspond to NPI modes,

except those specifically marked. Cross and diamond markers account for azimuthal

propagation in the +y and −y directions, respectively. (Top) Effect of discharge

voltage: Vd = 200 V, Bm = 194 G (cyan); Vd = 300 V, Bm = 251 G (black, nominal

case); and Vd = 700 V, Bm = 416 G (magenta). (Middle) Effect of node mass flow:

ṁ = 3.1 mg/s, Bm = 224 G (cyan); ṁ = 4.75 mg/s, Bm = 251 G (black, nominal

case); and ṁ = 6.3 mg/s, Bm = 265 G (magenta). (Bottom) Effect of the channel

length: LE = 1.4 cm, Bm = 245 G (cyan); LE = 2.5 cm, Bm = 251 G (black,

nominal case); and LE = 3.3 cm, Bm = 251 G (magenta).
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very close to the one of the original pair of NPI branches, and will also be found

again next.

3.5 Changes in the global fluid models

The following off-nominal models, named II, III and IV, are considered here. In

section 3.5.1, Model II corresponds to the nominal one except for a change of

a boundary condition in the perturbation model. In section 3.5.2, Model III

corresponds to the nominal one except for the stationary Model 0B being used

instead of the (electron inertialess) Model 0A. And in section 3.5.3, Model IV

corresponds to the nominal one except that Te1 perturbations are admitted in the

perturbation model.

3.5.1 Model II: Change of the circuit boundary condition

Depending on the anode-to-cathode electric circuit coupled to the plasma, the

discharge current or the discharge voltage are controlled. When solving the

stationary problem, this is not an issue, since results will be the same as long as

the operational point in the current-voltage curve of the thruster model is the same.

However, fixing the current or voltage does affect time-dependent perturbations and

the global stability dispersion relations can present differences. The nominal model

here has considered a current-controlled response with Id1N = 0, equation (3.41).

Model II here changes from the boundary condition Id1N = 0 to φ1N = 0 (which

together with φ1A = 0, guarantees Vd1 = φ1A − φ1B = 0).

Figure 3.10 depicts main eigenvalues of the global dispersion relation for this

voltage-controlled case. The known branches 1 to 3 of the nominal model are

just shifted moderately, with no qualitative changes in the NAI and NPI modes.

The most unstable mode in branch 2 has now kyR = 25.5, f = 2.04 MHz,

γ = 5.73 · 106 s−1. Beyond that, two additional branches, 4 and 5, of NPI type,

appear, qualitatively identical to the ones found in figure 3.9(bottom) for the short-

channel. The main NPI mode in branch 4, has kyR = 11.0, f = 3.0 MHz, and

γ = 6.16 · 106 s−1. Therefore it is narrowly the globally dominant mode for Model

II. The eigenmodes of branch 4 (none of them depicted here) are very similar to

those in branch 2 except for slightly shorter axial wavelengths and a phase change

in ũze1 similar to that of ũye1 in figure 3.5(d).

An important conclusion of this particular study is that global instabilities

are not determined exclusively by the intrinsic plasma dynamics but also by the

particular set of homogeneous boundary conditions, an aspect out of the capabilities
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Figure 3.10: Model II (imposing φ1N = 0). Main eigenvalues. Red and blue colours

denote azimuthal propagation in the +y and −y directions, respectively. Branches

4 and 5 are new NPI modes.
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Figure 3.11: Model III (using the stationary Model 0B). Main eigenvalues. Red and

blue colours denote azimuthal propagation along +y and −y, respectively. Branches

6 to 9 are new NPI modes.

of local stability analyses.

3.5.2 Model III: Inclusion of zeroth-order electron inertia

Model III considers, as stationary model, the more general Model 0B, instead of the

electron-inertialess Model 0A, both being depicted in Fig. 3.2. The main eigenvalues

of the resulting global dispersion relation are shown in figure 3.11. Branches 1 to 3

are just shifted versions of those of the nominal model in figure 3.3. Interestingly, the

dominant modes in NPI branches 2 and 3 (which counterstream azimuthally) have

now very similar growth rates. However, these two branches are now overshadowed

by branches 6 to 9, all of NPI type, with significantly higher frequencies. The

dominant mode of Model III belongs to branch 8, having kyR = 37.4 and f = 27.2

MHz. The eigenmodes are shown in figure 3.12. However, there are two facts that
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Figure 3.12: Model III. Instantaneous spatial response for the dominant NPI mode:

kyR = 37.4 (i.e. λy = 0.71 cm) and f = 27.2 MHz.

make not reliable these modes. The first one are the the particular behaviour of

the instability in the very thin region close to the neutralizer, with very small axial

wavelengths. These could be induced by the large values of duye0/dz there and

the boundary conditions at the infinitely thin cathode location. The second one,

partially related to the first one, is the failure of the quasineutrality condition, as

shown in figure 3.6(c). Therefore, a consistent stability analysis of Model 0B is going

to require considering a finite thickness cathode, the extension to the downstream

plume, and the consideration of non-neutral effects in the global perturbation model.

3.5.3 Model IV: Inclusion of temperature perturbations

This subsection analyzes the effect of allowing perturbations of the electron

temperature and the heat flux, i.e. Te1, qze1 6= 0. The system of perturbed equations

comprises equations (3.30)-(3.36), with the corresponding boundary conditions. The

stationary inertialess Model 0A is used.

The corresponding eigenvalues are represented in Figure 3.13. The subdominant
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Figure 3.13: Model IV (allowing temperature perturbations). Main eigenvalues.

Red and blue colours denote azimuthal propagation along +y and −y, respectively.

Figure 3.14: Model IV. Instantaneous spatial response for the dominant NPI mode:

kyR = 25.1 and f = 14.2 MHz.

NAI [in branch 1] and the dominant NPI [in branch 2] modes are still identifiable.

There are several new NPI branches [untagged], but the long-term behaviour is

expected to be dominated, in the near plume, by the dominant NPI mode in branch

2. This branch is unstable within a much wider interval of kyR and its frequency has

increased considerably, up to f . 140 MHz. The fork structure in f with a main

and secondary NPI modes has been substituted by a more involved coexistence
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of instability modes. For instance, now the frequency of the main NPI branch

shows a sign change at kyR ≈ 22. The dominant NPI mode of Model IV has now

kyR = 25.1 and f = 14.2 MHz. The corresponding eigenmodes are plotted in

figure 3.14. Compared to the dominant NPI mode of the nominal model (figure

3.5), this one shows: an attenuation of the fast axial oscillations of ũye1, shorter

axial wavelengths (i.e., larger kz) of ñ1, φ̃1 and ũzi1, and a decrease by one order

of magnitude of the relative amplitude of ñ1/φ̃1. The two last effects lead to an

increase of non-neutrality and, indeed, 3.6(d) shows that non-neutral effects should

be included for a correct characterization of the NPI instability with temperature

perturbations.

Another feature of Model IV to stand out is that the NAI branch 1 is no more a

subdominant mode. This role is taken by branch 10 in figure 3.13, in particular by

the eigenmode with kyR = 54.8 and f =49 MHz. This mode is not of NAI or NPI

type, since it develops between the ion-stagnation point D and the point with n0

maximum in figure 3.2(b), i.e in a region with downstream ion flow and dn0/dz > 0.

This subdominant mode presents significant non-neutral effects too.

3.6 Analysis of the electron momentum equations

The analysis here is limited to the nominal model.

3.6.1 Dominant perturbation forces

Equations (3.33) and (3.34) for the axial and azimuthal components of the first-

order, electron momentum, are analysed in order to identify the main perturbation

forces. Figures 3.15(a) and (b) plot the relative contributions of (I) inertia terms,

(P) pressure gradients, (E) electric forces, (M) magnetic forces, and (C) collisional

terms, for the subdominant NAI and dominant NPI modes of the nominal model.

The first observation is that the electric and magnetic perturbation forces are the

main contributions, as expected. The second one is that collisional effects are very

marginal for both the NAI and the NPI ‘high-frequency’ modes (and this is true

either keeping or neglecting the turbulent contribution νt to the total collision rate

νe in the perturbation model). Therefore, these two instabilities would pertain to

the drift-gradient instability class. Third, the perturbed pressure gradient is totally

negligible for the NPI –due to the small (relative) perturbation of plasma density–,

but is an important contribution in the inner (subsonic) region of the discharge for

the NAI.

Finally, the perturbed inertial forces provide mild local contributions to the
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Figure 3.15: Nominal model. Contributions to the axial and azimuthal components

of the first-order electron momentum equations (3.33) and (3.34) for the (a)

subdominant NAI and (b) dominant NPI modes. P, M, E, I, and C represent

pressure, magnetic, electric, inertial, and collisional terms. Complex moduli in

arbitrary units are shown. Small-wavelength axial oscillations (mainly due to uye1)

have been filtered out.

azimuthal force balance, in the regions of development of each instability mode,

where the stationary azimuthal inertia was already important. In fact, these

contributions are partially connected to the fulfilment of the boundary conditions.

While in the equilibrium solution only the azimuthal electron inertia has some

contribution of interest, in the perturbed NPI modes, the axial electron inertia

is as relevant as the azimuthal one. Neglecting smaller contributions, the perturbed

electron momentum equations (3.33) and (3.34) for the NPI and NAI modes, can

be simplified into

ikymeuye0uze1 ' eBuye1 + e
dφ1

dz
− Te0
n0

dn1

dz
, (3.45)

ikymeuye0uye1 ' −eBuze1 + ikyeφ1 − iky
Te0
n0

n1, (3.46)

with the (mild) inertial terms are grouped on the left side. The inertia contribution

in the perturbed axial equation is of interest only for the NPI since uze1 = O(uye1)

(Fig. 3.5). The pressure terms are only important for the NAI.
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Figure 3.16: Nominal model. Azimuthal electron momentum balance including

turbulent forces. (a) Magnetic force, and turbulent force arising from the dominant

NPI mode with φ̃NPI1,max = 71V plus the subdominant NAI mode with φ̃NAI1,max = 10.5V.

(b) Individual contributions of the electric and inertial forces to the previous NPI and

NAI turbulent forces. These are proportional to (φ̃NPI1,max)2 and (φ̃NAI1,max)2, respectively.

Small-wavelength axial oscillations (mainly due to uye1) have been filtered out.

3.6.2 On electron cross-field transport

The quasilinear extension of the fluid model is considered now to analyze

quadratically correlated effects of the NPI and NAI modes. The key equation for

cross-field electron transport is the stationary azimuthal momentum equation (3.18),

which can be formally expressed as the force balance

0 = Fmag + Fine + Fcol + Ftur, (3.47)

with Fmag = −eBn0uze0, Fine = −men0uze0duye0/dz, Fcol = −me(νe0 − νt)n0uye0,

and Ftur, respectively, the magnetic, inertial, collisional (excluding the empirical

contribution of turbulence), and turbulence-based forces. The magnetic force is

undoubtedly the dominant force and must be balanced by the combination of the

rest of forces. Figure 3.16(a) plots Fmag, Fine, and Fcol, and, as expected, inertial

and collisional forces cannot balance Fmag except at very localized regions. In this

case, the compensation comes from the crude and common expression used for the

turbulent force, Ftur = −αteBn0uye0, according to equation (3.60).

Let us analyze now, based on the quadratic time-and-azimuth averaged

contributions of the dominant NAI and NPI modes, how the resulting azimuthal

turbulent force would be. Since the linear perturbation analysis does not predict

the saturation level of the instability modes, we will speculate on which saturation

levels can lead to Ftur balance Fmag globally. The time- and azimuth- averaging

operator on a quadratic magnitude Φ is defined as

〈Φ〉 (z) =
ωky
4π2

� t+2π/ω

t

dt

� y+2π/ky

y

dy Φ(t, y, z). (3.48)
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For complex, first-order variables ϕ̃1 and ψ̃1, fulfilling (3.13), the correlated product

satisfies
〈
ϕ̃1ψ̃1

〉
= Re{ϕ1ψ

∗
1}/2, with ψ∗1 the complex conjugate of ψ1.

Departing from equation (3.7), the turbulent force is Ftur = Ftur,1 + Ftur,2 with

Ftur,1 = −e〈ñ1Ẽy1〉, (3.49)

Ftur,2 = −me

[
n0

〈
ũze1

∂ũye1
∂z

〉
+ uze0

〈
ñ1
∂ũye1
∂z

〉
+ uye0

〈
ñ1
∂ũye1
∂y

〉
+
∂uye0
∂z
〈ñ1ũze1〉+

〈
ñ1
∂ũye1
∂t

〉]
, (3.50)

the contributions from electric and inertial forces, respectively (the pressure

azimuthal gradient does not contribute, on average, to turbulent transport because

of its azimuthal periodicity).

The shapes of Ftur(z) generated by the dominant NPI and the subdominant

NAI modes are depicted in Figure 3.16 (a) too. The contributions are proportional

to (φ̃NPI1,max)2 and (φ̃NAI1,max)2, respectively for each mode. As commented above, the

saturation values of the electric potential, φ̃NPI1,max and φ̃NAI1,max, are out of reach of the

linear model, and those selected for the plots, φ̃NPI1,max = 71V and φ̃NAI1,max = 10.5V,

correspond just to those making Ftur to compensate globally Fmag in the last and first

centimetre of the domain, where, respectively, the NPI and NAI are significant. The

associated amplitudes of the azimuthal electric fields are Ẽy1,max = Re{ikyφ1,max}
are 390 V/cm and 7.4 V/cm for the NPI and NAI modes, respectively. These

magnitudes of the perturbations fields are comparable to those of the local zeroth-

order electric field, thus suggesting that the NPI and NAI modes must develop well

into the non-linear regime in order to contribute to the cross-field transport.

Figure 3.16(b) depicts the electric and inertial contributions to Ftur. The inertial

contribution, Ftur,2, is small for the NAI, but it is of the same order as the electric

one, Ftur,1, for the NPI. This result is not immediate since, within first order, electron

inertia (meuye0uye1) is generally small compared to the electric force (eφ1). However,

for the second-order forces,

men0uze1∂uye1/∂z

ekyn1φ1

∼ meuye0uye1
eφ1

· n0uze1
n1uye0

≥ O(1), (3.51)

since n0uze1/n1uye0 ∼ 100 for the NPI (as for the quasineutrality condition, the

extremely low n1 disrupts the expected natural orderings). This, and a mildly

higher correlation level on the electric force, explain that Ftur,2 ∼ Ftur,1 for the NPI.

Next, while
� zN
zA

Fturdz < 0, is negative (and, thus, contributes positively to cross-

field transport), the profile of Ftur(z) is very rippled spatially, Ftur becoming even

positive in certain subregions. This is natural to the oscillatory character of modes
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generating Ftur but is far different from the gentle profile of Ftur = −αteBn0uye0,

used to construct the equilibrium solution (although this one could be interpreted as

a spatially-averaged force). An iterative scheme can be set up to obtain a solution

consistent with the rippled Ftur(z) up to second order. This is out of the scope of

this work and a challenging problem anyway. A spatially rippled Ftur(z) enhances

the relevance of the electron inertia force in the equilibrium solution, since it is the

first term reacting to variations of Ftur(z), and likely leads to some rippling in the

rest of plasma variables at equilibrium and to changes in the linear perturbation

modes. Furthermore, the non-negligible role of electron inertia in the instability

analysis here, implies that gyroviscous effects, of the same order as inertia effects in

the standard finite-Larmor-radius ordering [13,81], should be included in the model

to strengthen its consistency. But the gyroviscous tensor introduces second-order

axial derivatives, implying a major change in the mathematical formulation, which

here is first-order in axial derivatives.

To conclude it is worth observing that a spatially rippled Ftur(z) is also found

in the non-linear kinetic simulations of a HET discharge [94], although instabilities

there were attributed to kinetic electron-drift instabilities. A fully non-linear fluid

model would be needed to a more solid comparison of kinetic and fluid contributions

to cross-field transport.

3.7 Summary and conclusions

The plasma discharge in a HET from the anode to the external cathode is highly

inhomogeneous, so the linear stability analysis of a stationary response must consider

the discharge globally. Departing from a fluid model of the discharge that ignores

the radial direction, and is quasineutral except for the anode sheath, a perturbation

scheme is applied to define (i) a zeroth-order axisymmetric stationary axial model

plus (ii) a first-order model of small perturbations. Both pressure effects and

electron inertia effects are kept in the two models, with the interest of assessing

their relevance.

Fourier transforms are applied only in time and the azimuthal direction, so

the perturbation model constitutes a set of ordinary differential equations in z

for each azimuthal wavenumber ky and frequency ω. The stability analysis of the

perturbation model considers homogeneous boundary conditions at the anode, the

cathode, and the internal sonic point. Given ky, the problem admits non-trivial

solutions only at specific values of ω. A discretization method in a uniform grid

has been implemented to transform the differential Sturm-Liouville problem into an

algebraic eigenvalue problem. For each real ky, complex eigenvalues ω are found;

the corresponding eigenvectors build up the perturbation solution.
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The analysis is focused in the mid-to-high frequency range (say, f > 100 kHz)

and high-wavenumber range (i.e. kyR large) but still within the fluid-formulation

validity range. Two well-distinguished instability types are found under a broad

range of conditions. There is first a dominant instability mode (NPI) developing

in the near-plume. It has frequencies in the ranges f ∼ 1-30 MHz and azimuthal

mode numbers kyR ∼ 10-40. It involves electron perturbations almost exclusively

and travels in the +uye0 direction. By modifying B(z) it is shown that the NPI

development is related to the region where dB/dz is negative, thus suggesting that

the NPI could be related to the classical drift-gradient instability of Esipchuk and

Tilinin. There is, then, a subdominant instability mode (NAI) developing mainly

near the anode. This mode has lower frequencies (f ∼ 100-300 kHz) and mode

numbers (kyR ∼ 1-10) and involves both perturbations of electrons and ions. This

mode could be a high-frequency manifestation of a rotating spoke.

For the nominal model (the main one studied here) there is a second

counterstreaming NPI branch (i.e. travelling along −uye0) which could be related

to some experimental observations but it is never dominant in the analyses here.

For a short channel or a certain anode-to-cathode electric connection, a second pair

of NPI branches develop at lower wavenumbers, and one of their modes can even

become the dominant mode. When zeroth-order electron inertia (mostly significant

close to the anode and cathode boundaries) or electron temperature perturbations

are included in the analysis, the number of unstable eigenvalue branches of the

dispersion relation increase much, and the discussion is more involved. Still, there

is a dominant NPI mode but mode number and frequency have shifted to higher

values.

Both NPI and NAI are not simple normal waves since, for each ky and ω,

a fast Fourier transform shows that different axial wavenumbers kz characterize

the propagation of the different plasma variables, which means that the oblique

propagation is different for each of them, contrary to local analyses based on setting

both wavenumbers, and obtaining ω(ky, kz). The two perturbation modes are nearly

collisionless, pressure effects matter only for the NAI (developing in the subsonic

region of the plasma beam), and first-order electron inertia is a small correction

to them. Quasineutrality is satisfied by the NAI but not always by the NPI: non-

neutral effects appear, even with kλD � 1, due to the very low perturbations of the

ions in the NPI.

The last part of the paper has been devoted to a speculative analysis on the

possible contribution of the NPI and the NAI to the electron cross-field transport,

through quadratically-correlated electric and inertia forces. The conclusions have

been that: (1) a fully non-linear development of the modes is required to obtain a

significant turbulent azimuthal force, (2) the contribution of electron inertia to the

net turbulent force is not small for the NPI (because of the small density perturbation
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and the resulting quadratic electric force), and (3) the turbulent force is highly

rippled axially.

This last feature has important consequences on the stationary mathematical

model. First, it makes electron inertia a key mechanism to control spatial rippling

on the equilibrium solution. Second, the gyroviscous effects, cannot be further

ignored, mainly if dealing with a rippled solution, but these imply major changes

to the present first-order mathematical formulation. Finally, since the NPI develops

close to the cathode boundary, the extension of the global discharge model beyond

the cathode, into the current-free plume, is another interesting direction of research.
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Appendices

3.A Expressions for collision-related parameters

This Appendix compiles the expressions for the collision-related terms of equations

(3.2)-(3.9) and the values selected in the simulations for some of the constants. The

expressions come from previous papers on the same model by Ahedo and co-workers.

The ionization or production frequency, νp, is modelled as νp = nnc̄eσ̄ion, with

σ̄ion = σion,0

[
1 +

TeEion

(Te + Eion)2

]
exp

(
−Eion

Te

)
(3.52)

where Eion stands for the primary ionization energy. For xenon: Eion = 12.1 eV,

σion,0 = 5× 10−20 m2. The effective energy loss due to ionization, Einel, satisfies

Einel

Eion

= 2 +
1

4
exp

(
2Eion

3Te

)
(3.53)

The elastic electron-neutral collisions frequency is νen = nnc̄eσen. Here, and

for xenon the cross-section σen is taken approximately constant and equal to

σen = 27× 10−20 m2.

The electron-ion (Coulomb) collision frequency is νei = nRei, with Rei given by

Rei

10−12m3s−1
= 2.9·

(
1 eV

Te

)3/2

ln Λ and ln Λ ≈ 9+
1

2
ln

[(
1018 m−3

ne

)(
Te

1 eV

)3
]
.

(3.54)

The ion-neutral (charge-exchange) collision frequency is νin = nncinσin, with

cin = |uzi − uzn| and

σin = σin0

[
1− 0.2 log10

cin
1 km/s

]2

(3.55)

and σin0 = 81 · 10−20 m2 for xenon.
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The wall-loss frequency of particles is

νw = ν̃w
2πR

Ac
cs (3.56)

with ν̃w a constant (accounting for plasma density decrease near the wall); ν̃w = 0.17

is used here. The effective axial velocity of wall-born neutrals from ion recombination

is

uznw = awuzn + (1− aw)uzi (3.57)

where aw is a velocity accommodation factor; aw = 0.85 is used here. The wall-loss

frequency for momentum and energy are νwm = βmνw and νwe = βeνw, respectively

with

βm =
δw

1− δw
, βe = 5.62 +

1.65

1− δw
. (3.58)

Here, δw is the effective secondary electron emission yield from the wall, which is

modelled as

δw(Te) =
√
Te/T1 if Te < T ∗e (3.59)

and δw = δ∗w =
√
T ∗e /T1 if Te ≥ T ∗e , where T1 is the temperature leading

(theoretically) to a 100% yield (which depends on the wall material) and T ∗e is

the temperature where the charge-saturation limit is reached at the wall. Here:

T ∗e /T1 = 0.967, δ∗w = 0.983, and T1 = 37 eV.

Turbulent transport in the stationary solution is introduced through an effective

collisional frequency

νt = αtωce (3.60)

with αt a constant equal to 0.0094 in the simulations here.

3.B Symmetry of the perturbation problem

As noted in the main text, the parametric region with ky < 0 yields the same

perturbation modes as those obtained for ky > 0. Analytical evidence is provided

here by, first, proving that the perturbation problem satisfies the symmetry condition

ωr(−ky) = −ωr(ky), γ(−ky) = γ(ky), ϕ1(z,−ky,−ω∗) = ϕ∗1(z, ky, ω), (3.61)

for every first-order variable ϕ1, with the asterisk denoting the complex conjugate.

The solutions, for ky and −ky, complying with (3.61) do not generally belong to the

same branch (meaning by ‘branch’ the continuous curves in, e.g., figure 3.3).

According to the symmetry condition (3.61), every perturbation equation, that

can be expressed as f(ky, ω,ϕ1) = 0 (being ϕ1 the vector of first-order variables),

complies with

f ∗(ky, ω,ϕ1) = f(−ky,−ω∗,ϕ∗1). (3.62)
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In that case, if there exists a solution for ky, ω and ϕ1 obeying f(ky, ω,ϕ1) = 0;

there must exist another solution fulfilling f(−ky,−ω∗,ϕ∗1) = 0 for −ky, −ω∗ and

ϕ∗1. Let us now demonstrate that (3.62) is satisfied by the perturbation equations

(3.30)-(3.36). It is enough with providing proof for electron-related equations, since

those for ions are simplified versions of these. Also, for the sake of conciseness, we

will work on the case with Te1 = 0; but the property (3.62) remains valid for the

more general case with non-zero Te1 and qze1.

If ky, ω and ϕ1 are substituted by −ky, −ω∗ and ϕ∗1 in the first-order electron

continuity equation (3.31), the result is

uze0
dn∗1
dz

+n0
du∗ze1

dz
=

(
−iω∗ + ikyuye0 −

duze0
dz

+ νp − νw
)
n∗1−

dn0

dz
u∗ze1 + ikyn0u

∗
ye1,

(3.63)

that can be easily proved to be equal to the complex conjugate of equation (3.31),

thus fulfilling (3.62). Similarly, the same substitution for the electron momentum

equations (3.33) and (3.34), yields

uze0
du∗ze1

dz
+

Te0
men0

dn∗1
dz
− e

me

dφ∗1
dz

=

(
−iω∗ + ikyuye0 −

duze0
dz
− νe

)
u∗ze1

+
eB

me

u∗ye1 +
Te0
men2

0

dn0

dz
n∗1, (3.64)

uze0
du∗ye1

dz
= (−iω∗ + ikyuye0 − νe)u∗ye1 −

(
duye0

dz
+
eB

me

)
u∗ze1

+ iky
Te0
men0

n∗1 − iky
e

me

φ∗1, (3.65)

which are equal to complex conjugate of equations (3.33) and (3.34), respectively.

The same procedure can be followed to demonstrate the compliance with (3.62) of

the general system with non-zero Te1 and qze1; and including electron energy and

heat flow equations.

Following the definition (3.13), for every complex perturbation solution, only the

real part has physical meaning. It happens that the modes satisfying the proposed

symmetry also fulfil

ϕ̃1(z, y, t) = Re{ϕ1(z, ky, ω) exp (−iωt+ ikyy)} = Re{ϕ∗1(z, ky, ω) exp (iω∗t− ikyy)}
(3.66)

and, thus, they are the same mode.
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3.C Numerical method for the perturbation prob-

lem

The system of linearized macroscopic equations can be written formally as a general

homogeneous system of ordinary differential equations

Ā · dx1

dz
=
(
B̄ + iωC̄ + ikyD̄ + k2

yD̄2

)
· x1 (3.67)

with x1 = x1(z) being the vector of perturbation variables and having length m,

say. The coefficients of matrices Ā, B̄, C̄, D̄ and D̄2 are functions of just z and the

equilibrium solution x0 = x0(z). Similarly, each boundary condition of the problem

is homogeneous and can be expressed as a linear combination of the perturbation

variables at the corresponding point of application (since the boundary conditions

do not involve axial gradients).

The global linear stability problem, or Sturm-Liouville problem, described

by equation (3.67) and its set of homogeneous boundary conditions consists of

finding non-trivial solutions x1(z) (eigenfunctions) at specific values of the complex

frequency ω (eigenvalues) for given ky and background plasma state x0(z).

Equation (3.67) is solved in a discrete way on an uniform grid with p points

covering the distance from the anode sheath edge (B) to the neutralizer (N). The

unknowns of the discrete problem, X1, are the values of the first order variables,

x1, at the grid points. Let j be the index, going from 1 to p, denoting the grid

point. This means a total of mp unknowns, which satisfy m boundary conditions

and m (p− 1) macroscopic equations. These come from evaluating equations (3.67)

at p different axial positions of the domain. These do not need to coincide with the

grid points. After checking different possibilities to proceed, the method identified

as the most numerically robust has been selected.

This method evaluates the first-order system (3.67) at intermediate points in

between grid points; the non-integer index j + 1/2 denotes the midpoint between

grid points j and j+1. This directly yields m(p−1) equations, which can be written,

analogously to equation (3.67), as the system

Āg ·
dX∗1
dz

=
(
B̄g + iωC̄g + ikyD̄g + k2

yD̄2,g

)
·X∗1 (3.68)

where X∗1 stands for the vector of first order quantities at midpoints, which is

m(p − 1) elements long. The matrices in the previous expression are squared with

column length m(p− 1), and are global versions of those in equation (3.67). Their

coefficients come from evaluating the local matrices at each midpoint. The specific

arrangement of these coefficients within global matrices depends on the order used

for the elements in vector X∗1 .
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Equation (3.68) has to be expressed in terms of the unknown vector X1. First,

the derivatives at midpoints (collected in dX∗1/dz) are estimated, using grid-point

values, with the centred finite difference formula

dx1

dz

∣∣∣∣j+1/2

≈ x
j+1
1 − xj1

∆z
(3.69)

where ∆z is the grid step. Using this equation it is possible to build a finite difference

matrix F̄ such that
dX∗1
dz
≈ F̄ ·X1. (3.70)

Second, the values of perturbations at midpoints (collected in X∗1 ) can be estimated

as the mean of the values at the two nearest grid points, i.e

x
j+1/2
1 ≈ x

j
1 + xj+1

1

2
(3.71)

This expression can be used to build an averaging matrix M̄ such thatX∗1 ≈ M̄·X1.

The size of matrices F̄ and M̄ is m(p− 1)×mp.

Using these discretizations in equation (3.68) yields the algebraic equation

Āg · F̄ ·X1 =
(
B̄g + iωC̄g + ikyD̄g + k2

yD̄2,g

)
· M̄ ·X1 (3.72)

The size of the matrices multiplying X1 is m(p − 1) × mp. The set of linear

homogeneous boundary conditions can be expressed as linear combinations of the

the discrete unknowns of the problem in the form Ḡ ·X1 = 0.

Then, the complete discrete system of equations that gives an approximate

solution to the Sturm-Liouville problem of equation (3.67) reads[(
Āg · F̄−

(
B̄g + ikyD̄g + k2

yD̄2,g

)
· M̄

Ḡ

)
−

(
C̄ · M̄

0̄

)
iω

]
·X1 = 0 (3.73)

This is a generalized algebraic eigenvalue problem with ω and the corresponding

X1 being the eigenvalues and eigenvectors, respectively. Once solved, the axial

evolution of the perturbation plasma variables is obtained in the complex plane.

This scheme has shown good numerical convergence and, for simple equilibrium

solutions, the discrete solution has been verified with analytical solutions. An

alternative discretization scheme would have been to evaluate the first order fluid

equations at grid points (instead of at midpoints) and use forward, centred, and

backward finite difference schemes for estimating axial gradients at left boundary,

interior points and right boundary, respectively. However, the complete system

(3.67) cannot be evaluated at every grid point, since this would provide mp

equations, and m boundary conditions should still be added. This implies that

m fluid equations must be disregarded, but that selection is not at all trivial when

boundary conditions are set at different points (B, S and N).
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Chapter 4

Particle-in-cell modelling of

electrostatic plasmas

4.1 Kinetic theory

At the microscopic level, plasmas are formed by charged and neutral particles that

interact among each other. Solving and tracking the state (position and velocity) of

each particle in time would give an exact representation of the plasma behaviour,

but this is not practical due to the large number of particles. Instead, the kinetic

theory uses a statistical approach to solve the evolution of the distribution function

fs(x,v, t) of a species s in time and in the six-dimensional phase space (x,v) formed

by position x and velocity v. The individual particles, with certain position xp and

velocity vp can be represented as points in phase space. At a given time t, the

value fs(x,v, t) is defined as the density of particles with xp and vp lying inside the

infinitesimal volume from (x,v) to (x + dx,v + dv). The distribution function is

governed by the Boltzmann equation [16]

∂fs
∂t

+ v · ∇fs +
qs
ms

(E + v ×B) · ∇vfs =

(
δfs
δt

)
coll

, (4.1)

where ∇v is the gradient operator in the velocity space, ms and qs are the mass

and charge of the species particles, and (δfs/δt)coll accounts for the effect of

collisions. The term dot-multiplying ∇vfs is the acceleration vector, that has been

particularized for our case of interest where the only forces on the plasma come from

the macroscopically smoothed electric E(x, t) and magnetic B(x, t) fields.

The distribution function contains all the information from each species

behaviour, and the more meaningful macroscopic properties can be computed from

it by taking moments in the velocity space from −∞ to +∞. The macroscopic
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density ϕs(x, t) of certain property Φs(x,v, t) can be computed as

ϕs(x, t) = ns〈Φs〉v =

�
v

Φsfs d3v (4.2)

where 〈Φs〉v(x, t) is the average of Φs(x,v, t) in velocity space (or through particles

at given x) and ns(x, t) is the number density. Some interesting macroscopic

magnitudes, used in fluid formulations of Chapters 2 and 3, are:

• The number density (Φs = 1)

ns =

�
v

fs d3v. (4.3)

• The particle flow vector (Φs = v)

gs = ns 〈v〉v =

�
v

vfs d3v. (4.4)

Defining the fluid or macroscopic average velocity vector as us = 〈v〉v, the

particle flow can be expressed as gs = nsus. The particle velocity v can

be decomposed as v = us + w, where w is the random velocity satisfying

〈w〉v = 0.

• The momentum flow tensor (Φs = msvv)

M̄s = ns 〈msvv〉v = ms

�
v

vvfs d3v. (4.5)

By using v = us + w, this tensor can be alternatively expressed as M̄ =

msnsusus + p̄s, where the first term is the contribution of macroscopic

velocity and p̄s = msns 〈ww〉 is the pressure tensor accounting for the

momentum flow due to random particle motion. The scalar pressure definition

is ps = 1
3
trace(ps) = 1

3
msns 〈w ·w〉. Similarly the absolute temperature is

Ts = ps/ns.

• The energy flow vector (Φs = 1
2
msv

2v)

P ′′s = ns

〈
1

2
msv

2v

〉
v

=
1

2
ms

�
v

v2vfs d3v, (4.6)

which, using previous definitions, can be decomposed as

P ′′s =
1

2
msnsu

2
sus +

3

2
psus + us · p̄s + qs;

being the last term the heat flow vector qs = 1
2
msns 〈w2w〉.

In a similar way, moments of the Boltzmann equation (4.1) can be taken, yielding

the macroscopic transport equations [16]. Each new moment introduces, however, an
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additional unknown macroscopic variable that is governed by higher order moments.

To avoid solving infinitely many equations, the fluid approach accounts for the first

moments of the Boltzmann equations and takes a closure assumption. For example,

in chapter 2, the electron model considers moments up to the energy equation and

the system is closed with a Fourier law for the heat flow qe = −κ̄⊥e · ∇Te. Typical

closures imply cold, Maxwellian or bi-Maxwellian distribution functions; which may

not be suitable in unmagnetized and/or low collisionality conditions, such as those

in the Hall discharge. Also, in the context of plasma oscillations, the macroscopic

models may miss kinetic effects in particle-wave interaction that can lead, e.g.,

to Landau or inverse-Landau damping [16, 32, 33], some instabilities such as the

electron-cyclotron drift instability (ECDI) [11,12] or particle-wave trapping.

The numerical treatment of the Boltzmann equation may involve several

modules:

• Solving the electric and magnetic fields (E and B), which have a collective

contribution from the particle interactions in the plasma and, thus, depend on

the particles distribution in space. Therefore, they have to be solved together

with the distribution functions. In Hall plasmas, it is usually assumed that the

fields are electrostatic; with negligible self-induced B and E = −∇φ coming

from an electric potential φ, solution to Poisson’s equation

∇2φ = −ρc
ε0

. (4.7)

Here, ε0 is the permittivity of free space and ρc =
∑

s qsns is the net electric

charge density. The value of B comes from sources external to the system and

is given.

• Solving the transport of fs in the six-dimensional space (x,v) and time.

This is, dealing with the left-hand side of equation (4.1). If collisions

are disregarded, fs is conserved along the streamlines in the phase space.

Numerical approaches can be divided, very generally, in [20] Vlasov solvers

and particle-in-cell (PIC) codes. Vlasov codes use an Eulerian description to

directly solve the the evolution of fs in the phase space on a given grid. On the

other hand, PIC codes use a Lagrangian description to follow the motion of

macroparticles along characteristic lines that conserve fs. The characteristics

can be solved from the equations of motion

dxp
dt

= vp (4.8)

and
dvp
dt

=
qs
ms

(E + vp ×B) (4.9)

of the macroparticles. Each macroparticle represents certain number Wp of

real particles (this is the macroparticle weight or clumping factor). The
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distribution function (or its moments) can be reconstructed statistically from

the macroparticle states. The main drawback of the PIC approach is the

inherent statistical noise compared to the almost noise-free Vlasov solutions.

However, Vlasov codes can be very demanding due to the high dimensionality

of the problem and more prone to numerical stability issues [104]. Due to its

conceptual simplicity and the background of EP2 [105–107], the PIC approach

is the preferred option in this thesis.

• Solving for the effect of collisions, which break the conservation of fs along

characteristics. Within the PIC framework, collisions are simulated with

the Monte-Carlo Collisions (MCC) [108] or Direct Simulation Monte-Carlo

(DSMC) [109] methods. The MCC technique simulates the effects on the

macroparticles of a certain species colliding with a background cloud and it is

accurate when the collisions have a negligible effect on the target background

species (e.g, an electron colliding with a heavy species). In the DSMC

approach, macroparticles are collided with other actual macroparticles in the

simulation. Collisions may imply creation/removal of particles (e.g, ionization

event), as well as changes in velocities of the colliding particles.

4.2 Structure of the in-house developed PIC code

In order to study kinetic instabilities and other effects not captured by conventional

macroscopic formulations, PIC and Poisson solvers have been developed in the

context of the theses of Enrique Bello Beńıtez and Alberto Maŕın Cebrián. The

optimization of the codes was tackled during a research stay at LAPLACE

laboratory and is described in the next chapter.

Due to the excessive computational workload, three-dimensional PIC codes are

not very extended for Hall thruster simulation (although there are some attempts

[110–112]). The developed codes are kept two-dimensional in physical space (but

three-dimensional in velocity i.e., a 2D3V model) and operates on a uniform

Cartesian mesh. The model is able to work with several species of ions, electrons and

neutrals (the simulations shown in this thesis account for two species: singly-charged

ions and electrons). The development of the PIC code has taken advantage of

previous developments of EP2 and has adapted some of the routines and algorithms

used in the PIC module of the hybrid model HYPHEN [35] by Adrián Domı́nguez

Vázquez.

The whole code is divided in three big blocks that are executed independently

and communicate through files in HDF5 format: input generation, core program and

post-processing. In the next subsections, the most relevant features and algorithms
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are summarized.

4.2.1 Input generation

The input generation is done in Python. The input parameters of the simulation

are gathered in Python files that contain the information about: physical constants,

mesh, boundary conditions, macroparticle populations, collision processes, time

steps, print-outs and other simulation settings. Those inputs are used to generate

the mesh, surface elements, initial populations and collision data; which are saved

in a HDF5 file called SimState.hdf5.

Uniform Cartesian mesh

The PIC and Poisson codes operate on a 2D rectangular domain with sides Lx,y,

discretized in a uniform Cartesian mesh with coordinates (x, y) and grid spacing ∆x

and ∆y. The cell size should be small enough to resolve the local Debye length in

order to capture the non-neutrality at small scales and prevent the numerical heating

caused by the finite-grid instability [113,114]. In each direction, the numbers of used

nodes are Nx,y. Similarly, there are (Nx,y − 1) cells in each direction. Nodes and

cells indexes are i and j, in x and y coordinates respectively. The node (i, j) is the

left-bottom corner of cell (i, j) and has position

xi = x1 + i∆x (4.10)

yj = y1 + j∆y. (4.11)

where x1 and y1 stand for the coordinates of the left-bottom corner of the domain. In

the uniform mesh, all cells have the same volume ∆V = ∆x∆y∆z (since the domain

is 2D, ∆z = 1 m is taken for area and volume computations always). For calculation

of macroscopic magnitudes at the nodes, each one has an associated volume ∆Vi,j;

which will be different for interior (∆Vi,j = ∆V ), boundary (∆Vi,j = ∆V/2) and

corner nodes (∆Vi,j = ∆V/4). The cell surfaces corresponding to boundaries

constitute important surface elements and their information is also generated and

stored: coordinates, normal vector, area and type of interaction with particles (e.g.,

periodic or absorbing).

Routines and algorithms used in the PIC module of HYPHEN [35] were

generalized for non-uniform meshes. By using constant grid spacing, some steps

and calculations of the code are simplified and performed more efficiently. The most

relevant is the use of computational coordinates, which are an alternative coordinate

system (ξ, η) that is convenient since they take values between 0 and (Nx,y − 1) in

a uniform computational mesh with grid spacing ∆ξ = ∆η = 1. The computational
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position of a macroparticle ξp = (ξp, ηp) is very useful since (bξpc+ 1, bηpc+ 1) gives

the indexes of the cell where the macroparticle is contained. This is crucial, e.g., to

detect macroparticles out of domain or to know surrounding nodes for volumetric

weighting. When the physical mesh is not uniform, the calculation of ξp given the

physical one xp may not be analytical and involves an iterative computation. When

both meshes are uniform, the relation between ξp and xp is simply

ξp =
xp − x1

∆x
(4.12)

ηp =
yp − y1

∆y
, (4.13)

and there is no need to iterate, which alleviates computationally some steps in the

PIC code.

Generation of the initial population

The initial populations can be generated directly from macroparticle states or

sampling randomly particles from a Maxwellian VDF

fs(x,v) = ns(x)

[
ms

2πTs(x)

]3/2

exp

[
− msw

2

2Ts(x)

]
, (4.14)

with w2 = [v − us(x)] · [v − us(x)], given the evolution of macroscopic properties

at the mesh nodes. The sampling process is done cell by cell, being ns(xk)∆V/Wp

the number of particles to be injected; with ns(xk) being average density at the

kth cell and given the macroparticle weight Wp. In many cases, a uniform density

ns(x) = ns is used to start and it is convenient to fix the initial number of particles

per cell Ncell, which determines the macroparticle weight Wp = ns∆V/Ncell used in

the simulation.

Macroparticles are loaded uniformly in each cell. For an arbitrary cell element

k with indexes (i, j), positions are given by

xp = xi + ∆xR1 (4.15)

and

yp = yj + ∆yR2, (4.16)

where xk = (xi, yj) are the coordinates of the left-bottom node of the cell and

R1,2 ∼ U(0, 1) [i.e, they are random numbers uniformly distributed in the interval

(0,1)].

The velocities of the particles should reproduce the Maxwellian distribution

(4.14). The normalized distribution function reads

f̄s(w) =
fs(w)

ns
=

(
1√
2πσ

)3

exp

(
− w2

2σ2

)
(4.17)
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Figure 4.1: Diagram with the structure of the temporal loop the core program.

Red boxes are PIC routines. The green box denotes operations that are repeated

for every macroparticle in the simulation.

with fixed macroscopic properties and σ =
√
Ts/ms being the standard deviation or

thermal velocity of the species. The previous expression can be factorized in three

1D VDFs as f̄s(w) = f̄xs(wx)f̄ys(wy)f̄zs(wz), being

f̄αs(wk) =
1√
2πσ

exp

(
− w2

k

2σ2

)
. (4.18)

with α = x, y, z. The inverse cumulative method [115] is used in the three directions

to sample the random velocities, according to

wα =
√

2σ erf−1(2Rα − 1), (4.19)

where, again, Rk ∼ U(0, 1). For each species, a particle list is generated gathering

ξp, xp, vp and Wp. The index or position of each particle in the list is what we call

the particle ID or kp.

4.2.2 Core program

The core program is coded in Fortran90. All the information from the SimState

file is loaded into the PIC program. In figure 4.1, the main operations done each

time step ∆t are summarized. The value of ∆t must be small enough so that

particles travel less than one cell per step and to resolve properly all the relevant
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time scales of the problem (gyromotion, plasma oscillations and collisions); being the

most restrictive condition in Hall plasmas ωPe∆t, based on the value of the electron

plasma frequency ωPe =
√
nee2/meε0 (where e is the electron charge). Starting in

the volumetric weighting, the steps summarized in figure 4.1 are:

1. Volumetric weighting. From the states of the macroparticles, this operation

calculates on the nodes: macroscopic magnitudes (ns, gs, M̄s and P ′′s ) and

distribution functions (fs, only in some prescribed nodes) for each species,

and charge density (ρc). This is done by adding up the contribution of each

macroparticle to these magnitudes in the nodes, using a weighting scheme.

Many of these calculations are not strictly required for the PIC method and

are calculated for the post-processing. The only mandatory magnitude is ρc
(at the current state of the program), which is needed to solve the Poisson

equation.

2. Poisson solver. It is coded in Fortran90 as an in-house library that is called

by the core PIC program. It uses either finite-difference or spectral methods

(depending on the problem) to numerically solve the Poisson equation (4.7)

for φ(x) and E(x) on the nodes.

3. Particle loop. It includes operations that are repeated for each macroparticle

in the simulation:

(a) Interpolate fields. The values of E(x) and B(x) are interpolated to the

particle position xp, yielding the local values Ep and Bp.

(b) Particle mover. It updates xp and vp one ∆t, solving the equations

of motion (4.8) and (4.9) with the values of Ep and Bp from the

interpolation. This is numerically accomplished using the Boris method

[116,117], quite standard in PIC modelling of magnetized plasmas.

(c) Surface cross detect. Here, crosses of particles with important surface

elements (i.e, those on boundaries) are detected. If any, information

about the cross is recorded in a hit list : ID of the crossing particle,

surface element crossed, position and velocity at the crossing point.

4. Surface interaction. In this module, the hit list is traversed and boundary

conditions are applied to macroparticles that crossed boundaries. For the

simulations shown in this thesis, boundary conditions can be periodic or

absorbing. If further boundary crosses happen in the same ∆t (e.g, a particle

goes through a periodic boundary and then cross an absorbing one), they are

detected and resolved here. At this point, surface weighting is also done, which

computes surface fluxes by adding up the contributions of crossing particles.

5. Particle injection. It is the operation of adding new particles in the domain

and can be either volumetric or surface injection.
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6. Collisional operations. Here the effect of scattering and collision events of

particles species with other particles or background species are simulated. At

the moment, only simple scattering with given frequency and ionization MCC

are implemented.

The main results obtained from the simulations are: evolution of the macroscopic

properties and electric field, distribution functions at selected nodes or fluxes

through boundaries. These data at certain print-out steps are stored in a HDF5

file PostData.hdf5. At the end of the simulation (or at some intermediate steps),

another SimState file is generated (having the same structure as the one created

in the input generation) with the final state of the macroparticles and any data

required to relaunch simulations. In the post-processing, the PostData file is loaded

in Python or MATLAB programs to generate figures and produce results. This

block is very simulation specific (e.g, Hall or Penning discharges).

4.3 PIC model

In this section, the main PIC routines (red boxes in figure 4.1) are described in

detail, with emphasis in those that have been modified or simplified with respect to

HYPHEN [35].

4.3.1 Particle loop

This subsection describes routines that are applied to every particle present in the

simulation at the beginning of the time step. As aforementioned, the particles

data are stored in a particle list matrix. Since the number of particles can vary

significantly along a simulation, the list is allocated for a maximum number of

particles Np,max, of which Np ≤ Np,max are actual particles in the simulation at a

certain time step. The other Np,max −Np entries of the list are empty.

Field interpolation

The field interpolation to the local value seen by a particle uses ξp to pinpoint the

cell where the particle is. Then, E is bi-linearly interpolated to ξp according to

Ep =
4∑

k=1

E(xk)Sk(ξp), (4.20)
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where the bilinear weight function reads [118]

Sk(ξ) = (1−|ξ−ξk|)(1−|η−ηk|) if {ξk, ηk} ∈ {[ξk−1, ξk+1], [ηk−1, ηk+1]} (4.21)

and Sk(ξ) = 0 otherwise. The index k loops through the surrounding nodes (the

four corners of the current cell). The calculation of Bp is done similarly.

Particle mover

The update of xp and vp is done with the standard Boris method [116,117]. In this

approach, the values of xp and vp stored in the simulation at a given time step n

are shifted ∆t/2. This is, xp and vp are known at times t and t−∆t/2, respectively.

Only for this subsection, let us add superscripts to the particle position xnp and

velocity v
n−1/2
p to denote the ∆t/2 shift and the update (elsewhere in this chapter,

they are called xp and vp).

The update of v
n−1/2
p to v

n+1/2
p undergoes three phases. First, half the

acceleration due to the electric field is added, such that

v1 = vn−1/2
p +

qsEp

ms

∆t

2
. (4.22)

Second, the rotation of the velocity due to the magnetic field is accounted for,

through expressions

v2 = v1 + v1 × ω̃cs (4.23)

and

v3 = v1 +
2

1 + ω̃2
cs

(v2 × ω̃cs), (4.24)

being ω̃cs = qsBp∆t/2ms. The updated velocity is obtained by adding the other

half acceleration, yielding

vn+1/2
p = v3 +

qsEp

ms

∆t

2
. (4.25)

A centred scheme on n+ 1/2 is used to update the position

xn+1
p = xnp + vn+1/2

p ∆t. (4.26)

Cross detect

The detection of crosses with boundary surface elements has been also simplified with

respect to that of HYPHEN, which is an axisymmetric code intended to simulate the

Hall-thruster chamber and near plume with a domain having internal boundaries

and corners. For this reason, they found convenient to follow every particle along
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the time step in search of crosses with boundaries. The simulations shown in this

thesis work always on simple rectangular domains. For this reason, it is easier to

detect what particles are out of the domain at the end of the step and apply the

cross-detect algorithm only to those particles.

The cross detect algorithm is as described in reference [35]. The particle

trajectory during the time step is simplified an straight segment from xnp to xn+1
p ,

travelled with velocity v
n+1/2
p . Along the trajectory, it is the goal of the cross-detect

algorithm to track the particle during the step in order to determine what cell faces

are crossed and detect if any is an important surface element. The crossing time,

measured with respect to the beginning of the step, with a certain surface element

is

∆tcross =
(xk − xnp ) · 1⊥
v
n+1/2
p · 1⊥

, (4.27)

where xk is the physical position of one of the nodes limiting the considered surface

and 1⊥ is an unit vector perpendicular to the surface pointing inwards from the

domain. For each travelled cell, this formula can be applied to measure the ∆tcross

with each cell face. In the initial cell, the crossed face would be that with the

minimum positive ∆tcross. In subsequent cells, if any, the crossed face would be that

with the second minimum positive ∆tcross (the minimum one is the entrance point).

The algorithm stops whenever a cross with an important surface element is

detected. Having identified the element and the corresponding ∆tcross, the crossing

point and velocity are approximated as xnp + v
n+1/2
p ∆tcross and v

n+1/2
p . The

information about the cross and the involved particle ID are stored in a hit list.

4.3.2 Surface interaction

At the end of the particle loop, all particles out of the domain should have been

detected and the hits with the boundary surface elements noted in the hit list.

Boundary conditions have to be applied to these particles, since any particle out

of the domain will raise errors in the program in future steps. Similarly to the

particle one, the hit list matrix is allocated for a maximum of Np,max hits, of which

Nhit ≤ Np,max happen at a certain time step. In the surface interaction model, a

loop goes across the hit list, applies boundary conditions and updates fluxes through

boundaries.

Boundary conditions

In the simulations shown in this thesis, two types of boundary conditions are used:

absorbing and periodic. Those macroparticles hitting absorbing boundaries are

90



removed from the simulation by deleting the corresponding entry kp from the particle

list. This is done by copying the last active macroparticle in the list (that one with

ID Np) to position kp. Then the last entry of the list is removed and the number of

active macroparticles in the simulation is updated to Np − 1.

On the other hand, periodic boundary conditions conserve the number of

particles in the simulation but modify the state of particles at the end of the step.

Using an asterisk to denote state after periodic conditions, the velocity is kept

v∗p = vp and the position is updated to x∗p = xp + Lx,y1⊥; using Lx for left/right

(vertical) boundaries and Ly for top/bottom (horizontal) ones. Moreover, if the

particle leaves the domain through an element kS with indexes (iS, jS), the particle

will enter after periodic conditions through element k∗S with new indexes (i∗S, j
∗
S).

After periodic conditions, the algorithm checks for further hits with boundaries

within the same time step (which can happen, e.g., close to corners) following the

same logic as in section 4.3.1. The only difference is that additional hits, if any, are

not noted in the hit list but the surface interaction is directly solved.

Surface weighting

Each hit with an important surface element updates the fluxes of particles and

energy through that element. Fluxes are computed for each element individually,

separating inward and outward fluxes. The net fluxes through certain boundary can

be computed in the post processing of results. The outwards fluxes of particles and

energy of certain species through element kS read [119,120]

g
(out)
s,kS

=
1

∆t∆AkS

∑
p

Wp (4.28)

and

P
′′(out)
s,kS

=
1

∆t∆AkS

∑
p

1

2
msv

2
pWp, (4.29)

with the sum across all particle IDs participating in the hit list. Particles hitting

periodic boundaries will contribute also to the inward fluxes g
(in)
s,k∗S

and P
′′(in)
s,k∗S

through

element k∗S.

4.3.3 Particle injection

Volume injection

In volumetric injection, new particles are added to the simulation in the middle of

the domain. This can be done, for example, to mimic ionization by injecting the
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same amount of ion and electron particles. The code considers several ways to deal

with volume injection. The most general approach requires as input a volumetric

source Ss(x) that gives the number of real particles injected per unit time and

volume, together with injection properties u
(inj)
s (x) and T

(inj)
s (x). The generated

particles follow a Maxwellian VDF.

As an approximation, injection is done cell-wise. For the kth injection cell,

injection properties are evaluated at the cell centre x
(cell)
k . In the initial step,

the target number of macroparticles to be injected is N
(tg)
p = Ss(x

(cell)
k )∆V∆t/Wp,

where Wp is a prescribed generation weight. The target N
(tg)
p does not have to be

an integer number. The injection of the non-integer part N
(tg)
p − bN (tg)

p c is treated

probabilistically. With R ∼ U(0, 1); if R < N
(tg)
p −bN (tg)

p c the the number of injected

particles is N
(inj)
p = bN (tg)

p c + 1. On the other hand, if R > N
(tg)
p − bN (tg)

p c, then

N
(inj)
p = bN (tg)

p c. In either case, this injection is introducing an error with respect to

the target N
(err)
p = N

(inj)
p − N (tg)

p in the current time step. This error is accounted

for in the next step, with the target being N
(tg)
p = Ss(xk)∆V∆t/Wp + N

(err)
p . This

process is repeated and N
(err)
p updated each time, complying with the intended

injection source on average. The sampling of particle positions and velocities is

done as explained in section 4.2.1.

Surface injection

This injection is done through boundary surface elements. The number of real

particles to be injected per unit time and area is g
(inj)
s (x), where x is restricted to

positions along the boundary. Injection properties u
(inj)
s (x) and T

(inj)
s (x) need to be

also given. The injection is done element-wise, evaluating g
(inj)
s (x) at the element

centres. In a similar way to volumetric injection, in the first step, the target number

of injected particles at the kth element is N
(tg)
p = g

(inj)
s (x

(surf)
k )∆Ak∆t/Wp, where

x
(surf)
k is the position of the centre. The calculation of N

(inj)
p and N

(err)
p follows the

same logic as for volume injection.

The sampling of xp and vp shows however some differences with respect to

volumetric generation. Regarding vp = v⊥1⊥+ v‖1‖+ vz1z, the velocity sampling is

done directly from a Maxwellian (see section 4.2.1) in the out-of-plane (vz) and in-

plane surface-parallel (v‖) directions. In the direction perpendicular to the surface

(v⊥), sampling works differently. If we imagine that a Maxwellian population exist

next to the injection surface out of the domain, the particles that are able to cross

the boundary and to enter the domain are those injected. Clearly, the probability

of a particle crossing the boundary cannot follow a Maxwellian distribution (e.g.,

a particle with v⊥ = 0 must have zero probability of crossing the boundary, even

if the Maxwellian shows a maximum at v⊥ = 0). Instead, the probability density

function of v⊥ is proportional to v⊥f̄⊥s(v⊥), with f̄⊥s being a Maxwellian VDF
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(4.18) [20, 35, 121]. The sampling of v⊥ can be done with the acceptance-rejection

method, as explained in [35].

The value of xp is computed in two steps: (i) sampling of the entry point x0 and

(ii) propagation according to the sampled vp. The entry point is chosen randomly

such that

x0 = xk +R1|xk+1 − xk|1‖ (4.30)

being xk and xk+1 the positions of the surface-element edge nodes and R ∼ U(0, 1).

The position after injection is propagated such that xp = x0 +vpR2∆t. The random

time step R2∆t < ∆t accounts for the fact that injection may happen anytime within

the time step.

4.3.4 Volume weighting

Macroscopic properties can be calculated from the state of the particles in the

simulation using certain weighting scheme. This is, a discrete version of equation

(4.2) that approximates the integral of fs(x,v, t) in the velocity space at the mesh

nodes. In our PIC formulation, this is done directly by summing the contribution of

macroparticles to the macroscopic properties. The values of macroscopic properties

at the nodes are stored in 2D matrices. At the kth node,

ϕs(xk, t) =
1

∆Vk

∑
p

Φs,pWpSk(ξp), (4.31)

where Φs,p is the value of Φs for particle kp and Sk(ξp) is the bilinear computational

weight function given by (4.21). The particular version of this equation for the main

magnitudes are:

• The number density

ns =
1

∆Vk

∑
p

WpSk(ξp). (4.32)

• The particle flow vector

gs = nsus =
1

∆Vk

∑
p

vpWpSk(ξp). (4.33)

• The momentum flow tensor

M̄s = msnsusus + p̄s =
ms

∆Vk

∑
p

vpvpWpSk(ξp). (4.34)

• The energy flow vector

P ′′s =
1

2
msnsu

2
sus +

3

2
psus + us · p̄s + qs =

ms

2∆Vk

∑
p

v2
pvpWpSk(ξp). (4.35)
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For the conventional PIC method, only the calculation of ns is strictly necessary

(although other magnitudes could be required depending on the collision approach

or other algorithms), in order to compute ρc. Having the particle densities of every

species, the electric charge density reads

ρc =
∑
s

qsns. (4.36)

Other moments of the VDF are only computed for producing results. Since the

volumetric weighting is computationally expensive, the calculation of unnecessary

moments can be restricted to print steps to lighten the simulations.

After HYPHEN [35], a extended time-averaged version of these magnitudes can

be computed to reduce the noise intrinsic to the PIC. At time step n, this is done

according to

ϕ̃(xk, tn) =
(∆tEW −∆t) ϕ̃(xk, tn−1) + ∆t ϕ(xk, tn)

∆tEW

, (4.37)

where ∆tEW is the time window used for extended weighting magnitudes. If ∆tEW

is tuned properly, the extended variables can be representative of the instantaneous

behaviour. This approach requires to compute the instantaneous magnitudes at

every time step (and not only at print steps).

Calculation of the velocity distribution function

Apart from the moments of the VDF, computed with equations (4.32) to (4.35), the

VDFs themselves at a certain node k can be also approximated from the state of

particles in the simulation. The developed code has the possibility of computing 1D

VDFs in some prescribed nodes. To do so, the velocity space is discretized in Nv

bins of width ∆v, with the minimum captured velocity being vmin. A good choice

of these parameters is fundamental to accurately reconstruct the VDF.

The computational velocity coordinate in the α = x, y, z direction is defined,

analogously to space coordinates (4.12) and (4.13), as

ξ(v)
αp =

vα − vmin

∆v
. (4.38)

If ξ
(v)
αp < 0 or ξ

(v)
αp > Nv, the particle is discarded and does not contribute to the

VDF computation. The bin index to which the particle contributes is iv = bξ(v)
αp c+1.

The 1D VDF in the velocity coordinate α on the kth node and iv
th velocity bin is

approximated as

f ivαs(xk, t) =
1

∆Vk∆v

∑
p

WpSk(ξp). (4.39)
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4.4 Monte-Carlo collisions

For the purpose of this thesis, focused on the physics of instabilities, simple collisions

are considered since they do not seem to be an important actor on the main

instabilities found in the literature in the context of anomalous transport. Some

of the simulations in this work use the MCC approach to model the collisions of

particles with a background cloud. Two types of phenomena are considered: (i)

elastic scattering and (ii) ionization collisions.

An efficient implementation of MCC collisions is the null-collision approach,

whose steps and reasoning are summarized here based on references [108, 117, 122].

The total probability of collision (several types of collisions may be involved) of a

particle from species s with a background species, say neutrals, is given by

Pp = 1− exp[−∆tvpσT (Ep)nn(xp)], (4.40)

being nn(xp) the neutral density at the particle position and σT (Ep) the total cross

section (including all collision types), which is a function of the particle kinetic

energy Ep = 1
2
msv

2
p. The total collision frequency is νT (x, E) = σT (E)nn(x). The

particle is considered to experience a collision if R < Pp, with R ∼ U(0, 1). A second

random-number sampling can be used to decide the collisional process that actually

happens according to the individual probabilities. In the MCC methods collisions

are evaluated once per time step; this is accurate for νT∆t � 1, condition amply

satisfied by Hall-plasma PIC modelling.

Repeating the computation of Pp for every particle in the simulation can be

computationally expensive. The null-collision approach overcomes this drawback by

introducing an additional collisional type that is null (i.e., no collision). The null

collision has a frequency such that, when added to νT , it makes the total collision

frequency equal to

ν∗ = max
E

(σTv) max
x

(nn) (4.41)

and constant for every x and E . For a constant frequency ν∗, the maximum number

of particles experiencing a collision relative to the total number of particles is

P ∗ = 1− exp(−ν∗∆t) ≈ ν∗∆t, (4.42)

where the last approximation holds for ν∗∆t� 1. This means that collisions will be

evaluated for a number of times P ∗Np, instead of Np times in the standard approach,

reducing significantly the computational cost. The collision candidates are selected

randomly among the macroparticles. Using an example with two real collision types

(with frequencies ν1 and ν2) plus the null collision, for each candidate, a random

number R ∼ U(0, 1) is sampled and the type of interaction is decided according to:

1. If R ≤ ν1(Ep)/ν∗, the particle undergoes collision type 1.
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2. If ν1(Ep)/ν∗ < R ≤ [ν1(Ep) + ν2(Ep)]/ν∗, the particle undergoes collision type

1.

3. If [ν1(Ep) + ν2(Ep)]/ν∗ < R, the particle undergoes a null collision meaning

that it does not experience a real collision.

In the following subsections, scattering and ionization interactions are described as

implemented in the code.

4.4.1 Elastic scattering

This is a simple approach to introduce some collisionality by directly giving a

scattering frequency distribution νsct(x) in the domain. In this simplified case, the

collision frequency depends only on the particle position and no models for cross-

sections are needed. Moreover, there is a single particle involved in each collision

event. We consider that this scattering conserves the energy, mimicking elastic

collisions; although the algorithm could be easily adjusted to have some inelastic

losses. The elastic scattering has been used to model the anomalous transport in

Hall-thruster PIC simulations that omit the azimuthal dimension [107].

Particles that undergo this interaction experience a random rotation of their

velocity vectors keeping the norms intact. The velocity components after the

scattering read

v′xp = vp sin β1 cos β2, (4.43)

v′yp = vp sin β1 sin β2 (4.44)

and

v′zp = vp cos β1, (4.45)

with the prime denoting the state after the scattering event. The angles β1 and β2

are randomly sampled from

β1 = arccos(2R1 − 1) and β2 = 2πR2 (4.46)

with R1,2 ∼ U(0, 1).

4.4.2 Ionization

Here we consider the collision of electrons with a background cloud of neutrals.

Each ionization event involves the collision of an incoming electron and a target

neutral; which yields an ejected (new) electron, a new ion and the scattered incoming

electron. In the MCC approach, the neutral particle is sampled from a Maxwellian
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VDF, as in subsection 4.2.1, knowing the properties nn(x), un(x) and Tn(x) of the

background neutral cloud. Auxiliary models are needed for the ionization cross-

section σion and the scattering of the electron particles, which depend on the type

of neutral species (e.g., helium, argon or xenon).

Since the neutral and ion particles are much heavier than the electrons, the

generated ion is assumed to have the same velocity as the sampled neutral particle.

The incoming electron has initially a kinetic energy Ee,inc that should be greater

than the ionization energy Eion for the ionization event to be feasible. The remaining

energy after the collision is split between the scattered incoming electron E ′e,inc and

the ejected new one Ee,ej, thus satisfying

E ′e,inc + Ee,ej = Ee,inc − Eion. (4.47)

What fraction of the remaining energy is assigned to E ′e,inc and Ee,ej is a modelling

decision. Let us introduce the energy splitting factor F ∈ [0, 1], such that

E ′e,inc = F (Ee,inc − Eion), (4.48)

which combined with (4.47) yields

Ee,ej = (1− F )(Ee,inc − Eion). (4.49)

By deciding the value of F , the values of E ′e,inc and Ee,ej can be computed. The

simplest approach is to set F = 0.5, thus diving the energy evenly between the

two electrons. Another possibility is to take random values of F . Other authors

[108,123,124] propose more complex approaches.

The kinetic energies E ′e,inc and Ee,ej can be used to compute the modules vp =√
2Ep/me of the velocity vectors of electrons after the ionization event. The direction

of such vectors is determined by the scattering model. Reference [122] suggests a

random isotropic scattering, such as that in subsection 4.4.1. In references [108,125]

more intricate expressions are proposed.

4.5 Poisson solver

The Poisson solver is independent from the PIC method and, given the charge

density and boundary conditions, solves equation (4.7) for φ(x). It also computes

the electric field from E(x) = −∇φ. Two methods are considered depending on the

boundary conditions. For fully periodic conditions on every boundary, a spectral

solver is used. Otherwise, central finite differences are used.
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4.5.1 Finite-difference method

At the kth internal node with indexes (i, j), the Poisson equation is discretized with

centred finite differences as

φi+1,j − 2φi,j + φi−1,j

∆x2
+
φi,j+1 − 2φi,j + φi,j−1

∆y2
= − 1

ε0

ρc(xk), (4.50)

where φi,j is the electric potential evaluated at node (i, j).

At boundary nodes, the discrete equations depend on the boundary conditions.

For the simulations shown in this thesis, two cases are considered: Dirichlet and

periodic conditions. Dirichlet conditions are the simplest case, since the value of the

potential is given as

φi,j = φ0(xk). (4.51)

For periodic conditions, let us use the example of top/bottom boundaries being

periodic. Node at this boundaries have either j = 1 or j = Ny. We consider

periodicity along this direction to happen every Ly. For the pair φi,1 and φi,Ny , two

equations are provided. First, periodic conditions imply that these two potentials

must be equal so that φi,1−φi,Ny = 0. And second, one of these two nodes is treated

as internal and the discrete Poisson equation (4.50) is evaluated, taking into account

the periodicity of the solution when potential values are of the domain appear in

the expression. If evaluated at node (i, Ny), equation (4.50) reads

φi+1,j − 2φi,j + φi−1,j

∆x2
+
φi,2 − 2φi,Ny + φi,Ny−1

∆y2
= − 1

ε0

ρc(xk), (4.52)

where the second term in the left-hand side applies periodicity. Periodic conditions

on left/right boundaries are treated in a similar way.

After discretization, the Poisson problem becomes a linear system

Ā · φ = b, (4.53)

by gathering equations (4.50), (4.51) and (4.52) into matrix form. The coefficients

of Ā and b are given by the left and right-hand sides of these equations. The

vector φ collects the unknowns of the problem, i.e., the potential values at every

node. External solvers are used to solve the linear system, taking advantage of the

sparsity of Ā. We have used the iterative solver of LIS [126–129] and direct solvers of

PARDISO project [130–132] and Intel®, obtaining the best results with the version

of PARDISO in the Intel® Math Kernel Library (MKL).

Once the potential is known, the electric field at internal nodes is approximated

using, again, the central-finite differences expressions

Ex(xk) =
φi+1,j − φi−1,j

2∆x
(4.54)
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and

Ey(xk) =
φi,j+1 − φi,j−1

2∆x
. (4.55)

On boundary nodes, second order backwards or forward differences are used when

necessary. For example, on left/right boundaries, the calculation of Ex when i = 1

uses the forward scheme

Ex(xk) =
−φi+2,j + 4φi+1,j − 3φi,j

2∆x
. (4.56)

When i = Nx, the backwards scheme

Ex(xk) =
φi−2,j − 4φi−1,j + 3φi,j

2∆x
(4.57)

is used. The computation of Ey at top/bottom boundaries (i.e., when j = 1 or

j = Ny) uses similar expressions.

4.5.2 Spectral method

When all the four boundaries are periodic, the finite difference method in the

previous subsection shows some difficulties. The linear system (4.53) under such

conditions is ill-posed, being the matrix Ā singular. The physical explanation is

that φ is only meaningful when measured with respect to a reference potential value

φ0. If no Dirichlet conditions are imposed anywhere, such reference does not exist.

The problem can be made well-posed by setting a the reference φ0 at an arbitrary

point x0.

In addition, periodic conditions set some constraints on the net charge contained

in the domain. The Gauss law for the electric field

∇ ·E =
ρc
ε0

(4.58)

can be integrated in the domain volume to get the integral version
"
S

E · dS =
Q

ε0

(4.59)

where dS is the vector normal to the boundary with magnitude of a differential

surface and Q =
�

V
ρc dV is the net charge. The left-hand side is a closed

integral in the domain boundaries and represents the net flux of E. Clearly, periodic

conditions imply that the net flux of E through boundaries should be zero and so

must be Q. This last point is problematic in the PIC method: even if the number

of charged particles in the domain should satisfy the zero net charge, it may be the

case that Q 6= 0 due to PIC noise and the error made in volume weighting. When

solving with finite differences, this residual charge usually leads to a large error

concentrated at the reference potential location x0 that ruins the Poisson solution.
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This issue justifies the need of an spectral solver (even if a workaround may exist

with finite differences), which avoids this problem as it will be shown in this section.

The spectral method applied to the Poisson problem on a periodic bounded

mesh, applies the discrete Fourier transform (DFT) to the Poisson equation (4.7) and

works on a spectral domain, where coordinates are given in terms of the wavevector

k = kx1x+ky1y (instead of x = x1x+y1y in the real space). The real grid spacing ∆x

and ∆y determine the maximum wavenumbers k
(max)
x = π/∆x and k

(max)
y = π/∆y

that are captured. On the other hand, the real domain lengths Lx,y give the spectral

grid spacing (i.e., the minimum measurable kx,y) ∆kx = 2π/Lx and ∆ky = 2π/Ly.

The spectral mesh includes kx,y in the interval [−k(max)
x,y , k

(max)
x,y ]with spacing ∆kx,y.

Under the DFT framework, φ is expanded in terms of functions φ̂(k) exp(ik ·x),

being φ̂(k) the Fourier transform of φ(x). The same can be done with ρc(x). These

functions are periodic in the real domain and directly satisfy the periodic conditions.

Introducing these definition in (4.7) allow us to solve Poisson for each mode and k

independently. In the Fourier space the operator ∇ becomes ik and, thus, the

Laplacian ∇2 is −k2. The DFT of equation (4.7) yields

k2φ̂(k) =
ρ̂c(k)

ε0

, (4.60)

so the solution for the potential in the Fourier space is just φ̂(k) = ρ̂c(k)/k2ε0.

The electric field is Ê(k) = ikφ̂(k) The potential solution and electric fields in real

space [φ(x) and E(x)] can be recovered from the inverse DFT. The DFT and inverse

operations are performed with the FFTW3 external library [133].
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Chapter 5

Optimization and benchmark of

the particle-in-cell code

This chapter describes the optimization and benchmark of the PIC and Poisson

codes. These tasks were accomplished in a three-month research stay in LAPLACE

laboratory (Université Paul Sabatier, Toulouse, France) under the supervision of Dr.

Laurent Garrigues.

5.1 Optimization of the PIC code

The optimization of the PIC code involves two different areas. The first is a major

change in the parallelization approach with respect to HYPHEN’s PIC module [35]:

using a multiple-particle list approach instead of a single list. The second one is

oriented to improve the usage of the processors cache memory by using particle

sorting algorithms.

Along sections 5.1 and 5.3, a simple simulation case is run to compare numerical

performance of the code when implementing these and other techniques. This simple

simulation considers a grid with Nx = 200 and Ny = 50, with 200 macroparticles per

cell (i.e., a total of 4× 106 macroparticles). Unless said otherwise, the multiple-list

version of the code is used with particle sorting every 10 time steps, the program is

compiled with the Intel® Fortran compiler and the OpenMP thread affinity is set

to ‘spread’ (the concept of thread affinity is introduced in section 5.3).

101



5.1.1 Parallelization

As discussed in the previous chapter, PIC codes involve many mathematical

operations that are repeated for every macroparticle. A typical simulation usually

involves several millions of particles. Even if computationally expensive, the fact

that most of the operations on macroparticles are independent from each other

makes PIC code very suitable for an efficient parallel computing. This is, several

macroparticles can be processed at the same time in parallel computing threads. The

implementation of the parallelization in the PIC code can have a large impact on

the numerical performance and the proper scalability with number of threads. Some

decisions that can affect the development of the code are the type of decomposition

used (particle or domain decomposition) and the memory management (shared or

distributed memory). As for the last point, the code is prepared to work on shared-

memory architectures using the OpenMP interface.

Decomposition strategy

Regarding how particles are distributed among parallel threads, in the literature

[134] we find PIC codes with domain and particle decomposition approaches. Figure

5.1 shows diagrams for the two strategies. The domain decomposition divides the

domain in parallel regions, each one assigned to a thread that processes the particles

within. Under this approach, the code has to deal with internal boundaries and

transfer between the corresponding threads those macroparticles that cross from one

parallel region to another. Moreover, serious thread-load unbalancing can happen

if some parallel regions are much more crowded with macroparticles than others

(which may be the case with constant Wp in the highly inhomogeneous Hall and

Penning discharge simulations), leading to an inefficient parallelization and poor

scaling. The unbalancing can be avoided by dynamically changing the size of the

parallel regions, as several groups do in reference [134].

Particle decomposition directly distribute portions of the particle list among

threads, without taking into account their physical position in the domain. No

internal boundaries are required and we can have direct control on the load of each

thread. From my point of view, internal boundaries and load balancing make domain

decomposition less attractive than particle decomposition for our application. This

is the reason why this last strategy is used in our PIC code. In the next part of

the subsection, two approaches to particle decomposition are introduced and their

numerical performance compared.
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(a) Domain decomposition (b) Particle decomposition

Figure 5.1: Diagrams with the logic behind (a) domain and (b) particle

decomposition approaches to distribute particles among threads. Colours represent

threads: (a) each thread manages certain region of the domain and (b) each thread

manages a number of particles.

Multiple-list particle decomposition

Particle decomposition can be tackled in several ways. During the development of

the code, two strategies were followed: single-particle-list (after HYPHEN’s PIC

module) and multiple-lists (after LAPLACE’s PIC code [135–137]).

Before the research stay at LAPLACE, per species, one single particle list (i.e., a

matrix with the macroparticles data) and one single matrix per macroscopic property

were used. When moving particles, solving surface interaction or injecting new

particles, all the parallel threads worked on the same shared particle list. When

weighting particles to nodes or surface elements, all the parallel threads updated

the same shared matrices. This way of working is, however, very prone to race

conditions ; this is, conflicts when two or more threads try to update the same

element at the same time. Race conditions may happen when removing or adding

particles in parallel to the shared list, or when two threads try to update the value

of certain property in a node at the same time. There are two ways to avoid race

conditions: (i) use of atomic or critical OpenMP clauses to avoid simultaneous

reading and writing and (ii) use workaround algorithms, more convoluted than

those valid in sequential calculations, that avoid race conditions. In either case,

the solution comes at the price of a computational overhead, even in single-thread

computations.

On the other hand, in the multiple-list strategy each thread has their own

private particle lists and matrices of properties. Since most variables in the code
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participating in race conditions are now private to each thread, race conditions are

completely avoided. OpenMP special clauses are no longer required and algorithms

valid in sequential computing are also valid in parallel. An additional operation

called reduction is necessary to add up the contribution from each thread to the

macroscopic properties. As an illustration, after the weighting is done in parallel by

each thread, the total density is

ns =
∑
kth

n(kth)
s (5.1)

where the superscript kth is the thread index and, thus, n
(kth)
s is the density computed

by the thread kth. In shared-memory systems, this operation is computationally

cheap. Since matrices of properties are duplicated once per thread, this multiple-list

approach is much more memory intensive than single-list or domain decomposition

and we have found bottlenecks in the parallel scaling for large problems with many

nodes. We suspect that the issues we have found are related to the size of the problem

compared with the available cache memory. This bottleneck could be overcome

by using a cluster of workstations with a distributed-memory parallelization,

increasing the available memory; and/or changing the parallel approach to domain

decomposition, which is less memory intensive. Fortunately, the simulations shown

in this thesis are small enough and not affected by this issue and perform well with

the particle-decomposition multiple-list parallelization.

The computational performance of single and multiple-list parallelization

approaches is compared in table 5.1 for the simulation described at the beginning

of the section. Let us note that the exact numbers and computational savings

discussed here are very simulation dependent, but they serve as an illustration.

Already in single-thread calculations, the savings in computational time when using

the multiple-list version of the code are close to 15% because of the use of simpler

algorithms and less OpenMP directives. The scalability of the speed-up, defined as

the ratio over the single-core time, with the number of threads is also much better

(an ideal speed-up being equal to the number of threads). For 40 threads, the time

saving is about 40%, showing the clear advantages of the multiple-list parallelization.

Savings are even greater (up to 57%) in percentage if particle sorting is omitted, as

it is shown in the next subsection.

Time [s] (speed-up) 1 thread 20 threads 40 threads

Single list 1652 107 (15.4) 77.6 (21.3)

Multiple lists 1410 77.2 (18.3) 46.3 (30.5)

Table 5.1: Comparison of computational times (and speed-up) when using the

single-list and multiple-list parallelization.
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5.1.2 Particle sorting

The idea behind particle sorting algorithms is to keep macroparticles that are close in

the domain also close in the particle list. This can potentially lead to computational

time savings due to a more efficient use of the processor cache memory [2], much

faster to access than RAM but also much scarcer. Two steps that benefit from

sorting are field interpolation and volume weighting.

When interpolating fields to the particle position (see section 4.3.1), the values of

E and B on the four vertexes nodes of the cell containing the particle are required.

On the other hand, during the volumetric weighting (see section 4.3.4) the values

of macroscopic properties at those nodes are updated with the contribution of each

particle. These values at the vertexes are loaded from the RAM to the cache memory

to be used in the calculations. If particles that are contiguous in the list belong to

the same cell, the values stored in the cache memory can be reused and do not

need to be reloaded when processing consecutive particles. The saving of skipping

the loading step can be significant if the number of macroparticles per cell is high

enough (in our experience above 100).

Our PIC code implements an algorithm based on Bowers’ paper [2]. The

algorithm takes advantage of the fact that the order of particles within the same

cell can be ignored, to sort particles in passing only twice through the particle list.

The main steps of the algorithm are summarized in figure 5.2 for a small example

of 6 particles and 4 cells.

1. Panel 5.2(a) shows the particle list before sorting, with consecutive particles

in the list not within the same cell.

2. During the 1st pass across the unsorted list, the number of particles in each

cell is counted as shown in panel 5.2(b). Having the number of particles in

each cell, we can determine what particles IDs of the sorted list belong to each

of the cells. In our small example, we know that the 1st particle ID belong to

cell 1, the 2nd and 3rd IDs belong to cell 2, the 4th and 5th IDs belong to cell

3 and the 6th ID belongs to cell 4.

3. The 2nd pass is devoted to the actual sorting of the particles as shown in panel

5.2(b), using the information from the previous step. Again, in the example,

particle 1 is located in cell 2 and can be assigned to the 2nd ID of the sorted

list, which we know it corresponds to cell 2 and it is free. The same is done

for every particle in the unsorted list. When it is the turn of particle 4, it will

be assigned to the 3rd ID of the sorted list, since the 2nd ID is already taken

by particle 1.
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(a) Before sorting (b) Particle count (1st pass)

(c) Particle sorting (2nd pass)

Figure 5.2: Diagram with the steps of the particle-sorting algorithm based on

reference [2].

The sorting operation is computationally expensive and, thus, the computational

savings of having a sorted list may not be enough to overcome the extra cost of

sorting, depending on the case. However, particles should move in each step a

distance lower than the cell size to comply with the CFL condition. Therefore,

sorting does not need to be done in every step and it is possible to minimize its

computational impact while still seeing an improvement in performance.

Tables 5.2 and 5.3 compares computational times (and speed-up) when not

sorting particles and when doing it every 1, 10 or 40 steps (in single and parallel

computing). Since we observed different behaviours depending on the parallelization

approach, results for single (table 5.3) and multiple-list (table 5.2) approaches

are included. In both cases, the additional cost of doing a particle sorting every

step is not compensated by the better use of cache memory, leading to greater

computational times. If sorting is done every 10 time steps, the cost of the sorting

operation itself is mitigated and we start seeing a reduced computational time

compared with no-sorting. There is an optimum number of steps for sorting that

minimizes the computational cost, but in general 10 to 40 steps have been found to

work reasonably well.

In the case of multiple-list parallelization (table 5.2), even if some savings due to

sorting are observed, the impact is small, of the order of 2.5 to 4% (sorting every 40

steps, which is the best case considered). On the other hand, the single-list version
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of the code shows significant improvement about 45% in the parallel cases with 10

and 20 threads. This is not the case of single-thread calculations, where the saving

drops close to 1%. These results (together with the better scalability of the speed-

up) seem to indicate that particle sorting mitigates partially the inefficiencies of the

single-list parallelization. That would also explain why the impact of sorting on the

more efficient multiple-list approach are not so important and why computational

savings are similar in the single-thread case.

Time [s] (speed-up) 1 thread 10 threads 20 threads

No sorting 1423 147 (9.68) 78.0 (18.2)

Every step 1726 178 (9.70) 108 (16.0)

Every 10 steps 1410 143 (9.86) 77.2 (18.3)

Every 40 steps 1385 141 (9.82) 75.3 (18.4)

Table 5.2: Comparison of computational times (and speed-up) when using particle

sorting and a multiple-list parallelization.

Time [s] (speed-up) 1 thread 10 threads 20 threads

No sorting 1671 320 (5.22) 183 (9.13)

Every step 2175 345 (6.30) 250 (8.70)

Every 10 steps 1652 184 (9.00) 107 (15.4)

Every 40 steps 1647 206 (8.00) 115 (14.3)

Table 5.3: Comparison of computational times (and speed-up) when using particle

sorting and a single-list parallelization.

5.2 Optimization of the Poisson solver

Here we focus on the finite-difference solver described in section 4.5.1. First,

different libraries to solve the Poisson linear system (4.53) are compared in terms of

computational time. Then, we consider an alternative Monte-Carlo method to solve

the Poisson problem, whose main advantage is much more efficient parallelization.

5.2.1 Linear solvers

As explained in section 4.5.1, after discretization, the Poisson problem becomes a

linear system. Having a computationally efficient linear solver is key to minimize

the impact of the Poisson solver to the total workload of the code. Two types of

methods are considered:
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• Iterative. They solve the system iteratively in a certain number of steps until

the solution complies with the required tolerance. Starting from an initial

guess φ0, the residual |Ā · φ0 − b| can be calculated. If it does not fall below

the tolerance, then φ0 is updated and the process is repeated. The step of

updating the approximate solution is the most computationally intensive. The

matrix of coefficients Ā is used indirectly. The iterative solver LIS [126–129]

is used in our program.

• Direct. These methods factorize the coefficient matrix (e.g., LU factorization)

and implement some type of elimination to get the exact solution to the linear

system. In contrast with iterative methods, direct solvers work directly on the

matrix of coefficients. We use the direct solver within the PARDISO project

[130–132] and Intel® MKL PARDISO. These solvers have three different

separate stages:

1. Analysis. Features of Ā that can be used to accelerate calculations are

detected (e.g., symmetry).

2. Factorization. The matrix Ā is decomposed in a product of simpler

matrices. For example, the LU-factorization yields Ā = L̄Ū as the

product of a lower-triangular (L̄) and an upper-triangular (Ū) matrix.

3. Solution. The exact solution is obtained by using certain substitution

formula. For example, in the LU-factorization this stage takes advantage

of the triangular structure of L̄ and Ū to get the solution.

Most of the computational time is devoted to stages 1 and 2.

In general, for large matrices such as those in this thesis, iterative methods are

much faster than direct ones, if we account for the three-stages of direct methods.

However, the matrix of coefficients Ā of the Poisson problem does not change in

time (it is the right-hand side b what changes from one time step to the other) ,

which means that, if a direct solver is used, the analysis and factorization stages

could be done only once at the beginning of the simulation. A fair comparison of

methods for our case should consider the iterative method vs. the solution stage of

the direct solvers.

In table 5.4, computational times are compared using LIS, PARDISO project

and PARDISO Intel® MKL solvers. These times have been obtained for a single

step of Poisson on a 257x257 grid and a tolerance for LIS equal to 10−5. Also, two

different Fortran compilers are used: GNU and Intel®. If only the solution phase

is taken into account, direct solvers (PARDISO project and MKL) are much more

competitive than the iterative one (LIS) and give also a more accurate solution.

Comparing between PARDISO project and MKL, they are not far from each other

but PARDISO MKL with the Intel® Fortran compiler is the most efficient solver

available according to our tests and the one that scales the best when increasing
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Time [ms] (speed-up) 1 thread 10 threads 20 threads 40 threads

LIS (GNU Fortran) 230 70 (3.3) 62 (3.7) 66 (3.5)

LIS (Intel® Fortran) 230 65 (3.5) 58 (4.0) 57 (4.0)

PARDISO project

(GNU Fortran)
9.8 4.1 (2.4) 4.7 (2.1) 5.9 (1.7)

PARDISO MKL

(Intel® Fortran)
9.0 3.3 (2.7) 2.8 (3.2) 2.7 (3.3)

Table 5.4: Comparison of computational times (and speed-up) among the different

solvers (using GNU and Intel® Fortran compilers) on a 257x257 grid. Tolerance for

LIS solutions is 10−5. Only the solution phase is considered in PARDISO project

and PARDISO MKL solutions.

the number of parallel threads. Nevertheless, scalability of the time with the

number of threads is quite poor (e.g., using 40 threads the greatest speed-up is

4), which is a known issue of the Poisson and other elliptic problems. In some

cases, the computational time even increases when using more threads. Regarding

the compiler, Intel® Fortran seems to behave better than GNU, but this is further

discussed in coming section 5.3

5.2.2 Monte-Carlo method

Results in the previous subsection show that parallelization of the finite-difference

solver is not very efficient. This issue is common to elliptic problems, in which the

solution on a node is coupled to every other node so that the domain cannot be

easily decomposed. In order to overcome this problem, we explore in this section

the potential of Monte-Carlo methods.

The Monte-Carlo (MC) method applied differential-equation solving is based

on running discrete random walks (DRW) starting on each node and ending on

an absorbing node (which are, in principle, on Dirichlet boundaries). Here, we

summarize the method that is explained in further detail in reference [138]. Each

step in the DRWs implies a jump from the current node to a surrounding node

based on certain probabilities. The jump probabilities are found from the discretized

Poisson equation. The same centred finite-difference scheme as in section 4.5.1 can

be used to discretize the Laplace operator on an uniform grid. Isolating the potential

at the kth node φi,j in equation (4.50) yields

φi,j = px(φi+1,j + φi−1,j) + py(φi,j+1 + φi,j+1) +
∆x2∆y2

2(∆x2 + ∆y2)

ρc(xk)

ε0

, (5.2)

where

px =
∆y2

2(∆x2 + ∆y2)
and py =

∆x2

2(∆x2 + ∆y2)
(5.3)
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are the probabilities of jumping in x and y directions, respectively. The coefficients

resulting from the chosen scheme must satisfy two basic properties to be mirrored

as probabilities: (i) the addition of all coefficients must be 1 and (ii) they must be

positive. The reader can verify that 2px + 2py = 1 and px,y > 0.

Once we know the jump probabilities, the method to compute the potential at

the kth node works as follows:

1. Starting on this node, each step of each DRW is decided by sampling a random

number R ∼ U(0, 1) with a uniform probability distribution. A possible way

to decide the jump direction and satisfy probabilities (5.3) is:

• If 0 < R ≤ px the next node is (i+ 1, j).

• If px < R ≤ 2px the next node is (i− 1, j).

• If 2px < R ≤ (2px + py) the next node is (i, j + 1).

• If (2px + py) < R ≤ 1 the next node is (i, j − 1).

The DRW continues, computing subsequent steps in the same way, until an

absorbing node is reached with known potential φw0. Periodic boundaries are

not absorbing and DRW can travel through them applying periodicity [e.g., if

the next node has indexes (Nx + 1, j) out of the domain, periodicity tells us

that the DRW can continue to node (2, j) inside the domain].

2. Each DRW gives an approximate value of the potential

φw = φw0 +
∑
r

∆x2∆y2

2(∆x2 + ∆y2)

ρc(xr)

ε0

, (5.4)

where φw0 is the potential of the ending absorbing node and the sum is done

on the source term of equation (5.2) across each node r travelled during the

DRW.

3. The process is repeated to have a number Nw of DRWs, starting on the same

node. The potential on this node is estimated as the average of all DRWs, i.e.

φi,j =
∑

w φw/Nw.

This has to be repeated for every single node to have a complete solution on the

domain. The quality of the solution relies on statistical convergence, which depends

on the number Nw. Even for a moderate number (e.g, Nw = 100), the computational

cost for a typical problem size can be prohibitive with a single thread. However, it is

clear that the calculation of the potential on each node is uncoupled from the rest,

what makes the MC method very suitable for efficient parallelization. The approach

followed here is to distribute nodes among parallel threads.

Two alternative algorithms are considered
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1. MC method I: this is done exactly as described previously, with every DRW

starting on the node the potential is wanted and ending on a Dirichlet

boundary.

2. MC method II: in this approach we let nodes where the potential has been

already computed to become internal absorbing nodes, meaning that DRWs

can either end on a Dirichlet boundary or in an internal absorbing node. In

this way, nodes where the solution is known help to reduce the length of DRWs

from next nodes.

Verification

The two methods are tested on a problem with analytical solution to compare

accuracy and numerical performance. The test problem is

∇2φ =
256

(LxLy)4

{
2y2(y − Ly)2

[
x2 + (x− Lx)2 + 4x(x− Lx)

]
2x2(x− Lx)2

[
y2 + (y − Ly)2 + 4y(y − Ly)

]}
(5.5)

with homogeneous Dirichlet conditions in all boundaries. The analytical solution of

such problem is

φan.(x) = x2y2(x− Lx)2(y − Ly)2. (5.6)

Figure 5.3 shows the analytical solution together with the numerical solution

obtained with MC methods 1 and 2 on a numerical grid with 257x257 nodes. The

two methods give solutions that successfully approximate the analytical solution.

The noise intrinsic to such statistical approaches is very evident in the solution

of MC method I. This noise seems to be smoothed when using MC method 2,

probably because of the coupling among nearby nodes introduced by the addition

of new absorbing nodes. When looking at the numerical error with respect to φan.,

the two methods yield error of the same order. In method I the error distributes

more homogeneously due to each node being independent from the rest. The error

in method II, shows some patterns due to the mentioned coupling, which are related

to the number of parallel threads and the order in which nodes are solved.

Numerical performance

For a problem with 257x257 nodes (the same size as that considered in table 5.4 for

finite differences) solved with 40 parallel threads, the computational time measured

in MC method I is 34 and 38 s when using Intel® and GNU Fortran compilers,

respectively. This high computational cost is several orders of magnitude above

that of the finite-difference methods and makes MC method I unaffordable to use.
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(b) Method I
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(c) Method II
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Figure 5.3: Solution to Poisson equation (5.5) with (a) analytical and MC methods

(b) I and (c) II, on a 257x257 grid and Nw = 100.

(a) Method I
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(b) Method II

0 0.5 1

x=Lx

0

0.2

0.4

0.6

0.8

1

y
=
L

y

10!3

10!2

10!1

Figure 5.4: Numerical error |φ−φan.| of MC methods (a) I and (b) II, on a 257x257

grid and Nw = 100.

The same problem with same number of threads takes about 122 ms using MC

method II (with both Intel® and GNU Fortran), what makes this method much more

interesting than I from a computational perspective. However, the computational

time is still greater than finite-difference solvers and with the inconveniences of less

accuracy and more noise (apart from the intrinsic PIC noise).

Even so, let us further explore the potential of MC methods. Figure 5.5(a)

compares the single-thread performance of methods I and II varying the number

of nodes. The results support that MC method II provides a lower computational

time, which also scales much better with the size of the problem.

Figure 5.5(b) compares the scaling of the speed-up with the number of threads of

the two methods. In both methods the obtained speed-up is much greater than those

obtained with the finite-difference solver in table 5.4, which is the main advantage

of MC methods. For reference, the ideal speed-up is represented as a black-dotted

line. In general we would expect the measured speed-up to be smaller than ideal.
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(c) MC II (speed-up)
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Figure 5.5: Numerical performance analyses on MC methods I and II, using Intel®

compiler. (a) Single-thread computational cost comparison in a 192x192 grid with

Nw = 100. (b) Parallelization scaling comparison in a 192x192 grid with Nw = 100.

(c) Parallelization scaling performance of MC method II with increasing number of

nodes. The black-dotted line in (b) and (c) depicts the ideal speed-up.

MC method I complies with this expectation. MC method II performs much better

and in some cases better than the ideal speed-up. This unexpected finding is the

result of having a higher rate of creation of absorbing nodes when in parallel, which

helps next DRWs to shorten. For example, the calculation of the 100th node in

single-thread calculations benefits from the previous 99 nodes which have become

absorbing. In parallel, the calculation of the 100th node of certain thread takes

advantage from previous nodes computed by itself and every other thread (which

will be always greater than 99). With this example, it is clearly shown that the

computational workload of each thread gets reduced with the action of other parallel

threads, which explains the speed-up above ideal values. In this graph, however, the

speed-up of method II seems to saturate at some point. Two possible explanations

are: (i) above 40 threads, hyper-threading is used and two threads may share the

same physical core of the processor (see coming section 5.3); and (ii) the number of

threads is, at some point, excessive for the current problem size.
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In order to check if the problem size affect the saturation of the speed-up, we have

repeated calculations in figure 5.5 increasing the number of nodes, only with method

II. These results confirm that the saturation is delayed with larger problems. In

addition, the speed-up seems to depend also significantly on the size of the problem.

The greatest case (red line) show speed-ups significantly above the ideal curve.

In order to summarize, we have seen that for a typical problem size, MC methods

cannot overcome the performance of finite differences. Also, the MC approaches

would introduce additional noise in the simulations apart from that intrinsic to

PIC. However, increasing the size of the problem, MC method II has been seen to

yield a great parallel speed-up. This point suggest that there could be potential

for using MC method II in the future for larger problems than those considered in

this thesis. As future work, the MC method should be tested together with a PIC

simulation to analyse how the additional statistical noise affects the results.

5.3 Other numerical performance concerns

Apart from the optimization of the numerical methods, there are some aspects that

can boost performance with little or no coding effort. This is the case of using a

different compiler and parallelization settings.

5.3.1 Compiler

The simulations are meant to run on workstations with two sockets, each one

mounting a processor Intel® Xeon® Silver 4316 @ 2.30 GHz with 20 physical cores.

This processors use the hyper-threading technology that locates 2 logical threads in

each physical core. Of course, the performance of two threads sharing a physical core

is not equivalent to two cores with a single thread, but a small performance boost

may be obtained. While the code was originally compiled with the GNU Fortran

compiler, it is reasonable to think that the Intel® processor may benefit from the

use of the Intel® Fortran compiler.

Time [s] (speed-up) 1 thread 20 threads 40 threads 80 threads∗

GNU Fortran 1570 92.6 (17.0) 60.5 (26.0) 68.1 (23.0)

Intel® Fortran 1410 77.2 (18.3) 46.3 (30.5) 40.0 (35.2)

Table 5.5: Comparison of computational times when using GNU and Intel® Fortran

compilers (*) This case uses hyper-threading.

Computational times for the usual test case are shown in table 5.5 using GNU
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and Intel® compilers. Let us emphasize again that the conclusions here are not

only simulation but computer dependent. If the program is expected to run in

a workstation with very different components (e.g., AMD processor), it would be

advisable to repeat this analysis. As expected, the program uses the computer

resources more efficiently when compiled with Intel®. For this particular simulation

and workstation, the single-thread savings are around 10% with respect to GNU

times. The computational time scales also better with the number of threads with

Intel®, providing greater speed-ups. With 40 threads, the savings are greater

than in single-thread and close to 23% with respect to GNU. Finally, the case

in table 5.5 with 80 threads uses hyper-threading to assign two threads to each

physical core, expecting a small performance boost with respect to the 40-thread

case. The program compiled with Intel® does take advantage of hyper-threading.

However, the GNU-compiled program seems to be unable to manage hyper-threading

efficiently and times with 80 threads are actually worse than with 40. The results

suggest that the Intel® compiler should be used

5.3.2 OpenMP thread affinity

The concept of thread affinity stands for the strategy used by OpenMP to bind

processes in the program to threads in the processor. This can have a significant

impact in the computational times if not all threads in the computer are used.

The affinity behaviour of OpenMP can be controlled by changing the value of

the environment variables KMP_AFFINITY and OMP_PROC_BIND in Intel® and GNU

compilers, respectively (other environment variables can also play a role in fine

tuning of the affinity). Thread affinity can be configured to a fine level of detail, we

consider here the simple cases:

• No affinity: the binding of processes to threads is decided internally by

OpenMP, which are allowed to migrate across different threads in the system.

Hyper-threading can be used or not depending on the binding settings

decided internally by OpenMP. Apart from being inefficient, this option is

less predictable and computational times may have some variability from run

to run, even for the same simulation settings.

• Spread: processes are assigned to system threads as far as possible from

each other. This means that binding happens, preferentially, to different

physical cores and to different sockets. If the number of used threads exceeds

the number of physical cores, only then hyper-threading is used. In our

configuration, e.g., if parallelization uses 40 threads, each socket will host 20

of them in separate physical cores. In our workstation, hyper-threading comes

into place only if more than 40 threads are used. The values of the environment

variables yielding this behaviour are KMP_AFFINITY = granularity = fine,
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scatter (with Intel®) or OMP_PROC_BIND = spread (with GNU).

• Compact: processes are bound as close as possible in the system. This

is, preferentially, in the same socket and in the same physical core. Using

the same example, if parallelization uses 40 threads, they will be all hosted

by the same socket and each of the 20 cores will manage 2 threads. The

values of the environment variables yielding this behaviour are KMP_AFFINITY

= granularity = fine, compact (with Intel®) or OMP_PROC_BIND = close

(with GNU).

Time [s] 5 threads 10 threads 20 threads 40 threads

No affinity 284 150 82.8 66.3

Spread 283 143 77.2 46.3

Compact (∗) 433 221 120 74.9

Table 5.6: Comparison of computational times when using different OpenMP

affinity settings and the Intel® Fortran compiler. (*) These cases use hyper-

threading.

Results of computational times for the usual test simulation are shown in table

5.6 for these affinities on the PIC program compiled with Intel®. For the same

number of threads, the spread affinity always provides shorter computational times

than the other two options. This affinity behaviour ensures that threads are placed

in different physical cores, so that every thread benefits from the full computational

power of a physical core. On the other hand, the compact affinity always provides

the longest computational times for equal thread number. However, this comparison

is not fair since, under the compact strategy, threads are bound to the same physical

core when possible, actively using hyper-threading. It is fairer to compare results

that use the same number of physical cores (e.g., compare time with 20 threads

and compact affinity with 10 threads and spread affinity). As concluded in section

5.3, this comparison shows a better performance of the compact affinity compared

to others and supports that hyper-threading can give a performance boost while

using the same number of physical cores. Therefore, the compact affinity is useful

when the user wants to use the full potential of a certain number of physical cores

(e.g., if there are 10 physical cores available, the user may want to use 20 threads

and compact affinity). The hyper-threading boost seems to be more significant

when using a smaller number of cores. Setting no affinity can lead to unexpected

behaviour and the resources of the processor are not efficiently used, specially when

the number of threads increases. Using spread or compact affinities, depending on

the needs, is almost always a preferable choice.
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Figure 5.6: Diagram of the Penning-discharge simulation settings. The orange-

shadowed region represents the circular injection area with radius Rinj.

5.4 Penning discharge benchmark

As demonstrated in chapters 4 and 5, even if conceptually simple to understand, PIC,

MCC and Poisson codes involve many different algorithms and can easily become

very complex. Verifying that every part of the code is working as expected is one

the challenges faced during the development and it can be quite time consuming.

The different modules have been verified during development by modular tests,

which check the proper operation of individual routines, and integrated tests, which

involves the interaction of several modules. Some of the tests used for the PIC code

are described in [35] for the PIC-module of HYPHEN.

A complementary approach to verification is by comparing results coming from

similar codes. In our group, there are a few examples of benchmarking of in-house

codes. This is the case of the benchmark of the 2D HYPHEN [35] and the 3D

EP2PLUS [139, 140] hybrid codes, simulating the expansion of a plasma plume. A

more recent example is the comparison of stationary [28] and time-dependent [29]

1D-axial models of a Hall thruster, which involves the stationary code of chapter 2.

In the literature, we find also collective efforts of the plasma community to

benchmark codes among different research groups [122, 141, 142]. In the context of

2D PIC codes intended to analyse oscillations and anomalous transport, two recent

benchmark works are those of Charoy et al. [134] and Villafana et al. [143]; simulating

the axial-azimuthal and radial-azimuthal planes of a Hall discharge, respectively.
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In this section we benchmark the in-house 2D PIC code comparing with results

from the LAPLACE 2D PIC model [135–137]. The simulation case is the plane

perpendicular to the plasma column of a Penning discharge, inspired in previous

works by Carlsson et al. [144] and Powis et al. [145]. In this type of simulations

the formation of a rotating spoke is observed with a clearly identifiable rotation

frequency. Two benchmark cases are considered: (i) collisionless and (ii) with

ionization collisions. The results shown on the collisionless case are part of a larger

international benchmark involving 15 groups, organized by A.T Powis (Princeton

Plasma Physics Laboratory) and L. Garrigues (LAPLACE) [41].

5.4.1 Collisionless benchmark case

A diagram with the main characteristics of the simulation is provided in figure 5.6.

The domain has squared shape, with sides Lx,y and the origin of coordinates at

the geometrical centre. The boundaries are perfectly conducting and grounded to a

potential φ0 = 0. Particles hitting the boundaries are perfectly absorbed. There is

an uniform magnetic field B0 that is perpendicular to the domain (i.e., in the axial

direction) and tends to confine the plasma in the middle. Starting with an empty

domain, constant currents of ions Ii and electrons Ie are injected distributed in a

circular region, centred in the domain and with radius Rinj. The two populations are

assumed to have a Maxwellian distribution of velocities with temperatures T
(inj)
i and

T
(inj)
e . The main physical and numerical parameters of the benchmark simulation

are gathered in table 5.7. A total of 500 µs of time are simulated, giving enough

time for the initial transient, formation and several cycles of the rotating spoke.

Snapshots of several magnitudes are printed out every ∆tprint. This benchmark case

disregards collisions.

Volumetric injection in a circular region

The benchmark simulation has a volumetric injection of certain ion Ii and electron

Ie currents in a circular region with radius Rinj, centred in the squared domain. The

currents are distributed uniformly in the circular region. Instead of discretizing the

injection region and inject cell-wise as explained in section 4.3.3, the injection is done

directly sampling particle positions inside the circle. The sampling of velocities from

a Maxwellian distribution follows section 4.2.1. The target number of macroparticles

of species s to be injected per time step is

N (tg)
p,s =

Is∆t

qsWp

, (5.7)

which yields N
(tg)
p,e = 49.932 for electrons and N

(tg)
p,i = 19.973 for ions, using the

values of table 5.7.
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Type Description and symbol Value and units

Ion mass, mi 4 u

Electron injection current, Ie -20 mA

Ion injection current, Ii 8 mA

Electron injection temperature, T
(inj)
e 6 eV

Species

settings

Ion injection temperature, T
(inj)
i 0.025 eV

Magnetic field, B0 100 G

Domain length in x, Lx 5 cm

Domain length in y, Ly 5 cm
System

parameters
Injection radius, Rinj 0.5 cm

Number of nodes in x, Nx 257

Number of nodes in y, Ny 257

Macroparticle weight, Wp 105

Time step, ∆t 4× 10−11 s

Number of time steps, Nt 12.5× 106

Numerical

parameters

Print-out step, ∆tprint 5× 10−8 s

Table 5.7: Parameters of the Penning discharge simulation benchmark.

If thinking in polar coordinates, to distribute particles uniformly within a circle,

the probability distribution of positions is independent of the polar angle θ but

must depend on the radial coordinate r. To be precise, in order to keep constant

the average distance among macroparticles, it must be proportional to r. It can

be easily proved that the position distribution function is fr(r) = 2r/R2
inj. By

using the inverse-cumulative method [115], the sampling formula that provides the

radial distance of particles to the centre is rp = Rinj

√
R1, being R1 ∼ U(0, 1). The

polar angle is uniformly distributed in the interval (0, 2π), i.e., θp = 2πR2 also with

R2 ∼ U(0, 1). The transformation to Cartesian coordinates yields

xp = rp cos θp = Rinj

√
R1 cos(2πR2) (5.8)

and

yp = rp sin θp = Rinj

√
R1 sin(2πR2) (5.9)

Temporal and averaged behaviour

In figure 5.7 the evolution of the number of macroparticles in the simulation is

represented. These curves give an idea of the time needed for the initially empty

simulation to reach global a stationary state. At the beginning of the simulation,
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Figure 5.7: Time evolution of the total number of ion and electron macroparticles

in the collisionless Penning simulation benchmark.

due to |Ie| > |Ii|, there is an imbalance in the number of electrons and ions. After 40

µs global quasineutrality is approximately reached. The number of macroparticles

does not show a stationary behaviour until 100 µs, when Np,e and Np,i stabilize

around 9× 106. Even so, the values of Np,e and Np,i keep oscillating during the rest

of the simulation between 8× 106 and 11× 106.

Figure 5.8 shows the average of snapshots of several plasma variables in the

time interval 200 µs ≤ t < 500 µs, which provide a good qualitative picture of

the plasma behaviour in the Penning discharge. When injection satisfies |Ie| > |Ii|
(i.e., the amount of electrons injected is greater than ions), the shape of φ tend to

be a potential well such that it tries to confine ions in the middle and accelerate

electrons out, as figure 5.8(b) depicts. Therefore, the induced E will be mainly

radial and pointing towards the centre. This electric field, combined with the axial

B0 induces an azimuthal E × B in both ions and electrons. As demonstrated

by figure 5.8(c), only electrons are effectively magnetized and confined since the

ion Larmor radius is of the order of the system dimensions. In figure 5.8(a), the

averaged ni is represented, which tends to be maximum in the centre, close to

the injection region. The behaviour of ni and ne (not included) is equivalent and

representative of the plasma density n ≈ ni ≈ ne, since the plasma tends to satisfy

local quasineutrality. Regarding temperature in figures 5.8(e) and (f), electrons

heat up close to the injection area and then cool down towards the boundaries. Ion

temperature increases from the centre to the walls.

In equilibrium conditions, denoted by a ‘0’ subscript, the figure 5.8 shows that

E0 · ∇n0 > 0 is satisfied, which is the local criterion behind the collisionless Simon-

Hoh instability [10,13,146,147]. It is believed that this instability mechanism is the

main actor leading to the formation of rotating spokes [144, 145]. In the absence

of collisions, the plasma oscillations are the main actor in the radial transport of

electrons. Of course, spokes are filtered out when averaging in figure 5.8 but can be

seen in figure 5.9, which shows several snapshots along one rotation period. Under

this configuration, one single spoke is formed that can be best seen in the evolution
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of ni in figure 5.9(a) The behaviour of other variables (e.g., φ, ue and ui) is more

intricate and different from the averaged behaviour. While ue stills shows the E×B
drift, its evolution is turbulent. The rotating spoke observed in ni shows as a large

scale vortex structure in ue, but other smaller vortexes also co-exist.

It is not the goal of this section to give an in-depth physical discussion of the

Penning-discharge simulation. The next section is devoted to the comparison of

results with those obtained by the PIC code of LAPLACE.
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(a) ni [1015 m−3]
(b) φ [V]

(c) ue [102 km/s] (d) ui [km/s]

(e) Te [eV] (f) Ti [eV]

Figure 5.8: Time average of snapshots of several variables in the interval 200

µs ≤ t < 500 µs. Panels (c,d) represent streamlines together with a colour map

of the local velocity norms.
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(a) ni [1015 m−3]

(b) φ [V]

(c) ue [102 km/s]

(d) ui [km/s]

Figure 5.9: Evolution of several plasma variables and electric potential along one

period of the rotating spoke. Panels (d,e) represent streamlines together with a

colour map of the local velocity norms.
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Benchmark

The LAPLACE’s 2D3V PIC code [135–137] works with Cartesian coordinates

and a structured mesh. As EP2’s code, the motion of macroparticles is solved

with the standard Boris method [116] and the Poisson solver uses the direct

solver of PARDISO included in Intel® MKL. The parallelization of the PIC code

uses a particle decomposition approach (which has inspired EP2’s multiple-list

parallelization described in section 5.1.1) and a hybrid strategy combining OpenMP

and MPI (message passing interface).

The benchmark of the two codes is based on two types of results: (i) rotation

frequency of the spoke and (ii) average cross-section plasma profiles at y = 0.

The frequency is computed from density-probe measurements of ni at the location

x = Lx/4 and y = 0. The time evolution of ni measured by the probe is depicted

in figure 5.10. A peak-finder algorithm is used to locate the relative maxima in the

density time evolution over the last 10 periods, which are marked with red crosses in

the figure. It takes 233.75 µs for the spoke to complete 10 full cycles, which gives an

average rotation frequency of 42.8 kHz. The frequency measured by LAPLACE is

approximately 43.3 kHz. This is a difference of less than 1.2%, which is satisfactory.
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Figure 5.10: Collisionless case. Time evolution of ni measured with a density probe

located at x = Lx/4 and y = 0.

The cross-sections y = 0 of φ, ni and Te are averaged in the interval 200

µs ≤ t < 500 µs (i.e., the average of 6,000 snapshots), and compared also between

codes (the 2D average maps are shown in figure 5.8). Such a comparison is shown

in figure 5.11, where it seems clear that the two codes give result that match

quantitatively and follow the same trends. The match of ni profiles is almost perfect

in every region of the x-domain. The differences in Te and φ are more evident. The

error in φ with respect to LAPLACE’s result is close to 3.2% in the centre of the

domain. On the other hand, there is a difference in Te of 1.6% in the centre and

3.6% to 4.5% in the peaks. These errors are acceptable and similar in magnitude to

those observed in recent benchmark of 2D PIC codes [134,143].
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The EP2 and LAPLACE’s PIC codes have been seen to yield very similar

results and the benchmark can be considered successful. This is a very important

verification milestone for our PIC code that gives credibility to future results.
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Figure 5.11: Collisionless case. Comparison of cross-section profiles of (a) φ, (b) ni
and (c) Te obtained with LAPLACE and EP2’s PIC codes.

5.4.2 Benchmark case with ionization collisions

In this section, results are compared for a simulation case where ions are not injected

using volumetric injection algorithms, but generated from ionization collision of

electron macroparticles with a neutral background cloud of helium atoms. This

benchmark case is less consolidated and shown results are preliminary. A more

detailed comparison is left as future work.

The simulation settings and parameters are the same as in the collisionless case,

except for the following. As aforementioned, ions are no longer directly injected in

the domain. Electrons are still injected uniformly in the same region but the current

is Ie = −5 mA, they are cold and mono-energetic (not Maxwellian), having energy

E (inj)
e = 50 eV (this is greater than the 24.59 eV required to ionize helium atoms)

and macroscopic velocity u
(inj)
e =

√
2E (inj)

e /me 1z. The neutral background species

has density nn = 1020 m−3 with no velocity and no temperature.

The collisions are simulated using the MCC method described in subsection
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4.4.2. After the benchmark by Turner et al. [122], the model for the ionization cross

section σion(E) is taken from the compilation Biagi 7.1 [148] and the scattering of the

incoming and ejected electrons is done isotropically. The remaining kinetic energy

after every collision event is split equally between the two electrons [this is F = 0.5

in equations (4.48) and (4.49)].

In figure 5.12, results obtained with EP2 and LAPLACE codes are compared.

In this case, we only compare the time evolution of the spatially averaged ni and

the cross-section y = 0 of ni averaged in the interval 200 µs ≤ t < 500 µs (i.e., the

average of 6,000 snapshots). The matching between the two solutions is successful,

verifying the implementation of MCC ionization collisions.

(a) Spatially averaged ni (b) Cross-section of ni

Figure 5.12: Case with ionization collisions. Comparison of (a) time evolution of

the spatially averaged ni and (b) cross-section profile of ni obtained with LAPLACE

and EP2’s PIC codes.
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Chapter 6

Kinetic instabilities in

electrostatic plasmas

This Chapter reproduces the contents of manuscript submitted to a peer-reviewed

journal. The typography has been adapted to the style of this Thesis.

Abstract

The electron-cyclotron drift instability (ECDI) has been proposed as one of the

main actors behind the anomalous transport of electrons in Hall thruster devices.

In this work, we revisit the theory and perform two-dimensional PIC simulations

under several conditions to analyze the non-linear behaviour and the induced

transport under several boundary conditions. Simulation results with fully-periodic

boundaries and conditions faithful to the linear theory show the growth of ECDI

modes, ion-wave trapping vortexes and agree with the existing literature in early

times. In the long term, however, we observe very mild oscillations and null

anomalous current. The evolution towards this new equilibrium is coherent to

what can be expected from energy conservation. The quenching of the oscillations

seem to be highly related with the distortion of ion-trapping vortexes in phase

space after a long-term interaction of ion particles with the electrostatic wave.

This result suggests that sustained oscillations and turbulent current could benefit

from the renewal of ions by, e.g., removing and injecting particles through axial

boundaries instead of applying periodicity. This second type of simulations shows

that injection conditions highly impact the late simulation behaviour of ECDI

oscillations, where we identify several regimes depending on the value of the ion

residence time compared to the characteristic saturation time in the fully periodic

case. The intermediate regime, where these two times are close, is the only one

providing sustained oscillations and electron transport and seems to be the relevant
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one in Hall devices.

6.1 Introduction

The problem of anomalous electron cross-field transport remains as one of big

open challenges for the community of E × B plasmas. In the field of plasma

propulsion, this problem has been mainly studied in the context of Hall-thruster

discharges and represent one big obstacle on the way towards to predictive efficient

numerical models. The large drift of electrons in the azimuthal direction of the

Hall thruster is a source of several families of azimuthal oscillations that are

potential candidates to explain the anomalous transport and have been observed

experimentally [9,15,100,101,149,150]. The classical explanation [8] for the impact

of oscillations on transport relies on the correlation of oscillations in density and

electric field in the E ×B direction under the presence of a magnetic field.

The amount of articles devoted to the analysis of instabilities and turbulence in

Hall thrusters is extensive. With a macroscopic description for ions and electrons,

some of the authors of this article have conducted global [38] and local [10]

linear stability analyses. In these references two-stream, drift-gradient and drift-

dissipative instabilities are discussed. Similar recent studies by other authors are

[42,91,92,151,152].

When using a kinetic formulation for the electrons, the analytical studies of insta-

bilities are usually limited to a homogeneous and collisionless plasma. For the con-

ditions of a Hall thruster, where electrons are magnetized but ions are not, the dis-

persion relation of the electron cyclotron drift instability (ECDI) is obtained [11,12].

This classical instability have been revisited, during the last two decades, by several

authors [3, 83, 87, 93, 153], in the context of Hall thrusters. Also from the point of

view of kinetic simulations [84,93,94,135,154,155] and experiments [15,101,150,156].

Kinetic models aimed to analyze electron turbulence and turbulent transport in

the plane perpendicular to the applied magnetic field B0 can be classified in 1D az-

imuthal [84, 154,155] and 2D axial-azimuthal [93, 94,135]. The latter case has been

the subject of a recent benchmark by several groups [134]. Many 2D simulations

include a number of phenomena that makes challenging to compare the results with

the ECDI linear theory; such as, inhomogeneous magnetic field, collisions, ioniza-

tion or electrical connection between anode and cathode. The 1D simulations are

closer to the linear theory of the ECDI but they still add effects that are not con-

sidered in the dispersion relation, such as refreshing of particle velocities or collisions.
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In section 6.2, we revisit the main results from the classical dispersion relation

of the ECDI theory. A recently developed in-house two-dimensional PIC code is

introduced in section 6.3 and used to analyze the non-linear evolution of the ECDI

under several conditions. In every case, a 2D domain perpendicular to B0 is con-

sidered; which we will refer to as the axial-azimuthal plane, making the analogy

with a Hall discharge geometry. Initially we consider a fully periodic domain and

simulate under the assumptions of the classical ECDI theory. These results can be

compared with the existing literature [84, 154, 155] on 1D azimuthal simulations of

the classical ECDI, but open the possibility to the growth of modes with an axial

component. Similar results to those shown elsewhere are found during early simu-

lation times; but our long-term behaviour shows no oscillation capable of driving a

turbulent electron transport, which disagrees with the literature. We try to give an

explanation from an energy conservation perspective.

Periodic results establish a clear relation between ion-wave trapping behaviour

and the existence of electron transport in the long term, what suggests that

renewal of ion particles could help to develop sustained ECDI oscillations and axial

transport. This motivate us to replace axial boundary conditions from periodic to

removal/injection of particles, which mimics the generation and loss of particles in

a finite plasma such as the Hall discharge. Results are shown in section 6.4, where

we are able to establish a clear relation between the ion velocity (related with the

residence time) and the long-term behaviour of short-wavelength oscillations and

transport in the plasma.

6.2 The classical ECDI: linear analysis

We attempt to study the stability of a homogeneous, collisionless plasma at

equilibrium subjected to mutually perpendicular magnetic B0 = B01x and electric

E0 = E01z fields. Throughout the article subindex ‘0’ and ‘1’ stand for

equilibrium and perturbed conditions. Consistent with Hall thruster discharges: the

strength of the stationary magnetic field keeps electrons well-magnetized and ions

unmagnetized, and the plasma currents are low enough to neglect the contribution

of the self-induced magnetic field B1. At equilibrium, electrons have a drifted-

Maxwellian velocity distribution function (VDF) with density n0, temperature Te0,

and an E0 × B0 drift velocity ue0 = uye01y, uye0 = E0/B0. Equilibrium ions

are assumed cold, have a density n0, and move with a constant velocity ui0 =

uzi01z, parallel to E0. This homogeneous equilibrium disregards the electrostatic

acceleration of ions due to E0. From analogy with a Hall-thruster geometry, let us

refer throughout the article to the directions of B0, E0 and E0 ×B0 as radial (x),

axial (z) and azimuthal (y).
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Next, we summarize the main aspects of the well-known linear stability analysis

[3,11,12,83,153]. From the linearly perturbed Vlasov equation, the relation between

the electron density and the electric potential perturbations of wavevector k and

complex frequency ω, for propagation perpendicular to B0 (i.e., the component of

k parallel to B0 is zero), is

ne1
n0

=
[
1− g(ωe, be;ωce)

]eφ1

Te0
(6.1)

with

g(ωe, be;ωce) = exp(−be)
[
I0(be) + 2

∞∑
m=1

ω2
eIm(be)

ω2
e −m2ω2

ce

]
. (6.2)

In these equations E = −∇φ, ce0 =
√
Te0/me is the electron thermal velocity,

ωce = eB0/me is the cyclotron frequency, be = k2ρ2
e0, ρe0 = ce0/ωce is the

electron Larmor radius, ωe = ω − kyuye0 is the electron Doppler-shifted frequency,

k = ky1y+kz1z, and Im are the modified Bessel functions of the first kind. According

to equation (6.2), the perturbed electron response has resonances at the electron

gyrofrequency and its harmonics, i.e. ωe = mωce.

Next, the density perturbations of cold ions follow

ni1
n0

=
k2c2

s0

ω2
i

eφ1

Te0
, (6.3)

with ωi = ω − kzuzi0 the ion Doppler-shifted frequency, and cs0 =
√
Te0/mi the ion

sound speed. Using equations (6.1) and (6.3), together with the linearized Poisson

equation, yields the two-dimensional dispersion relation

1 + k2λ2
D0 =

k2c2
s0

ω2
i

+ g(ωe, be;ωce). (6.4)

This equation is solved for the complex frequencies ω = ωr + iγ with all other

parameters fixed, including k.

The solutions of the dispersion relation are pairs of modes of three types [12].

First, there is a pair of ion-acoustic modes with g � k2c2
s0/ωi and real-valued

frequencies ωi = ±ωIA; being

ωIA =
kcs0√

1 + k2λ2
D0

, (6.5)

which include a non-neutral term in the denominator that corrects the quasineutral

linear relation ωi = ±kcs0. Second, there are electron Bernstein waves [33], with

g � k2c2
s0/ωi and real-valued frequencies too, close to the resonances ωe = mωce.

Third, when g ∼ k2c2
s0/ωi, Bernstein waves become coupled with the ion acoustic

modes, yielding one of them the modified ion acoustic (MIA) pair with frequencies

ωi = ± kcs0√
1 + k2λ2

D0 − g(ωe)
. (6.6)
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Type Description and symbol Value and units

Fundamental

plasma parameters

Ion mass, mi 1 u

Electric field, E0 104 V/m

Magnetic field, B0 200 G

Plasma density, n0 1017 m−3

Ion axial velocity, uzi0 2.5 km/s

Electron temperature, Te0 6 eV

Derived

plasma parameters

Electron azimuthal drift, uye0 500 km/s

Electron thermal speed, ce0 1027 km/s

Sound speed, cs0 23.97 km/s

Debye length, λD0 57.58 µm

Electron azimuthal-drift gyroradius, `e0 142.1 µm

Electron Larmor radius, ρe0 292.0 µm

Electron plasma frequency, ωpe0 2.839 GHz

Electron gyrofrequency, ωce 0.5600 GHz

Ion plasma frequency, ωpi0 66.26 MHz

Lower-hybrid frequency, ωlh 13.07 MHz

Fundamental

numerical parameters

Azimuthal domain length, Ly 5.359 mm

Axial domain length, Lz 2.679 mm

Number of azimuthal cells, Ny 100

Number of axial cells, Nz 50

Number of particles per cell, Nppc 200

Time steps, ∆t 5× 10−12 s

Number of time steps, Nt 6× 105

Number of time steps between print-outs, Nprint 1000

Derived

numerical parameters

Azimuthal cell size, ∆y 53.59 µm

Axial cell size, ∆z 53.59 µm

Table 6.1: Physical and numerical parameters of the reference simulation case. The

subscript ‘0’ stands for initial equilibrium conditions. Derived parameter values are

included for completeness but can be computed from fundamental ones.

For g > 1 + k2λ2
D0, one of MIA modes is unstable leading to the so called ECDI.

Since g changes from −∞ to +∞ when crossing the resonance ωe = mωce with ωe
increasing, the MIA mode starts becoming unstable at ωe = (mωce)

+ and becomes

stable before reaching the (m+ 1) resonance [3, 83,153].

Figure 6.1 depicts, for the equilibrium solution of Table 6.1, the complex
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Figure 6.1: ECDI dispersion relation for a hydrogen plasma with k‖ = 0, kz = 0

and the equilibrium conditions summarized in table 6.1. The black solid line is the

solution for an infinite plasma. Red crosses stand for the discrete solutions in a

finite plasma with Ly = 5.359 mm. The blue solid line is the ion-acoustic frequency

ωIA. The dispersion relation has been solved with the same numerical approach than

reference [3].

frequency of the purely-azimuthal (i.e. k = ky1y) MIA mode, and shows the growth

rate of the ECDI linked to each mωce; as a function of ky`e0, being `e0 = uye0/ωce
the azimuthal-drift gyroradius. The ion-acoustic frequency ωIA is also plotted for

comparison with the MIA mode. The same equilibrium solution will be used in

the kinetic simulations of the coming sections. For ky > 0, the unstable mode has

ωr > 0, meaning propagation in the E0 × B0 direction. Due to symmetry, for

ky < 0, the unstable mode has ωr < 0 (i.e., moving again along E0 ×B0) and same

γ. In the purely azimuthal ECDI, one has ω ∼ kycs � ωe ' −kyuye0 ≈ −mωce.
Therefore, the electron (Bernstein-type) response is quasi-steady and defines mostly

the wavelength of the ECDI. Regarding non-neutral effects the MIA is quasineutral

as long as k2
yλ

2
D0 � 1, i.e.

λD0

ρe
� uye0

mce0
(6.7)

and non-neutral effects tend to reduce the complex frequency. This effect is very

clearly seen in the curve ωIA in figure 6.1(a), that shows frequencies lowered with

respect to a quasineutral ion-acoustic linear relation. The comparison of the MIA

and ion-acoustic frequencies demonstrates that they follow the same trend but with

significant deviations coming from the coupling with the Bernstein terms.

If the plasma has a finite size Ly along y, there is only a discrete wave spectrum

with ky = n2π/Ly and n the number of wavelengths fitting in the domain. Red

crosses in Fig. 6.1 show that spectrum for Ly = 12π`e0 = 5.359 mm, when resonances

correspond to n a multiple of 6. That length has been chosen so that modes

n = 1 + 6m capture approximately the peaks in γ associated to each resonance

m. For the chosen parameters, the fastest growing mode is n = 13, close to the

m = 2 resonance, with γ/2π = 34.7 × 106 s−1, ky`e0 = 2.167 and ωr = 46.6 MHz.

In terms of growth rate, the mode n = 7, in the band m = 1, follows closely with

γ/2π = 32.6× 106 s−1, ky`e0 = 1.167 and ωr = 27.1 MHz.
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Figure 6.2: Diagram summarizing the simulation axes, boundary conditions and

initial equilibrium state for simulations of the classical ECDI. A second type of

simulations is considered that substitutes left and right boundary conditions to

φ = 0 and injection/absorbing conditions for particles.

The effects of a non-zero (moderate) kz on the MIA modes are: introducing an

ion-Doppler shift kzuzi0 in the frequencies, shifting the unstable bands in ky, and

changing mildly the growth rates (find a more exhaustive analysis in [83]).

To reduce the computational cost, simulations here correspond to a hydrogen

plasma. The frequencies for hydrogen are, approximately, one order of magnitude

higher than those expected in xenon. This is a reasonable result, since equation

(6.4) shows that frequency and growth of the ECDI modes are proportional to kcs0
and, thus, scale with 1/

√
mi. This trend is, indeed, retrieved in PIC simulations

shown later in this paper. The use of hydrogen instead of xenon in PIC simulations

of the ECDI is a computational advantage since it allows us to observe the same

physical phenomena but in a shorter time. With the same time step (still limited by

the electron dynamics), this means reducing the number of time steps by one order

of magnitude.

6.3 The classical ECDI: non-linear evolution

6.3.1 The numerical PIC model

The non-linear evolution and saturation of the classical ECDI is studied with a 2D

axial azimuthal, 2D(z, θ), full PIC code developed in-house. The PIC formulation
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follows ions and electrons. The electrostatic potential is obtained from a Poisson

solver. The numerical codes are implemented in Fortran and use OpenMP shared-

memory parallel computing.

The PIC code applies a standard Boris method to move electron and ion

macroparticles in the periodic domain, and it employs a particle-decomposition

strategy for parallel calculations. Macroparticles have equal and constant weights

(i.e., number of real particles per macroparticle). As already pointed out, collisions

between particles are totally disregarded.

The Poisson solver is able to use different schemes depending on boundary

conditions. When all boundaries are periodic (the case in the present section 6.3),

spectral methods are well suited to solve the Poisson equation in the Fourier complex

space; here, the FFTW3 library [133] for Fourier and inverse transform operations is

used, with a zero average potential. If Neumann or Dirichlet conditions are used in

at least one boundary (the case in section 6.4), the Poisson solver uses a second order

finite difference scheme for the Laplace operator and electric field, and the discrete

linear system is solved with the PARDISO direct-solver routines in the Math Kernel

Library of INTEL.

The electric and magnetic fields felt by each species and their initial macroscopic

properties comply with the hypotheses and equilibrium state of section 6.2. Electron

and ion particles are moved in a periodic domain with electric fields Ee = E0 +E1

and Ei = E1, respectively, being E1 = −∇φ the local fluctuation relative to E0

that comes as solution to the Poisson equation with periodic boundary conditions.

The treatment of ions has been seen to be troublesome in one-dimensional azimuthal

simulations [154,155] and it is even more concerning in the present two-dimensional

model that accounts for the axial coordinate. Figure 6.2(a) sketches the simulation

setup. At the initial equilibrium state, the axial current of electrons, jze0 is zero.

Since the plasma is collisionless, electrons are trapped in magnetic lines. Therefore,

any subsequent electron axial current is due exclusively to the cross-field transport

generated by the ECDI.

Regarding the simulations in this and next section, Table 6.1 includes both the

physical and numerical parameters. Regarding the macroscopic and kinetic results to

be shown, they include a moving-average during runtime on a window corresponding

to Nprint time steps. For an arbitrary variable ϕ, this is defined as

ϕ̃k =
ϕ̃k−1(Nprint − 1) + ϕk

Nprint

, (6.8)

being k the time step index, ϕk the instantaneous value of and ϕ̃k its time-average

value.
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Figure 6.3: Reference case with fully periodic conditions: time-evolution of

Ey(y, z, t) in the yz-plane.
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(a) Ly = 2.679 mm

(b) Ly = 5.359 mm

(c) Ly = 10.72 mm

(d) Ly = 16.08 mm

Figure 6.4: Reference case with fully periodic conditions: time-evolution of the

logarithm of normalized coefficients from the fast Fourier transform of Ey(t, y, z
∗)

in coordinate y, at z∗ = 5Lz/6, for different Ly.
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(a) 0 µs < t < 0.20 µs

(b) 0.20 µs < t < 0.75 µs

(c) 2.5 µs < t < 3.0 µs

Figure 6.5: Reference case with fully periodic conditions: logarithm of normalized

coefficients from the 2D fast Fourier transform of Ey(t, y, z
∗) in coordinates y and t,

at z∗ = 5Lz/6, and for 3 different time windows. The absolute maxima are marked

with a black cross. Dashed magenta lines stand for ion-acoustic modes ±ωIA with

Te0 taken as the average value on the considered window: (a) 11.4 eV, (b) 40.1 eV

and (c) 58.3 eV.
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6.3.2 Onset, saturation, and vanishing of the ECDI

The time evolution in the yz-plane of Ey(t, y, z) is represented in figure 6.3.

The initial equilibrium state is unstable and the ECDI start to grow from any

perturbation. The time-dependent solution is almost 1D in the azimuthal direction,

although an axial component is present in early times, mainly. The oscillation

amplitude gets a maximum around 0.2 µs and decreases in later times until

eventually a new equilibrium state, different from the initial one, is reached. For

t < 0.2 µs, wave modes are weakly mixed and the dominant monochromatic waves

are easier to observe. The top panels of figure 6.3 indicate that the dominant mode

is n = 7, which is the closest one to the resonance m = 1. For t > 0.2 µs, there is

more mixing of modes; the bottom panels of figure 6.3 show transitions to n = 5

and 6 as dominant modes.

The linear theory showed that mode m = 2 has a (slightly) higher growth rate

than mode m = 1. In fact the Fourier analysis of Ey(t, y, z) in y [depicted in figure

6.4(b) for our simulation with Ly = 5.359mm] shows some contribution of mode

m = 2 to the early time spectrum. However, the fast growth of several modes

makes non-linear effects important soon in the simulation, which, together with the

noise intrinsic to the PIC formulation, makes tough the exact comparison of early

PIC results with the linear results from Vlasov equation [157, 158]. In addition,

the long-term dominant modes in the non-linear stage may not coincide with the

most unstable modes in the linear dispersion relation [87]. The use of quiet start

techniques by other authors [154,158] to minimize the noise of the initial population

has not been seen to be completely satisfactory.

The determination of the dominant frequency is more difficult since it depends

on time itself. In Figure 6.5, results of the 2D fast Fourier transform in y and t are

shown for three different time windows, together with the ion-acoustic curves ±ωIA

for the average Te within the corresponding time interval. Each window represents

different stages in the evolution of the ECDI:

(i) 0 < t < 0.20 µs. The peaks seem to concentrate in bands near ky`e0 = m,

similarly to the theoretical dispersion relation in figure 6.1. The maximum

Fourier coefficient is located at ky`e0 = 1.166 and ωr = 55.6 MHz, with phase

speed ωr/ky = 42.6 km/s. This is mode number n = 7, near the resonance

m = 1. There are secondary bands close to m = 2 and m = 3. The results

in this early stage are qualitatively aligned with figure 6.1, but the dominant

frequency ωr is larger than predicted by the linear theory.

(ii) 0.2 µs < t < 0.75 µs. The bands of the upper spectrum near the resonances

have been blurred and there is an approximately linear relation between ky
and ωr, resembling a linear ion-acoustic relation. However, some parts of the
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Figure 6.6: Reference case with fully periodic conditions: time evolution, in the

phase space (y, vy), of ions contained in an axial slab of width 0.1Lz. The formation

and blurring of the vortex-like structure characteristic of ion-wave trapping is

observed.

upper spectrum seem to follow the non-neutral acoustic frequency ωIA. This

is aligned with previous PIC simulations [94,134] and experiments [101]. The

peak in the spectrum is at ky`e0 = 0.8334; with n = 5, ωr = 49.1 MHz and

ωr/ky = 52.6 km/s and matches the ion-acoustic curve. Let us note that the

lower part of the spectrum (propagation in the −E0 × B0 direction), shows

some remnants of the counter-propagating ion-acoustic wave with frequency

−ωIA.
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Figure 6.7: Reference case with fully periodic conditions: normalized electron

distribution functions fje in the azimuthal (j = y, red dashed) and axial (j = z,

blue dash-dotted) directions, being the abscissa coordinate wje the random velocity

of electrons . The Maxwellian curve (black solid) is included for comparison, using

local final values of ne = 1017 and Te = 58.8 eV from the PIC simulation.

(iii) 2.5 µs < t < 3 µs. Even if a peak is identifiable at ky`e0 = 1.166 (n = 7), the

mixing of different temporal and azimuthal scales result in a messy spectrum

without a clear dominant mode. The ion-acoustic behaviour is only seen in

the lower part of the spectrum.

At t ∼ 3 µs, the plasma seems to tend to a new equilibrium with distorted ion and

electron VDFs. Figure 6.6 plots the evolution of ion particles, contained within an

axial slab of width 0.1Lz, in phase space (y, vy). During the growth and saturation

of the ECDI (this is t < 0.2 µs), vortexes are formed in phase space showing the

characteristic behaviour of ion trapping in the electrostatic wave. The vortexes

are shifted towards positive velocities, matching the E0 ×B0 and dominant mode

propagation directions. Later times reveal the distortion of those vortex structures

until they are fully blurred into a strongly one-sided distribution with a long tail

into positive velocities. This process coincides with the quenching of Ey oscillations.

Electrons one-dimensional VDFs at the end of the simulation are shown in figure

6.7 to be fairly isotropic and flatter close to the average velocity compared to a

Maxwellian, which coincides with [83,84].

6.3.3 Evolution of the plasma energy

Let us get a further insight on the ECDI by analyzing the plasma energy stored

in the plasma. The total energy in the plasma domain has contributions from the

electrostatic field, electrons and ions, according to

E = EE + Ee + Ei, (6.9)
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0 1 2 3

t [7s]

0

50

100

150

7 E[
eV

]

Ly = 2:679 mm
Ly = 5:359 mm
Ly = 10:72 mm
Ly = 16:08 mm

(d) Effect of Ly on 〈jze〉

0 1 2 3

t [7s]

0

200

400

600

hj
z
e
i
[A

/
m

2
]

Figure 6.8: Fully-periodic case. Time evolution of (a) the energy time-derivative

and (b) the electrostatic, species and total energies per particle (i.e., Ē = E/ 〈n〉V .

Panels (c) and (d) plot energy per particle and volume-averaged electron axial

current for different Ly.
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with

EE =
ε0

2

�
V
E2

1 dV . (6.10)

the energy of the electromagnetic oscillations,

Es =

�
V

[
1

2
msnsu

2
s +

3

2
ps

]
dV , s = e, i (6.11)

the total energy of electrons and ions; and V is the volume of the domain. The

energy of each species is approximated in the PIC formulation as

Es =
∑
p

1

2
msv

2
pWp, (6.12)

where the sum is on every particle in the domain with vp and Wp the particle speed

and weight, respectively.

In a consistent situation, the work done by the electric field should act as a

mechanism that converts species energy on electric-field energy, and the other way

around. However, the assumptions behind the linear theory of the ECDI forced us to

let ions and electrons feel different electric fields. Because of this non-conventional

feature, it can be proved that the total energy changes according to

∂E
∂t

=

�
V
(je ·E0) dV = E0

�
V
jze dV = E0〈jze〉V , (6.13)

with je the electron current density and 〈jze〉 the volume-averaged jze. Therefore,

this kind of simulation will not show a proper conservation of energy and the

equilibrium electric field will pump energy into the isolated system. However, this

source of energy requires also an axial electron current jze to be developed. This

means that the energy is conserved initially until the instability is triggered, and any

other stationary energy state should satisfy a null 〈jze〉, i.e., no turbulent electron

transport.

Figure 6.8(a) shows the evolution of electrostatic, species, and total energies in

the domain per real particle. Here, average energies per particle Ē = E/ 〈n〉 V
are used, being 〈n〉 the volume-averaged density and 〈n〉 V the real number

particles in the domain. Initially ĒE = 0, Ēi = miu
2
zi0/2 = 0.0324 eV and

Ēe = 3Te0/2 + meu
2
ye0/2 = 9.71 eV. Eventually, the total energy saturates and

becomes stationary. There is significant heating of electrons and, to a lesser extent,

of ions; which is coherent with other works [84, 154, 155, 157]. The electrostatic

energy is much lower than those of electrons and ions, and approaches zero for late

simulation times, when oscillations are very weak.

The balance (6.13) is evaluated in figure 6.8(b). The rate dĒ/dt is approximated

numerically and compared with the source term E0〈jze〉/n0. The two curves show

an excellent match apart from the noise inherent to the PIC approach, specially
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problematic in the calculation of jze. The PIC simulation is able to approximately

replicate the theoretical energy balance (6.13), which is a good sign of the validity of

such simulations. The change in energy shows a peak and then decreases tending to

zero for late simulation times, meaning that a new stationary equilibrium state of the

plasma is reached. As already said, the energy source is related with the development

of a net axial current, so the new equilibrium holds an average jze equal to zero.

However, at mid simulation times, saturated ECDI modes are effective in inducing

an axial transport of electrons.

6.3.4 Effect of the domain’s azimuthal length

As pointed out in section 6.2, the azimuthal domain length Ly is an important

parameter that determines the unstable ECDI modes that can be excited in a finite

domain. On the contrary, the effect of Lz has been seen to be small, although

the chosen axial length is large enough to allow the formation of waves with axial

component fitting Lz. Increasing Ly allows larger scales to develop and increases

the spectral resolution in the ky-space, better capturing the continuous dispersion

relation for an infinite plasma. In figure 6.4, the time evolution of azimuthal Fourier

coefficients for Ey1 are represented for several Ly multiples of 2.679 mm, the reference

case corresponding to plot 6.4(b). The main trends identified in the shortest case

are also recovered in larger domains: modes close to resonant bands m = 1 and

m = 2 are excited in early times, modes close to m = 1 dominate at mid times,

and oscillations quench after the spectrum peaks are passed. These trends become

clearer as longer domains are used. Some differences worth mentioning among cases

are: (i) a mode with azimuthal wavelength equal to Ly (i.e. n = 1) is present

only at long Ly and (ii) the enhanced spectral resolution of longer Ly allows to

better capture shorter resonant bands, such as the modes close to m = 2. Similar

conclusions on these two points are reached in reference [157].

Figure 6.8(c) shows that the energy per real particle increases with parameter

Ly, probably due to the greater number of unstable excited modes [157]. With

the exception of the shortest case Ly = 2.679 mm, which shows a slower energy

increase and lower 〈jze〉 [most probably due to a poor spectral resolution, unable to

properly capture the peaks of the growth rate of Fig 6.1] the rates of energy increase

during the growth period are similar for Ly ≥ 5.359 mm. This suggests that the

maximum 〈jze〉 and the time to reach it are numerically robust and thus physical.

Therefore, results with Ly = 5.359 mm are representative of simulations with longer

Ly multiples of 5.359 mm. This behaviour disagrees with reference [157], where

changes in Ly can drastically change the transients of 〈jze〉 and, thus, the energy

growth rates.

143



(a) mi = 1u

(b) mi = 4u

(c) mi = 9u

Figure 6.9: Fully-periodic case, Time-evolution of the logarithm of normalized

azimuthal Fourier coefficients for different values of mi.

Since the long term behaviour of 〈jze〉 tends to zero in every case, we can conclude

that the long-wavelength mode with n = 1 that develops with increasing Ly is

not effectively producing an axial electron transport. This is consistent with the

late evolution of ne and Ey (not included), which shows completely out of phase

oscillations.
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6.3.5 Effect of the ion mass

In this subsection, the simulation is repeated for increasing values of the ion mass.

While hydrogen mass, mH has been used in order to speed up the dynamics and

minimize the computational cost, the practical cases of interest deal with heavier

ions, e.g., xenon or krypton. In addition, an increased azimuthal length Ly = 16.08

mm is used to have a proper spectral resolution and a fair comparison, since

an increased mi narrows the unstable bands in the dispersion relation near the

resonances what needs an increased spectral resolution.

In the early evolution of the ECDI, the dispersion relation (6.4) shows that the

frequency should scale inversely proportional to
√
mi. However, this does not have to

be the case of the non-linear dynamics or other magnitudes. The scaling factors for

several quantities, defined as the ratio with respect to the value in the reference case

mi = 1 u are computed in figure 6.10: dominant ωr in the interval tωPi < 83.15, peak

of 〈jze〉, final E and ∆tsat. The observed trends are coherent with results reported in

reference [159]. If the dominant frequency is measured in early simulation times, the

observed scaling perfectly matches the linear theoretical result. The saturation time

∆tsat, defined as the time of maximum average 〈jze〉, seems to scale proportional

to
√
mi. The 1D azimuthal Fourier spectra are compared in figure 6.9, where the

time axis is normalized with the inverse of the ion plasma frequency ωPi. While the

saturation of the early oscillations produced by the ECDI happens at similar tωPi
(as shown by the scaling of ∆tsat), the quenching of short wavelength m = 1 and

〈jze〉 seems to be slightly slower with increasing mi.

The level of turbulent current, measured by the peak 〈jze〉, initially decreases

with mi, which could be explained by the weaker oscillations observed in ne (not

included here), but seems to saturate. The current 〈jze〉 decreases, however, slower

145



than 1/
√
mi which leads to a final E increasing with mi, in accordance with equation

(6.13). Extrapolating these results, with xenon we can expect somehow smaller level

of transport but dilated in time, what would cause a significant heating such as that

observed in similar studies in the literature [87,154,157].

6.3.6 Saturation behaviour in previous literature

The results we have shown in this section pursue the simulation of scenarios

as close as possible to the classical ECDI. While we observe the growth and

saturation of oscillations due to an instability, modes that induce an axial electron

transport seem to vanish at long times. The late simulation behaviour differ

from other 1D [84, 154, 155, 157] and 2D [93, 94, 134, 135] simulations on similar

configurations, which report sustained oscillations not vanishing with time. Even

if our model is 2D, we disregard many of the effects included in other 2D works

(e.g., inhomogeneous magnetic field, anode-cathode circuit or collisions), which are

closer to Hall-discharge-like configurations. A fairer comparison is that with the

existing 1D azimuthal models [84,154,155,157], whose sustained oscillation for late

simulation times either saturate [154, 155] or forever grow [84, 157], depending on

the axial treatment of particles.

As seen in section 6.3.2, the stages observed in the evolution of oscillations

are greatly related to the interaction of ions with the electrostatic wave and

the distribution of ion particles in phase space. Our approach, similarly to

references [84,157], disregard E0 on the ion motion to prevent the consequent axial

inhomogeneity and be able to apply periodic conditions, not only azimuthally, but

also axially. Because there is no change in velocity for particles going through

boundaries, the change in the VDF of ions and electrons from the initial one is solely

a result of the ECDI. On the other hand, references [154, 155] account for a virtual

axial dimension, so that particles that leave the domain through axial boundaries

after interacting with the electrostatic wave are re-injected with a refreshed velocity

sampled from a prescribed VDF. This is, the refreshing axial conditions (and the

refreshing rate determined but the axial length) modify the VDF of particles and

can have a significant impact on the particle-wave interaction and overall simulation

behaviour. This point is extensively analyzed in the next section.

When no virtual axial dimension or refreshing are considered, previous literature

[84, 154, 157] observe an unlimited growth of the oscillations and heating. The

reasons that explain why they do not see the quenching of short-wavelength waves

are still to be investigated, but let us speculate about a couple of possibilities. An

explanation could be that the evolution towards a new equilibrium is not inherent

to all simulations of this type and depends on the selection of parameters (although
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Figure 6.11: Finite plasma with axial injection. Time-evolution of Ey in the yz-

plane.
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(a) uzi0 = 1 km/s (b) uzi0 = 10 km/s (c) uzi0 = 100 km/s

Figure 6.12: Finite plasma with axial injection. Late behaviour (at t = 5µs) of Ey
in the yz-plane, for different uzi0.

this is the behaviour we have seen in all of our simulations). Another possibility, in

line with the results in section 6.3.5, could be that more simulation time is needed

with xenon than considered in [84,154,157] to observe our late simulation stage.

6.4 The ECDI in an axially-injected finite-plasma

In the previous section, we pointed out the possible interaction of particle injection

with the ECDI. Fully periodic boundary conditions preserve the VDF of the particles

resultant of interacting with the instability. When there is particle removal and

injection through boundaries, particles that have already interacted with the wave

are removed from the simulation and new particles are injected having a different

VDF that could possibly modify the behaviour of the instability.

Following this reasoning, a new simulation setup is presented here that replaces

axial periodic conditions by injection ones, while periodic conditions are kept in

the azimuthal direction. Any particle leaving the domain though axial boundaries

is removed from the simulation. A constant flux of ions n0uzi0 is injected through

the left boundary, with zero temperature and velocity uzi01z. Constant fluxes of

electrons ±n0ce0/
√

2π, corresponding to the one obtained from half-Maxwellian,

are injected through left and right boundaries, whose velocities are sampled from a

Maxwellian-flux distribution with temperature Te0 and velocity uye01y. The injection

fluxes are chosen such that they match the amount of ions and electrons leaving the

domain in equilibrium conditions, making this equilibrium equivalent to the fully

periodic domain. In contrast with the particle refreshing approach used in [154,155],

once the instability arises, the injected fluxes do not need to coincide with fluxes

leaving the domain and the number of particles and electric charge are not conserved
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Figure 6.13: Finite plasma with axial injection. Time evolution of (a) energy

balance and (b) electrostatic (c), species and total energies; for an axial-injection

simulation with uzi0 = 10 km/s. Values are given per real particle.

any more. For that reason, axial conditions on potential are also changed from

periodic to fixed potential φ = 0 and the finite-difference PARDISO version of the

Poisson solver is used.

6.4.1 Dependence on the ion residence time

In section 6.3, we showed the usual stages that we observe in the evolution of the

ECDI, being the final one the quenching of short-wavelength oscillations. These

stages are related with the ion velocity distribution and the formation and blurring

of vortex-like structures in phase space. In this sense, adding axial boundaries that

inject and absorb particles can have a major impact on the late simulation behaviour

since old particles that have interacted with the wave are removed and new, non-

trapped particles are injected with the original distribution.

In this scenario with axial injection, more similar to a Hall discharge, the ion

residence time

∆ti0 = Lz/uzi0 (6.14)

(infinite in a fully periodic domain independently of Lz) is the key parameter in

maintaining a saturated ECDI, with sustained short-wavelength oscillations and a

non-zero axial electron transport. Three regimes will be distinguished depending

on ∆ti0 being much smaller, of the same order, or much higher than the saturation

time ∆tsat of the full-periodic configuration for the same equilibrium plasma, where

〈jze〉 peaks.

We consider again a hydrogen plasma and the reference case of Table 6.1. The

saturation time was ∆tsat ∼ 0.16-0.18 µs. We run cases with uzi0 = 1, 5, 10, 15, 20,

25 and 100 km/s, yielding, for Lz = 2.679 mm, residence times ∆ti0 = 2.68, 0.536,

0.268, 0.179, 0.134, 0.107 and 0.0268 µs, covering the three expected regimes.
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(a) uzi0 = 1 km/s (b) uzi0 = 5 km/s

(c) uzi0 = 10 km/s (d) uzi0 = 15 km/s

(e) uzi0 = 25 km/s (f) uzi0 = 100 km/s

Figure 6.14: Finite plasma with axial injection. Time-evolution of the logarithm

of normalized azimuthal Fourier coefficients for different values of uzi0.

The evolution of azimuthal Fourier coefficients in figure 6.14 and the average

current jze in figure 6.15 give an idea of the time evolution, where the transition

from one limit regime to the other can be appreciated. The final Ey in the axial-

azimuthal plane after 5 µs for cases uzi0 = 1, 10 and 100 km/s are shown in figure

6.12.

The case having uzi0 = 1 km/s corresponds to regime ∆ti0 � ∆tsat and the

final Ey resembles the periodic case. Looking at figure 6.14(a), we see that the

time evolution of Fourier coefficients is only similar at very early times when the

onset of the ECDI on the initial population; after which oscillations are mild. From

the energy point of view, the different axial boundary conditions here limit the

electron heating and total energy in the domain, which is probably limiting the

energy and contributing to the quenching of oscillations after the first ECDI onset.

The evolution of 〈jze〉 is similar to the periodic case, where the current induced by

the onset of the ECDI at early simulation times fades away at large enough times.

On the opposite limit we have the case uzi0 = 100 km/s with ∆ti0 � ∆tsat,
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where the final Ey shows a sustained but very weak short-wavelength oscillation.

The azimuthal spectrum shows that dominant modes concentrate around resonances

m = 1 and, to a lesser extend, m = 2. In this regime ECDI modes cannot develop

completely since most of the ions leave the domain before full trapping occurs, so

that we get an early stage of the ECDI observed with periodic conditions. According

to figure 6.15, these mild oscillatory modes induce a weak jze in the electrons, which

is very small compared with values produced by a fully developed ECDI.

In the intermediate regime ∆ti0 ∼ ∆tsat we consider cases with uzi0 between 5

and 25 km/s (always for hydrogen). The plasma behaviour resembles the saturated

behaviour of periodic simulation, because the removal and injection of particles

happen at the proper rate that keeps feeding ECDI modes and allows them to

fully develop, preventing the quenching of the oscillations observed in the regime

∆ti0 � ∆tsat. From these cases, those with uzi0 = 5 and 25 km/s are halfway

between regimes and show features of both limit and intermediate regimes. In every

case, the electric field shows sustained oscillations with a clear dominant mode close

to the resonance m = 1, that effectively induces a significant jze in the long term.

The magnitude of the induced transport depends on the case, being more significant,

and comparable to the peak values of the periodic case, for the cases with uzi0 = 10

and 15 km/s. In these two cases the dominance of modes close to m = 1 does not

happen at every time and there is some kind of intermittent or pulsed behaviour of

long and short wavelength modes, which results in an oscillatory evolution of the

average jze. This intermittency is also observed in the time evolution of figure 6.11

for the case uzi0 = 10 km/s. For greater and smaller values of ion velocity, jze gets

diminished, which is expected after our observations of null jze in upper and lower

limit regimes.

From the point of view of ion particles in phase space, the final pictures for cases

uzi0 = 1, 10 and 25 km/s are shown in an axial slab 0.7 < z/Lz < 0.75. Here, it

is confirmed that only when ∆ti0 ∼ ∆tsat the vortex-like structure characteristic of

ion-wave trapping is preserved and long-term axial transport exists. The existence of

different regimes depending on the ion residence time could also explain why, with a

virtual axial length, some groups observe a transition to an ion-acoustic mode [153]

while others do not [155,160].

The sensitivity of these results to Ly has been tested to ensure that the same

conclusions apply to larger domains. The evolution of electron currents are plotted in

figure 6.17 varying Ly while fixing uzi0 = 10 km/s. As with fully periodic simulations,

the shortest case gives the most different transient but in all cases a large jze develops

and they all show the characteristics of the intermediate regime ∆ti0 ∼ ∆tsat. In

light of the fully periodic results, where larger Ly seemed to favour the formation

of long domain-size modes, it is surprising that, here, increasing Ly mitigates the

intermittency of short and long scales and yields less oscillatory currents. A possible
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Figure 6.15: Finite plasma with axial injection. (a) Time evolution of the volume-

averaged electron axial current 〈jze〉 for several uzi0 and (b) its time average for

t ≥ 2 µs.

explanation could be that the saturation time is slightly affected by Ly.

Previous results can be extrapolated to xenon in a Hall discharge using the

scaling laws suggested in section 6.3.5 and a typical ∆ti0. Using an average ion

velocity uzi0 = 17 km/s and anode-to-cathode length Lz = 3.35 cm (e.g., from

results in [28]), ∆ti0 is estimated to be 1.95 µs. The value of ∆tsat for xenon mass is

estimated to be 1.83 to 2.06 µs. This similarity suggests that the intermediate regime

of the ECDI in a finite plasma could develop in a conventional Hall discharge and

supports the idea of the ECDI possibly being an important actor in the anomalous

electron transport.

6.4.2 Energy balance

For the fully periodic case, equation (6.13) shows that the evolution of total energy

in the domain is fed by the equilibrium electric field E0 and is tied to the presence

of an average jze. Therefore, an energetically stationary state does not allow for

an axial electron current. This theoretical conclusion is retrieved in our periodic

simulations.

Axial injection and removal of particles involve energy inputs and losses through

axial boundaries that have to be accounted for in the energy balance, yielding

dE
dt

= E0〈jze〉V − Pout, (6.15)

where Pout gathers the net energy outflow through axial boundaries and can be

computed from the energies of removed and injected particles. The new term opens

the possibility to have a balance between the energy input by E0 and boundary

losses, allowing for an energetically stationary behaviour and an average jze at the

same time. Any energy loss term, such as inelastic collisions, could play a similar

role in the balance.
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Figure 6.16: Finite plasma with axial injection. Late behaviour (at t = 5µs) in the

phase space plane (y, vy) of ion particles contained in the axial slab 0.7 ≤ z/Lz ≤
0.75.

The different terms in the balance equation (6.15) are computed and represented

in figure 6.13 for the case with uzi0 = 10 km/s, in the intermediate regime with a

net jze. The balance is approximately fulfilled and the energy is close to stationary.

There is, however, small changes in the total energy as well as in the partial energies

of ions and electrons. The losses introduced by the axial boundary conditions limit

enormously the heating that was observed in the fully periodic cases without losses.

Actually, the total and species energies remain within levels close to the initial
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Figure 6.17: Finite plasma with axial injection. (a) Time evolution of the volume-

averaged electron axial current 〈jze〉 for several Ly and (b) its time average for t ≥ 2

µs.

population. The electrostatic energy is, again, a minor contribution to the total

energy.

6.5 Conclusions

The first part of this article is focused on the simulation of the classical ECDI with

the PIC formulation and settings as close as possible to the linear kinetic theory.

Unstable short-wavelength modes are seen to grow in the initially homogeneous

plasma that fit qualitatively well the features of the theoretical ECDI dispersion

relation in early simulation times. Close to saturation, some parts of the Fourier

spectra show similarities with ion-acoustic modes. After saturation, the short

scale modes vanish and the plasma tends to a new equilibrium with mild or long-

wavelength oscillations and much more mode mixing. It is only during the growth

and saturation of the ECDI modes that a turbulence-based axial current is induced in

the electrons. The initial growth and saturation are related with the ion distribution

that yields the characteristic vortex-like structure in phase space. The vanishing of

oscillations seemed related with the blurring of those vortexes.

This behaviour differs from the unlimited growth reported in the literature of 1D

ECDI simulations with no virtual axial length [84, 154, 157], where the quenching

of short modes was not seen. It is possible that the evolution we observe is not

inherent to every ECDI simulation and depends on the choice of parameters. Other

possibility is that more simulation time is needed in these works to reproduce the

full behaviour reported here, which is in line with our parametric analysis on the

ion mass.

When axial boundaries are replaced by removal/injection surfaces, the refreshing

of particles (mimicking the finite plasma in a Hall discharge) can yield completely

different behaviours. These boundary conditions imply that particles that have
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interacted with the electrostatic wave are removed from the simulation eventually

and new particles with the original distribution are injected. A key parameter is the

ion injection velocity uzi0, while its effect is negligible in the ECDI dispersion relation

and periodic simulations. The intermediate regime where saturation and ion-

residence times are similar is the only one yielding long-term short-scale oscillations

and a turbulent-based axial current, and it is the most interesting one in the context

of Hall discharges. A rough estimation with typical magnitudes shows that the

condition for this regime is likely to happen in a conventional Hall thruster discharge.
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Chapter 7

Conclusions and future work

In this Chapter the main contributions of this Thesis are summarized and future

steps are suggested. Using a theoretical and numerical-simulation point of view,

this Thesis has contributed to the understanding of plasma instabilities and related

transport using different formulations (fluid and kinetic) and techniques (linear

analyses and non-linear simulations). This thesis also contributes to the stationary

multi-fluid modelling of the Hall discharge by extending the 1D-axial model of Ahedo

et al. [27, 36, 37]. Most of these contributions have been published in peer-reviewed

journals or are currently under revision. One of the main outcomes of this thesis

is a functional in-house 2D PIC code that has been thoroughly verified, optimized

and benchmarked during a research stay at LAPLACE laboratory. This PIC code is

expected to be an important simulation tool for the near future of the EP2 research

group. Next, the contributions of this Thesis are summarized in detail and future

work is proposed.

7.1 Stationary modelling of the Hall discharge

with a fluid model

Main contributions

In Chapter 2, based on the peer-reviewed article [28], the well-known 1D-axial

stationary model of Ahedo et al. [27,36,37] is extended with several physical effects:

EAI and gyroviscosity, a finite cathode emission region and the physics of the far

plume past the cathode. The resulting model also has, from a mathematical point

of view, some major differences with respect to previous works [27, 36, 37]: a new

singular point close to the cathode where uze = 0, the mathematical coupling of

156



the channel and far-plume solutions, and the far-plume boundary condition. To

better deal with these new mathematical properties, the original Runge-Kutta and

shooting schemes in [27, 36, 37] have been replaced by a finite-difference solver for

BVPs and non-linear ODEs.

The EAI has a smoothing effect on the axial evolution of the azimuthal velocity

uye, more importantly close to the anode and across the cathode layer. In addition,

the EAI cannot be neglected in the far plume once the electrons demagnetize, where

the azimuthal drift is progressively lost due to collisions. However, our results show

no ‘shear-induced’ effect of the EAI on the global electron transport. Our estimations

also suggest that the gyroviscous force could be of the same order as EAI in some

regions.

Even if mathematically coupled, the behaviour of the plasma variables in the

channel is fairly independent of the far-plume conditions, cathode layer thickness

or magnetic decay. Regarding the plume behaviour, a far-field boundary condition

based on the value of Te (and not on the dTe/dz or qze) is recommended since it

mitigates the sensitivity of the solutions to the domain length, allowing to have

shorter domains with almost equivalent results. The solutions to the 1D model

are quite sensitive to a strong magnetic field in the plume, which yields significant

electron heating and deceleration of ions past the cathode. This could be, however,

a limitation of the 1D model since it is not observed in 2D simulations with

HYPHEN [67].

Future work

The 1D-axial stationary model, solved with the finite-difference method, has

been proved to be a flexible tool to introduce new terms in the fluid equations,

test different boundary conditions and doing parametric analyses with small

computational effort. In this sense, this 1D model could be used to guide and support

the development of more complex and computationally-intensive fluid codes, such as

the electron module of HYPHEN. The rigorous comparison of results from HYPHEN

and the 1D model in its current state, with the same parameters and turbulent-

transport model, could be a starting point in order to evaluate the importance of

2D effects and to check the quantitative and qualitative resemblance. On the other

hand, electron gyroviscosity has been seen to be sometimes comparable to EAI,

which raises the question of introducing the gyroviscous force as a new term in the

fluid equations. This would drastically change the mathematical properties of the

model. A first approximation could be to account for this effect as a correction

to the leading-order solution. Finally, axial electron inertia is negligible in every

solution considered in this Thesis, but it could be relevant to extend the validity of
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the model to a wider parametric space (e.g., when the anode sheath is inverted).

7.2 Global stability of the Hall discharge with a

fluid model

Main contributions

In Chapter 3, a global linear stability analysis of the Hall discharge is conducted.

The global approach is consistent with the highly inhomogeneous nature of the

discharge; unlike local techniques, which are best suited to homogeneous (or mildly

inhomogeneous) equilibria. In linear stability analyses, the evolution of small

perturbations to certain axisymmetric equilibrium solutions are studied. The

complete problem is split in two steps: (i) the zeroth-order axial equilibrium problem

and (ii) the first-order perturbation problem. Chapter 2 is devoted to the 1D-axial

stationary model that is used to solve for equilibrium solutions. The first-order

equations governing the perturbations are linear with coefficients that depend on the

zeroth-order variables. This Sturm-Liouville problem is solved for each azimuthal

wavenumber ky, yielding the complex frequencies ω and axial behaviour of the

oscillatory modes. This type of analyses can be found in the existing literature

[39,40,42,91], but the model in this Thesis fully takes into account pressure effects

or the effect of electron inertia in the first-order problem.

The perturbation analyses here targets mid to high frequencies (f > 100 kHz)

and the region from anode to cathode (disregarding the plume past the cathode).

Using inertialess zeroth-order solution and perturbation-problem closure Te1 = 0,

two types of modes are found:

1. The dominant NPI mode developing in the near plume region with f ∼ 1 - 30

MHz, mode numbers kyR ∼ 10 - 30 and propagating in the +E×B direction.

This family of modes is mostly electronic, meaning that oscillations of ion-

related variables are small compared with electron ones. Also, oscillations seem

to be attached to the region of negative magnetic gradient (dB/dz < 0), being

the NPI possibly related to local drift-gradient instabilities [10, 13, 51, 96]. In

addition to the dominant NPI, there is a subdominant NPI propagating in the

−E ×B; this observation is coherent with some experimental evidence [101].

2. The subdominant NAI mode developing mostly close to the anode with

f ∼ 100 - 300 kHz, mode numbers kyR ∼ 1 - 10 and with contributions

of both electrons and ions.
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A second part of Chapter 3, analyses the impact on these modes of changes

in the first-order model. Adding EAI to the zeroth-order model and temperature

perturbations lead to a much more intricate dispersion relation with several more

unstable branches. Even so, the dominant mode is still of the NPI type with higher

frequency and wavenumber. Generally speaking, we have found the NPI mode to

be quite robust to parametric and model changes, in contrast with the NAI family.

In the last part of Chapter 3, the quasilinear extension of the averaged electron

azimuthal momentum equation is used to speculate on the contribution of the

NPI and NAI to the electron cross-field transport. This anomalous contribution

comes from the correlation of quadratic terms from inertia and electric forces, being

both similar in order of magnitude. In order for the turbulent force to be able

to compensate the magnetic force, a full non-linear development of the modes is

needed with amplitude of the oscillations comparable to zeroth-order variables. The

resultant force is highly rippled axially. Such a turbulent force could enhance the

role of inertia and gyroviscous force in the equilibrium solutions.

Future work

The next steps in global stability analyses of the Hall discharge can take advantage

of the extension of the 1D-axial model of Chapter 2 to the plume region. Given that

the NPI modes develop very close to the cathode boundary (specially when including

zeroth-order EAI or temperature perturbations), extending the first-order model to

the plume region could help to check the reliability and better characterize the NPI

modes. In addition, the finite cathode layer introduced in Chapter 2 induces large

gradients of uye0, which could result in new Kelvin-Helmholtz-type instabilities [48].

Finally, the analysis of the turbulent force in this Chapter assumes that the unstable

modes keep the linear behaviour once fully developed in the non-linear regime.

However, a rigorous analysis of the turbulent transport requires a non-linear fluid

model. Solving the non-linear transient version of the fluid equations used in the

global analysis would allow to do so and to verify the conclusions from the linear

analysis. A first effort has been already done in EP2 by Davide Poli [29] with a 1D

axial model.
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7.3 Development, optimization and benchmark of

the 2D PIC code

Main contributions

One of the main contributions of this Thesis is the development of a functioning 2D

PIC and Poisson codes, which can be used to simulate a ample variety of plasma

scenarios. The code has been developed together with Alberto Maŕın-Cebrián and it

is being also used as part of his thesis on plasma-wall interaction phenomena in Hall

thrusters. The PIC program and its main algorithms and capabilities are described

in Chapter 4. The input generation is coded in Python and generates the mesh, the

initial particle populations and everything needed in the core program. The initial

state of the particles can be generated randomly following a Maxwellian VDF. The

core program is coded in Fortran90 and involves standard PIC algorithms [20, 35]

to: move macroparticles, simulate surface interaction, inject new macroparticles

volumetrically and superficially, simulate scattering and ionization collisions and

compute macroscopic properties from macroparticle states. The electric field is

calculated as solution to the Poisson equation, given the macroscopic charge density.

This is done by calling and in-house Fortran90 Poisson library that internally calls

external libraries. Depending on the problem boundary conditions, two different

schemes are available: (i) a spectral method when all boundaries are periodic

and (ii) a finite-difference method, otherwise. In the spectral method, the DFT

and inverse operation are computed with the FFTW3 library [133]. In the finite-

difference approach, used in most applications of interest, the linear system after

discretization is solved with PARDISO project [130–132], PARDISO Intel® MKL

or LIS [126–129] solvers.

Chapter 5 describes the optimization process and benchmark of the PIC code,

performed as part of a research stay at LAPLACE under the supervision of Dr.

Laurent Garrigues. The PIC program calculations benefit from shared-memory

parallel computing with OpenMP. Having an efficient parallelization is key in order

to minimize the high computational cost of the PIC code. The chosen parallelization

strategy is particle decomposition with each parallel thread working on private

macroparticle lists and macroscopic-property matrices; a reduction operation adds

the contributions of every thread to the macroscopic properties. This strategy has

allowed to simplify many routines of the program with respect to those before

the stay at LAPLACE, which were designed to work on shared variables and

implemented more intricate algorithms in order to avoid race conditions. In addition,

with the goal of optimizing the use of the processor cache memory, sorting techniques

have been tried so that particles close in the domain (i.e., in the same cell) are

adjacent in the particle list. However, with the new multiple-list parallelization,
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sorting seems to have a minor impact on the computational cost (but it has a

significant effect with the old single-list parallelization). Regarding the Poisson

finite-difference solver, several linear solvers and configurations have been tested,

being the cheapest strategy using the direct solver of PARDISO and doing the

factorization step only once at the beginning of the simulation. Other aspects

considered that can have a big impact in performance are the chosen compiler

(being Intel® Fortran compiler the most efficient for our program and processor) and

OpenMP thread affinity (concluding that we should avoid setting no affinity). The

final part of Chapter 5 is devoted to show results on a Penning-discharge simulation

as part of an international benchmark of 2D PIC codes [41]. Two types of simulations

are considered: (i) fixed injection of both electrons and ions and (ii) fixed injection

of electrons while ions are generated through ionization collisions with a neutral

background. Here the comparison is limited to this and LAPLACE’s codes with an

excellent match, which contributes to verify and give credibility to our new in-house

PIC code.

Future work

As part of this Thesis, a 2D PIC code and Poisson solvers have been developed

(together with Alberto Maŕın-Cebrián), parallelized and optimized. However, there

is still room for improvement from the computational point of view. The use of

shared-memory OpenMP parallel computing is a major limiting factor compared to

distributed memory when moving towards larger-size problems. At the moment of

writing this Thesis, the program can only take advantage of the resources available

in a single workstation (in our case, this is two processors Intel®Xeon® Silver 4316

@ 2.30 GHz with 20 cores each), while bigger problems (e.g., a Hall-discharge-like

simulation) may require more cores to be affordable in a reasonable amount of time

(as seen from the resources and computational times reported by several groups in

reference [134]). On the other hand, the fact that the multiple-list approach needs

each thread to work on large private variables is very memory intensive and, thus,

there is a potential bottleneck in cache memory when a large amount of nodes is

used together with a large number of parallel threads. This is a problem of the

particle decomposition approach and changing to domain decomposition could be

a possible solution (at the cost of a greater algorithmic complexity). However, the

two previous points can be solved by adapting the parallelization to a distributed-

memory (or hybrid) strategy with MPI, which would potentially increase both the

available cores and cache memory if the program is run on a cluster with several

nodes; this is the state of the art of parallelization of PIC codes [134]. At its current

state, the PIC code with multiple-list parallelization could be adapted to MPI with

reasonable amount of effort. A more drastic approach would be the use of parallel

computing with a graphics-processing unit (GPU), which are specially designed to

161



perform parallel calculations efficiently and may have thousands of cores (although

generally slower than processor cores). However, a parallelization based on GPUs

would certainly imply to rewrite the PIC code.

From the point of view of the physics, the main area of improvement is the

modelling of more types of collisional phenomena. At the moment, the capabilities of

the PIC code are limited to a simple random scattering (with a prescribed frequency)

and ionization collisions using a MCC approach (macroparticles are collided with

a target background species). Other types of collisions relevant to Hall discharges

are: electron-neutral elastic, electron-ion Coulomb or ion-neutral charge-exchange

collisions. The MCC approach is, however, only suitable when the collisions have a

negligible impact on the target background species (e.g., events involving an electron

macroparticle and a heavy background species). This point can be solved with the

implementation of DSMC collisions to simulate directly the collisions of particle

pairs. The DSMC technique would allow to take into account, e.g., the effect of

intraspecies electron-electron collisions, which could have a thermalizing effect on

the electron population.

7.4 Non-linear behaviour of the ECDI

Main contributions

In Chapter 6, the classical ECDI theory is revisited and 2D kinetic simulations are

performed with the in-house PIC code under several axial boundary conditions.

In order to speed-up the dynamics of the problem, hydrogen ions are assumed.

The first part of the Chapter reviews the main aspects of the linear dispersion

relation, remarking the interplay of ion-acoustic and Bernstein waves that results

in the ECDI. Actually, the dispersion relation can be rewritten in the form of a

MIA mode destabilized by electron Bernstein terms close to the resonances of the

Doppler-shifted frequency with the harmonics of the gyrofrequency. In the PIC

simulations, apart from boundary conditions, the initial plasma equilibrium state

and physics comply with the assumptions behind the ECDI linear theory.

Two types of simulation configurations are considered with different boundary

conditions in axial boundaries. The first set of simulations is performed in a fully

periodic domain. According to the Fourier spectrum, the behaviour of the plasma is

as expected from the literature and qualitatively similar to the ECDI dispersion

relation. Close to saturation, the discrete nature of the ECDI is lost and the

spectrum is similar to regular ion-acoustic modes. In the long-term, however, we

observe that the intense short-scale oscillations quench and the plasma converges
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to a new equilibrium state with mild oscillations and no turbulent transport. This

last phase of the ECDI non-linear evolution has not been reported elsewhere in the

literature; which could mean that either it is not intrinsic to every ECDI scenario or

longer simulation times are needed. Indeed, the parametric analysis on the ion mass

seems to suggest that, with xenon, more simulation time is needed than usually

reported in the literature of 1D PIC ECDI simulations without refreshing [84,157].

The growth, saturation and vanishing of short scale modes in periodic simulations

are highly related with ion-wave trapping and the formation and blurring of vortexes

in the ion phase space. If particles are not removed and injected (or refreshed), the

distribution of particles in phase space is purely a result of the particles interaction

with the wave. When axial removal and fixed-injection conditions are used, there

is a renewal of particles that can significantly affect the non-linear behaviour of

the ECDI. The injection/removal conditions simulate the finite plasma length of a

Hall discharge. In this Chapter, we demonstrate the existence of different regimes

depending on the value of the ion residence time compared with the characteristic

saturation time of the ECDI measured in periodic simulations. The intermediate

regime, when these two times are similar, is the only one with short-scale oscillations

and a turbulent-based electron transport in the long term. Indeed, according to our

estimations, the conditions to observe this regime could be fulfilled in a conventional

Hall discharge.

Future work

The simulation and turbulent transport analyses shown in Chapter 6 give a simplified

but valuable insight on the role of the ECDI in the turbulent transport in a Hall

discharge. Next steps should move in the direction of trying to relate these results

with the behaviour observed in Hall-discharge-like simulations. The code is ready

to simulate the axial-azimuthal plane of a Hall discharge, just like the benchmark

in reference [134] (maybe with augmented vacuum permittivity to reduce the

computational cost). In these simulations however, there are many complex physical

phenomena acting at the same time and global effects that make the results difficult

to analyse and relate to the ECDI behaviour. This complexity can be introduced

progressively to the simplified ECDI simulations in a finite plasma: electron

collisions, volumetric particle injection or ionization, inhomogeneous magnetic

field, a non-zero potential drop between the axial boundaries and the consequent

inhomogeneity due to ion acceleration... This approach would allow to easily track

the changes in behaviour of the ECDI when adding effects not covered by the existing

theory, just as done in Chapter 6 with injection. It would be also interesting to verify

in these complex simulations the existence of the different regimes of the ECDI found

with injection conditions.
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