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Spectral decomposition and bicoherence analysis of a full-PIC E×B discharge simulation
shows that the majority of the collisionless cross-field transport can be attributed first
Electron Cyclotron Drift Instability (ECDI) mode, surpassing the contribution of a longer
wavelength mode present in the results, while higher modes of the ECDI exhibit negligible
impact. Electron anomalous transport appears to be modulated by a low frequency mode,
compatible with the ion residence time in the domain. Bicoherence analysis and sparse
regression is then used to identify the non-linear transfer of power among scales in the
plasma. A reduced model, based on three-wave coupling equations, is proposed, which
indicates the transfer of energy from shorter to longer wavelengths, in an inverse energy
cascade. This work provides new insights into the dynamics of anomalous plasma transport
and the underlying processes governing energy distribution across different scales.

I. Introduction

Anomalous cross-field electron transport in E × B plasmas, notably in Hall thrusters, remains a key
unexplained phenomenon that drives the performance losses of these devices.1,2 The significant electron

drift in the azimuthal direction of Hall thrusters is known to give rise to various azimuthal oscillations and
instabilities, potential explanations for the observed anomalous transport. It is generally agreed that cross-
field anomalous transport of electrons occurs mainly due to the neEy time-averaged term in the azimuthal
momentum equation.3–5 However, the underlying mechanisms giving rise to these azimuthal oscillations
are still a subject of active research. Major candidates are several electrostatic instabilities and/or broad
spectrum, developed turbulence.6–11

Particle-in-cell (PIC) codes have been widely used to simulate the effect of instability-induced oscillation on
Hall plasmas; either in canonical5,12–16 or more realistic/applied17–19 scenarios. When wave propagation is
limited to the direction perpendicular to the applied magnetic field, the electron cyclotron drift instability
(ECDI) has been identified as one of the probable actors behind the anomalous electron transport. Even if the
linear theory of the ECDI is well known,8,9, 20,21 the exact mechanisms or transport laws in the nonlinear
regime are still a matter of discussion. Some points that need to be further clarified are the suggested
development of an inverse-cascade process,13,15 the transition of the ECDI to an ion-acoustic mode,14,19 and
the interaction of boundary conditions with the nonlinear behavior of the ECDI.4,5, 12,14

Recently, data-driven techniques have been adapted and tested on electric propulsion plasmas, as a valuable
addition to the toolbox of the researcher to provide new insights. These techniques also offer the advantage
of being flexible in their applicability. Very recent examples include the use data coming from axial-radial
simulations of a Hall discharge to identify and isolate dominant dynamic regimes through Proper Orthogo-
nal Decomposition (POD) and Dynamic Mode Decomposition (DMD);22–24 further work used one of these
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datasets together with the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm25 to obtain par-
simonious equations (both physically-meaningful and with very few terms) of the breathing mode dynamics
directly from the time-series of plasma variables. Previously, symbolic regression had also been proposed to
obtain data-driven closures to the anomalous transport problem.26

Weakly-nonlinear plasma theory treats a perturbation as a superposition of eigenmodes with an amplitude
that varies in time due to nonlinear interactions, which can be divided in two main types: wave-wave and
wave-particle interactions.27 Higher order of spectral analysis can be used to delve into wave-wave interac-
tions; particularly, the bicoherence has been used successfully to identify quadratic nonlinear interactions in
space plasmas28 and in fusion plasmas,29,30 among many other applications. Within electric propulsion, a
recent study31 used this technique to relate low and high-frequency density oscillations in a Hall discharge
from microwave interferometry measurements, while another used the bispectrum together with three-wave
coupling theory to obtain growth rates and non-linear interaction coefficients from experimental data,32 iden-
tifying the relevant spectral components for instability, albeit based on an mathematically overdetermined
problem.

In this paper, we use the full-PIC simulation data of Bello-Beńıtez et al.4,12 to first analyze the contribution
of the neEy term to the cross-field electron current jze, by examining the frequency spectrum and identifying
the primary contributors based on the magnitude and phase difference of the n and Ey oscillations. Next,
we investigate the nonlinear coupling between the n, Ey, and jze time signals through mutual bicoherence
analysis. After establishing the dominance of this mechanism in cross-field electron transport, we then
build a reduced spectral model for the non-linear energy coupling in the Ey spectrum by means of sparse-
regression data-driven modeling of energy evolution at dominant frequencies. Our study identifies the bands
responsible for transport and demonstrates that three-wave coupling effectively explains the energy transfer
from instability frequencies to bands facilitating cross-field transport. The general methodology used is
applicable to other plasma transport studies driven by fluctuations.

The rest of the paper is structured as follows: Section II provides a brief overview of the simulation and the
data used to carry out this work, Section III introduces the tools used to analize and model the data, Section
IV outlines the results obtained, divided into Section A for the identification of dominant contributions to
the anomalous electron current, and B for the reduced models of nonlinear three-wave power energy transfer.
Finally, Section V gathers the conclusions of the study as well as future steps.

II. Simulation overview

Simulations of a canonical E × B plasma discharge obtained with the in-house, 2D, electrostatic full-PIC
code PICASO4,12,33,34 consitute the dataset used in this work.

The details of the code and the simulations are included in those references. In essence, the equations of
motion of the ion and electron macroparticles are solved with a standard Boris algorithm and the inter-
polation and weighting schemes implement first-order bi-linear shape functions. The code is implemented
in Fortran90 and the operations on macroparticles are parallelized following a particle-decomposition strat-
egy using shared-memory OpenMP. The Poisson solver used here employs second-order finite-differences to
discretize the Laplace operator and PARDISO Intel MKL direct solver to invert the resulting linear system.

The simulation settings are summarized in Figure 2 and in Table 1. A collisionless plasma composed of
electrons and hydrogen ions is considered. The settings aim to replicate essential aspects of the physics
needed to trigger and sustain the instability,4,12 while excluding other factors like field inhomogeneities,
ionization, and collisions, as noted in those prior studies. The simulation domain length is chosen such that
modes kynLy = n with n = 1 + 6m approximately match the linear growth rate peaks associated with each
ECDI resonance

A fixed magnetic field B0 = B01x is considered in the out-of-plane direction, together with a perpendicular
equilibrium electric field E0 = E01z in the axial direction; where the sub-index ‘0’ stands for equilibrium
conditions throughout the paper. As usually assumed in Hall thruster plasmas, ions are considered unmag-
netized (i.e., they do not feel B0) and consequently an equilibrium is only possible if the effect of E0 on
ions is also disregarded. Otherwise, ions would tend to accelerate, inducing significant inhomogeneity in the
plasma. It is for this reason that, the unmagnetized ions move according to the electric field Ei = E1, while
electrons feel the action of B0 and Ee = E0 + E1, being E1 = −∇ϕ the local fluctuation relative to E0
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obtained from the Poisson solution. This approach was followed in previous works and is known to prevent
having proper energy conservation.12,13,15

The plasma simulation is initiated in homogeneous equilibrium state with cold ions drifting with velocity
ui0 = uzi01z and Maxwellian electrons with temperature Te0 and mean velocity ue0 = uye01y,corresponding
to the E ×B drift uye0 = E0/B0. The density of both species is n0. The initial macroparticle populations
of electrons and ions are randomly generated with these properties.

On the upper and lower boundaries, periodic boundary conditions are imposed on the particles and on
the potential. Then, direction y mimics the azimuthal direction in a Hall thruster. Particles reaching
axial boundaries are removed from the simulation, but there is continuous injection of ions though left
boundary with flux density n0uzi0 and of electrons through left/right boundaries with fluxes ±n0ce0/

√
2π;

corresponding to equilibrium conditions.

Description and symbol Value and units

Ion mass, mi 1 u

Applied electric field, E0 104 V/m

Applied magnetic field, B0 200 G

Plasma density, n0 1017 m−3

Ion axial velocity, uzi0 10 km/s

Electron temperature, Te0 6 eV

‘Azimuthal’ domain length, Ly 5.359 mm

Axial domain length, Lz 2.679 mm

E ×B drift, uye0 500 km/s

Electron thermal speed, ce0 1027 km/s

Ion sound speed, cs0 23.97 km/s

Debye length, λD0 57.58 µm

Electron Larmor radius, ρe0 292.0 µm

Electron plasma frequency, ωpe0 2.839 GHz

Electron gyrofrequency, ωce 0.5600 GHz

Ion plasma frequency, ωpi0 66.26 MHz

Lower-hybrid frequency, ωlh 13.07 MHz

Number of cells in y direction, Ny 100

Number of cells in z direction, Nz 50

Number of particles per cell, Nppc 200

Time step, ∆t 5× 10−12 s

Number of time steps, Nt 6× 105

Azimuthal cell size, ∆y 53.59 µm

Axial cell size, ∆z 53.59 µm

Table 1: Physical and numerical parameters of the reference simulation case. The subscript ‘0’ stands for
initial equilibrium conditions. Derived parameter values are included for completeness.

In the already-mentioned previous work,12 unstable short-wavelength modes were observed to grow from
the initially homogeneous plasma, quickly evolving into a non-linear stage and then saturating. The electric
potential ϕ was also observed to develop fluctuations mainly in the downstream part of the domain. A spatial
snapshot of the potential oscillation is shown on the upper left panel of Figure 2. The analysis and modeling
in the remainder of this work focus on data from the axial slice shown in Figure 2(a), unless otherwise
noted. This slice was chosen because it corresponds to a position where the instability is fully developed.
Additionally, initial transient stage of the simulation is disregarded.

Plasma properties and the anomalous current were observed to oscillate in time alternating between periods
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Figure 1: Diagram sketching the full-PIC simulation domain, boundary conditions and initial equilibrium
state.

of growth and quenching, modulated by a low frequency compatible with the ion transit time. This is visible
in the spectrogram of ϕ in the bottom panel of figure 2, which showcases the time evolution of the azimuthal
modes.

The right panel of figure 2 displays the spectral power distribution of ϕ in the (ky , ω) plane, where an
approximately straight dispersion relation can be broadly traced out, although it is complicated by many
other mechanisms. Four peaks can be identified, at (1, 20), (7, 42), (13, 84), and (19, 126), given in multiples
of Ly and MHz, on this straight line, respectively named modes A to D. An additional relevant mode can
be distinguished at (kyLy , ω [MHz]): (0, 1.6), named mode O hereon. Peak broadening is also observed,
particularly forming a broadband that extends between modes A and B. Note that the high frequencies
compared to those typical of Hall thrusters result from using hydrogen ions in the simulation instead of the
usual propellants.

In terms of wavenumber, modes B to D are predicted by ECDI linear theory,12 while mode A, corresponding
to the largest wavemode in the entire azimuthal domain size, is not. Nevertheless, the frequencies of the
ECDI modes stray significantly from those predicted by linear theory, having higher frequencies. Indeed, the
results from linear theory need not apply in the nonlinear stage.

As a final note, the dispersion map in Figure 2 confirms that, despite mode C being predicted to have the
biggest growth rate,12 mode B quickly dominates the spectrum in terms of energy; this is a clear hint of the
existence of nonlinear energy exchanges.

III. Methods

A. High order spectral analysis

Bicoherence, the normalized third-order cumulant spectrum, measures the coupling between modes. It ranges
from 0 (no coupling) to 1 (complete coupling) and describes interactions between modes at ω1, ω2 and ω3

where (ω3 = ω1 + ω2).
35 Given the discrete Fourier representation xi(t) =

∑
Xi(ω)e

−jωkt (where the sum
extends over the full ω spectrum under consideration), we define

b2(ω1, ω2) =
|⟨Xa(ω1)Xb(ω2)X

∗
c (ω1 + ω2)⟩|2〈

|Xa(ω1)Xb(ω2)|2
〉〈

|X∗
c (ω1 + ω2)|2

〉 . (1)
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Figure 2: Oscillations of ϕ present in the full-PIC simulation. (a) a spatial snapshot;(b) dispersion in the
ω–ky plane (c) t–ky spectrogram. The dotted black line in (a) denotes the axial slice (z = 1.98mm) where
both the dispersion diagram and spectrogram are computed.
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When signals Xa, Xb, and Xc are the same, one speaks of b2 as the (self-)bicoherence of that signal;
otherwise, the term cross-bicoherence (among different signals) is used. Here, ⟨·⟩ denotes averaging over
multiple realizations, and x∗ is the complex conjugate of x. This equation can also be equivalently applied
in wavenumber space. A value of 1 indicates perfectly phase-locked modes, suggesting three-wave coupling,
whereas random phases or noise will lead to bicoherence values closer to 0 as the number of realizations or
the noise level increases.

When it comes to plotting the bicoherence, it is necessary to take notice of the Nyquist limit. In terms of
frequency ω only, this is

ω1, ω2, ω3 < fs/2. (2)

Equation (2) restricts the computation to a hexagon in the (ω1, ω2) plane. Additionally, for the self-
bicoherence, there are a number of symmetries in Equation (1). Again, in terms of ω only:

b2(ω1, ω2) = b2(ω2, ω1) = b2(ω1,−ω3) = b2(−ω1,−ω2), (3)

where the last equality assumes real signals. The mentioned symmetries allow to reduce the required com-
putation area to a triangle in the first quadrant for the self-bicoherence.

Discrete interactions between two modes appear as “islands” whose width corresponds to the spectral broad-
ening of interacting peaks. Harmonic interactions typically show as a dotted pattern of equi-spaced islands.
Continuous interactions of a single frequency with a broader band are shown as lines or segments, either
verticals (ω1 =), horizontals (ω2 =) or topleft-bottomright diagonals (ω3 =).

Identical considerations to all the above apply in terms of k instead of ω, given xi(t) =
∑

Xi(k)e
jk·x.

Note that the bicoherence is high when quadratic coupling exists among modes. However, the bicoherence
itself does not discriminate the direction of power flow among them , and this directionality needs to be
studied by other methods, such as by identifying the three-wave coupling equations.

B. Sparse Identification of Nonlinear Dynamics (SINDy)

As explained in,25 the basic form of the Sparse Identification of Non-linear Dynamics (SINDy) framework36

goes as follows. We consider a dynamical system of state x(t) = [x1(t), x2(t), . . . , xI(t)]
T
, in a state space

X, governed by a set of ordinary differential equations of the form

ẋi(t) = fi(x, t), (4)

where fi (i = 1, . . . , I) are unknown functions of the state, and possibly time. In general, we may write each
fi in (4) as

fi(x, t) = βijΘj(x, t), (5)

where Θj (j = 1, . . . , J) is a collection of functions (termed “features”) and βij a (sparse) set of coefficients
to be determined.

If a realization of the dynamical system has data xi(tk) ≡ x̂ik at discrete time instants tk (k = 0, . . . ,K),
potentially subject to noise, it is possible to estimate the coefficients βij from the following linear system of
equations:

˙̂xik = βijΘ̂jk (6)

where ˙̂xik is a numerical estimate of the state derivatives, e.g. using finite differences, and Θ̂jk ≡ Θj(x̂(tk), tk).

The set of equations is typically strongly overdetermined, as we have many more equations than unknown
coefficients, K ≫ IJ . Naively solving for βij by minimization of the least-square error

εS =
1

N

1

σ̂2
ẋ

∑
i,k

(
˙̂xik − βijΘ̂jk

)2

, (7)

where N stands for the sample size and σ̂2
ẋ for the variance of the numerical derivatives, typically yields a

full βij matrix where most coefficients are different from zero. This is usually undesired, as the resulting
models exhibit an unaffordable complexity and lack simple physical interpretations.
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What SINDy proposes is finding βij through the minimization of the sum of a Least Square error εS , plus
an sparsity-promoting regularization term, or penalty, ελ,

βij = argmin
βij

(
εS + ελ

)
. (8)

By regularizing to promote sparsity in the solution βij , the algorithm is shown to regress on the features
most relevant to the dynamics and discard the rest.36 In the present work, we use the Adaptive LASSO
penalty37,38

ελ = |aijβij | with aij =
λi

β∗
ij

, (9)

where the λi are hyperparameters which set the relative weight of the regularization term over the error term
for each state variable, and the term-specific weights β∗

ij are the coefficient estimates coming from optimizing

εS alone,
β∗
ij = argmin

βij

(
εS

)
. (10)

This form of ελ puts a large penalty on small coefficients while reducing biases on the larger coefficients. The
ALASSO penalty also has the benefit of leading to a computationally-efficient convex minimization problem.
Furthermore, it tends to consistent variable selection and correct coefficient estimation as the number of
samples K tends to infinity, given that all relevant features are included in the chosen function library, and
available data spans the whole state space sufficiently.38

For each state variable xi sweeping the regularization parameter λi from 0 to infinity and plotting the error
and complexity results in an L-shaped Pareto front, from which the optimal model can be selected based on
the knee inflexion point39 or researcher insight.

IV. Results

A. Analysis

The azimuthal average (̄·) of the azimuthal electron momentum equation (disregarding radial effects and
collisions) reads

ȷ̄ze(t) =
e

B
neEy −

1

B

∂

∂z
M̄zye −

me

B

∂

∂t
neuey, (11)

where M̄zye the axial-azimuthal component of the electron momentum tensor. Typically, it is assumed that
the first term dominates transport,

ȷ̄ze(t) ≃
e

B
neEy. (12)

A net axial current forms when the fluctuations in these two quantities are in phase. Figure 3 showcases
how this sole term serves to explain most of the axial transport in our simulation. The difference in current
is ascribed to the inertial and gyroviscous terms in equation (11), which act to diminish the total current.
A modulating envelope roughly corresponding to 1.6 MHz can be distinguished.

The contribution of the different parts of the fluctuation spectrum to plasma transport is considered next.
Following a development similar to Powers,40 one may express the time-averaged Equation 12 as a sum over
frequencies,

⟨ȷ̄ze⟩ =
e

B

〈
neEy

〉
=

2e

B

∫ ∞

0

∣∣PneEy
(ω)

∣∣ cos(αneEy
(ω))dω (13)

Here, ⟨·⟩ denotes time-averaging over a window, the same window from which the spectral components are
computed. For a mode with frequency ω to contribute to transport, it is necessary for its product inside
Equation 13 to be significant.

Figure 4 shows the cross spectral density (CSD) magnitude and cosine in our simulation. The peaks cor-
responding to mode A (≃ 20 MHz), mode B (≃ 40 MHz) and mode C (≃ 80 MHz) are easily identifiable.
In terms of phase couplings, the entire range up to 100 MHz seems to have a coherent phase and is able
to contribute to the plasma transport. It is noticeable that for most of this interval the phase is nearly
constant and approximately 80◦, i.e. the value of the cosine is not large. However, the cross-spectral density
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Figure 3: Time-evolution of the y-averaged electron axial current compared to the current induced by the
ne, Ey fluctuations.

Figure 4: Cross-spectral density and cosine of angle between ne and Ey, reflecting the spectral contribution
to jze. The table showcases the resulting current from integrating in each shaded area. A, B, C correspond
to the peaks identified in figure 2.
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for the peaks corresponding to modes A and B is significant, and integrating Equation 13 for their specific
frequency bands, we see that mode B contributes approximately 65% of the current while mode A contributes
about 10%. The latter is comparable to the contribution of the intermediate range between these two peaks.
The other frequencies do not carry enough power to yield significant contributions even if the corresponding
phase difference approaches 0◦, while the range above 100 MHz (not shown in the figure) has an erratic phase
difference and so does not contribute substantially either. On a final note, locations at other z positions,
upstream of the domain (where the ECDI is not as well-developed), show the same trends but with a higher
contribution of the 20-40MHz band to transport, which becomes significant.

Figure 5: Power spectral density of ne, Ey, jze, normalized by their corresponding maximum values, and
taken from the axial slice downstream. O, A, B, C correspond to the peaks identified in figure 2.

Extending the analysis to the Power Spectral Density (PSD) of the relevant variables, it can be seen from
Figure 5 that they all practically showcase the same modes as ϕ, albeit with differing amplitudes for each
mode, with the dominant one being different for each variable. Indeed, the PSD of jze is dominated by
mode A, while Ey features prominently mode B, and ne mode 0. We note that, while PEy

= kyPϕ holds, the
absence of mode O in the Ey spectra highlights that this mode is fundamentally axial. The axial character
of mode O and the similarity, from Table 1, of uzi/Lz = 0.9 × 106 s−1 to the mode’s frequency, hints at a
relation with the ion transit time. Other simulations with different input parameters show that the mode
frequency scales as 1/

√
mi similar to the rest of the spectra, but does not depend on ne. However, changing

the injection velocity uzi0 does not yield the expected linear change in frequency. This discrepancy can
be linked to the sensibility of the resulting simulation dynamics to this parameter, as explored in previous
works.;12 however, this link of the mode with the ECDI saturation makes us conclude that this could be a
more complicated version of the classical ITT instability.

The multi-peaked structure of modes A and B, suggests some form of nonlinear modulation, likely by mode
O. Indeed, as observed in the spectrogram on the bottom panel of figure 2, the maxima of the amplitude of
the ECDI modes B and C alternate in time with that of mode A (periods that we refer to as “quenching”),
with a repetition frequency roughly equal to that of mode O. The spectrum between modes seems to gain
some importance at the end of each cycle of large ECDI modes. This time alternation in the dominant mode
corresponds as well with the modulation of jze, whose maxima corresponde to maxima of modes B and C,
as seen in Figure 3.

Given this alternation of mode A with modes B, C in time, we examined whether the results shown in
Figure 4 also varied over time, were the PSDs to be computed in windows at the maxima of mode A or at
the maxima of modes B, C. Our analysis indicates that the small transport contribution linked to mode A
primarily occurs during the “quenching” period, where nevertheless anomalous transport is at its minimum.
This underscores the limitations of relying solely on stationary spectra.

It is important to acknowledge the possibility that modes not directly contributing to transport may still
be instrumental in coupling and transferring energy nonlinearly from/to contributing modes. Bicoherence
analysis examines the possible nonlinear couplings between modes and frequency bands in terms of relative
phase locking, identifying relevant frequencies for modeling. Given the distinct spectra for ne and Ey
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discussed earlier, studying the self-bicoherence of these variables, along with their cross-bicoherence with
jze, can help elucidate how different modes interact to transfer energy.

Figure 6: a) Self-bicoherence of Ey, b) Self-bicoherence of ne. White space denotes the redundant or
inaccessible areas. Upper plots are in ω; lower plots in ky.

Figure 6 showcases the self-bicoherence for the first two variables in terms of ω and ky. For Ey, a strong
structure linked to the interaction of ECDI modes B, C and D is visible. This could hint of an energy
cascade process. However, the direction of the power flow cannot be determined from this analysis alone.
We note that the resonance conditions ω = ω1+ω2 and k = k1+k2, needed for three-wave coupling to exist,
are fulfilled in a broad sense, in particular when the broadening of the cyclotron resonances is taken into
account. This is in contrast to the findings from linear theory, where the wavenumbers and frequencies for
each instability peak are not exact multiples of each other.12

Significantly weaker interactions are seen along the 1.6 MHz and 20 MHz lines, representing the modulation of
modes O and A, respectively, over the remaining modes. On the other hand, for ne the strongest interactions
are the modulation of modes A and B by mode O, visible in the diagram in ω space, followed by the interaction
of mode B with C. There is also a small peak corresponding to energy transfer between 40 MHz, 20 MHz
and 60 MHz.

The cross-bicoherence among the three variables can be seen in the (ω1, ω2) plane in Figure 7. Given that the
previous analysis shows that the bicoherence carries essentially the same information in ω and ky, the latter is
not shown. The crucial part of this diagram is the dashed white line, where the ne modes couple with the Ey

modes of same (but negative) frequency to transfer power to/from the ω = 0 jze, which defines anomalous
transport. On this line small bicoherence islands with b2 ≈ 0.1 exist at modes A, B and C. This line is
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Figure 7: Cross-bicoherence of ne, Ey, and j∗ze in ω space. The white line denotes the places where the
oscillations in ne and Ey nteract with the DC component of jze, ω1 + ω2 = 0.

consistent to the one of the CSD of Figure 4, except that the inherent normalization in the definition of the
bicoherence makes mode C comparable to the other two. The diagram shows stronger phase-locking islands
at (1.6,±20)MHz and at (20, 20) MHz. While these peaks do not represent interactions with the DC part of
jze, they give rise to the seen modulation, and may nevertheless be of importance in finite domains, where AC
components of jze may be rectified by the boundary conditions (which introduce additional nonlinearities)
and further contribute to the DC anomalous transport.

B. Modeling - reduced spectral model

Bicoherence serves as an indicator of the amount of non-linear energy transfer than can be explained by
three-wave coupling interactions. However, it cannot discriminate the directionality of the flow of energy,
and may also be affected by coincidental phase-locking conditions not related to nonlinear power transfer.
In this section, a reduced model of the most relevant modes for axial electron transport will be obtained.
The approach can be regarded as a data-driven, sparsity-promoting, shrinked-down version of the Kim-Ritz
method41,42 which was used in other studies,32 with significantly fewer modes and terms per equation. The
electric field will be taken into consideration once more, as despite storing less energy than the electron
density, features a stronger correlation among modes B, C, D as seen in figure 6.

To extract the time series for the mode amplitudes, we select a region around each (k, ω) space representing
the broadened modes B, C, D and compute the windowed PSD in time. The square root of the PSD, that
is the absolute value of the signal magnitudes, is retained. The computation window is then displaced in
prescribed timesteps to obtain the time evolution of the amplitudes. Since the window must cover multiple
cycles of the relevant frequencies for energy transfer over longer scales, we use a simulation with the same
inputs described in Table 2 but run for 30µs. The initial transient startup period is discarded. We choose
a window spanning 1.4µs with a step of 0.3µs, utilizing the same axial slice used in the rest of this work to
obtain the models.

To apply the SINDy algorithm, we then build a limited feature library that includes linear growth rate terms,
axial convection terms, and the relevant three-wave coupling terms for the wave amplitude.27 For each mode
i = B,C,D then,

∂

∂t
|Xi| = γ|Xi| − vgi

∂

∂z
|Xi|+

∑
j∗,k∗

Vijk|XjXk|, (14)

The coefficients on the right-hand side, to be determined, are the linear growth with growth rate γi, the group
velocity vgi, and the sum of wave-wave interactions with coupling coefficients Vijk, for each mode. The sum of
the latter extends to values of j, k that yield a valid resonant triad with i. Note that the resonance condition
also accounts for negative frequencies; for example, for the frequency triplet ω1 = 80MHz, ω2 = −40MHz,
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ω = 40MHz, mode B can interact with mode C to either transfer or receive energy, depending on the sign
of the coefficient. In our absolute-value model, these details become irrelevant.

nterms Model

1 ∂EB
y /∂t = 6.27 · 10−4EB

y EC
y

2 ∂EB
y /∂t = −4.36 · 105EB

y + 4.45 · 10−3EB
y EC

y

3 ∂EB
y /∂t = −4.60 · 105EB

y + 4.53 · 10−3EB
y EC

y − 1.70 · 104∂EB
y /∂z

4 ∂EB
y /∂t = −4.32 · 105EB

y + 3.67 · 10−3EB
y EC

y + 1.44 · 10−2EC
y ED

y − 1.99 · 104∂EB
y /∂z

1 ∂EC
y /∂t = −3.09 · 10−5EB

y EB
y

2 ∂EC
y /∂t = 2.97 · 105EC

y − 8.32 · 10−5EB
y EB

y

3 ∂EC
y /∂t = 3.10 · 105EC

y − 8.17 · 10−5EB
y EB

y − 1.34 · 10−4EB
y ED

y

4 ∂EC
y /∂t = 3.17 · 105EC

y − 8.30 · 10−5EB
y EB

y − 1.24 · 10−4EB
y ED

y − 9.81 · 102∂EC
y /∂z

1 ∂ED
y /∂t = −2.36 · 10−5EB

y EC
y

2 ∂ED
y /∂t = 2.17 · 105ED

y − 9.49 · 10−5EB
y EC

y

3 ∂ED
y /∂t = 1.71 · 105ED

y − 9.23 · 10−5EB
y EC

y − 9.23 · 10−5∂ED
y /∂z

Table 2: Pareto front models for modes B, C, D, obtained by sparse regression. Ei
y denotes the absolute

value of the complex amplitude of mode i. Terms in red are associated to linear growth/decay rates; orange
designates convection terms; blue and cyan terms highlight related wave-wave couplings terms across the
modes. The Pareto-optimal models are highlighted in bold.

A Pareto front, or hierarchy, of increasingly more complex models for each mode is obtained and displayed
in table 2. In bold we have highlighted our identified Pareto knee models, which balance complexity with
model error.

While the training data is limited and these results are considered preliminary, and the maximal score
of this very-reduced model is low (ranging between 3% and 14%, as determined from Equation 7) , we
focus our attention on the sign and order of magnitude of the γi and Vijk coefficients; in each equation,
positive/negative signs indicate energy flowing in/out of the mode, respectively.

In the models for modes B and C, the dominant term (and therefore the first that shows up in the hierarchy)
is the coupling term for the triad BBC, which would transfer energy from mode C into mode B. The term
coupling modes BCD appears first in the model for mode D, and also shows up for models more complex
than the Pareto-optimal ones for B and C. This term would convey energy from D and C and into B.
The sign structure of the couplings BBC and BCD suggest an inverse energy cascade, where energy of the
higher-frequency, higher-k modes flows toward lower-frequency, lower-k modes. Unfortunately, no agreement
is found on the order of magnitude of the corresponding coefficients for the three modes in either case.

From the analysis of the linear growth rate coefficients γi, a general picture emerges: modes C and D receive
energy from the ECDI instability, which is then transferred to the longer-scale mode B. The negative growth
rate of mode B can be attributed to a net energy loss between what it gains from the instability and what
it loses to generating anomalous plasma transport. Finally, convection plays an overall minor role, at least
in the selected axial slice, as these terms appear later in the hierarchies.

A sensitivity analysis was conducted for a range of ±0.05µs of window and step sizes on these results, and
the coefficients and the conclusions drawn were found to stable. However, beyond this range, the variability
suggests that the intermittent nature of the problem complicates describing interactions without time-varying
parameters.

V. Conclusions

This study presented a data-driven analysis of a 2D-E ×B kinetic simulation highlighting the dominance of
Electron Cyclotron Drift Instability mode in anomalous electron transport. Higher-order spectral techniques
revealed nonlinear power transfer among scales, leading to a reduced model based on three-wave coupling
equations showing an inverse energy cascade.
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Anomalous transport was found to be mainly driven by in-phase density and electric field fluctuations of
the main ECDI mode, while its interactions with the remaining modes warranted further research. Notably,
a long mode spanning the azimuthal domain modulated ECDI modes and dominated the current spectra,
though its origin remains unclear. A mode related to ion transit influenced the current’s quasi-periodicity
without significantly affecting energy dynamics.

Bicoherence was used to identify the main nonlinear interactions between modes, while sparse regression
expanded this analysis to obtain a hierarchy of data-driven reduced spectral models for the ECDI modes.
Both methods served to preliminarily set wave-wave interactions as one of the energy exchange mechanism,
where the direction of energy transfer was verified to be that of an inverse energy cascade.

Future work should refine the modeling approach to apply to other parametric regimes and configurations
of Hall thrusters, considering field gradients, collisions, and radial effects, and especially, to experimental
data. Further examination of temporal localization of couplings, axial distribution of modes, and broadband
contributions to current, along with enhancements in methodology such as wavelet analysis and statistical
significance tests, could provide more robust insights.
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