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We present a Darwin-electromagnetic, 1D3V time-implicit, energy- and charge- con-
serving Particle-in-Cell (PIC) algorithm, and its application to the study of electrodeless
plasma thrusters with magnetic nozzles. A fully ionized, collisionless plasma composed of
singly charged ions and electrons is injected into a paraxial, convergent-divergent magnetic
field topology, and a right-hand polarized wave is fed through the upstream boundary.
The electromagnetic simulation results are compared with a cold-plasma wave and elec-
trostatic (i.e. no-wave) simulations. Wave heating increases the electron perpendicular
temperature, especially in the vicinity of the electron cyclotron resonance. The energized
electrons drive a more pronounced potential drop and a higher ion acceleration than in the
absence of waves. Kinetic features, such as the Doppler broadening of the ECR heating
region, are detected in the electron velocity distribution function. The linear, prescribed
cold-plasma and nonlinear, self-consistent kinetic results for the wave fields are similar once
the reduced model phenomenological collisionality is adjusted. Computational scaling es-
timates show that the time-implicit PIC algorithm may facilitate realistic electromagnetic
kinetic simulations of plasma thrusters in one or more dimensions, which were previously
too costly.

I. Introduction

Electrodeless Plasma Thrusters (EPTs) are a class of electric propulsion devices that do not require hollow
cathodes for ion beam neutralization, promising simplified power processing units, enhanced lifetimes, and
the flexibility to use alternative propellants. Among the various EPT designs, the Helicon Plasma Thruster
(HPT) [1, 2, 3] and the Electron Cyclotron Resonance Thruster (ECRT) [4, 5, 6] have gained much of the
community attention in the past decade. A key feature of these thrusters is the utilization of electromagnetic
waves to energize the charged particles, along with a downstream plasma expansion into vacuum guided by
a magnetic nozzle (MN). They differ in their geometrical details, operating frequencies (in the MHz and low
GHz ranges, respectively), and power coupling mechanisms. Understanding the physics of the discharge and
acceleration and, in particular, the plasma-wave interaction is a significant challenge in the optimization of
these devices.

The complex interaction between a plasma and electromagnetic waves in EPTs has previously been
modeled using simplified linearized cold-plasma models in the frequency domain, sometimes coupled with
plasma transport solvers [7, 8]. However, traditional simulation approaches fail to capture nonlinear effects
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and kinetic phenomena. To overcome these limitations, self-consistent kinetic-electromagnetic simulations
are required. Due to the high computational cost, such simulations are scarce. One of those few examples is
the recent work by Porto et al. [9]. The study employs 1D explicit particle-in-cell/Maxwell simulations with
a Constrained Interpolation Profile (CIP) scheme to model transverse fields propagating through a plasma
in a magnetic nozzle. The results show anisotropic plasma heating inside the coaxial chamber and a trapped
population of electrons with higher perpendicular energy in the plume. The CIP method alleviates the CFL
condition for fast wave propagating modes, but it does not eliminate the need to solve quite short time and
length scales.

Although electromagnetic kinetic simulations are rare in the literature, electrostatic particle-in-cell (PIC)
codes are common in the simulation of plasma physics inside thrusters and their plumes [10, 11, 12, 13].
The vast majority of these studies employ the time-explicit leapfrog scheme [14]. Explicit PIC codes suffer
from timestep and cell-size constraints, requiring resolution of the electron plasma frequency and the Debye
length for stability. As such, their computational demands are huge and their application is limited to small
domains or to problems with modified vacuum permittivity ε0. Moreover, some explicit PIC formulations
are momentum-conserving but lack strict energy conservation, which is advisable for e.g. instability analysis.

Time-implicit energy- and charge-conserving PIC algorithms [15], and also semi-implicit ones [16], are
being proposed as a powerful tool to overcome these limitations and conduct realistic simulations with rea-
sonable computational resources. Indeed, the implicit time-stepping allows bypassing the plasma frequency
constraint, damping those (generally uninteresting) electrostatic oscillations if desired. Similarly, the for-
mulation enables us to use cell sizes larger than the Debye length without incurring finite grid instabilities.
Remarkably, this substantial reduction in computational costs comes without sacrificing accuracy. Implicit
PIC codes are recently being developeda and applied in various research fields, including nuclear fusion [17]
and material processing [18]. Their application to electric propulsion studies has been relatively unexplored
until recently [19, 7]. These algorithms were initially developed for electrostatic scenarios [15], but recent
studies in one and multiple dimensions [20, 21] have shown that incorporating the electromagnetic (EM)
Darwin approximation [22, 23], which excludes light-speed traveling modes, implicit PIC methods enable
efficient and accurate kinetic electromagnetic simulations over long time periods.

Building on a recently published electrostatic 1D-1V investigation of the plasma expansion in an MN [7],
this work addresses the electromagnetic, 1D-3V simulation of a MN with an applied right-hand polarized
wave, in a configuration representative of ECRTs (but also HPTs, where it has been shown that a downstream
ECR surface exists in the nozzle where the energy absorption per particle is not negligible [24]). This is
achieved by extending our time-implicit PIC model with an electromagnetic Darwin model. New boundary
conditions for EM wave fields are also introduced. Preliminary plasma profiles including potential, density,
and temperature are presented. Electron heating by EM waves results in a more pronounce potential drop
that accelerates ions to faster velocities. We also explore the wave effects in the electron velocity distribution
function (EVDF) with several phase space plots. Inherently kinetic phenomena such as Doppler-shifted
ECR heating are observed in these results. The PIC-Darwin results are compared with (1) electrostatic
results which do not include wave propagation nor heating, and (2) a simulation that imposes the wave fields
that would result from the linear cold-plasma approximation, instead of the self-consistent EM fields. We
find that the cold-plasma wavefields are a good approximation of the self-consistent ones once the effective
damping parameter in that model is tuned to reproduce the resonance broadening. This is a key finding that
exemplifies how kinetic simulations can be used to fit faster, simpler simulation models. We discuss that
the implicit electromagnetic PIC approach can achieve significant computational savings while maintaining
accuracy and conservation properties.

The remainder of the paper is organized as follows. Section II introduces the 1D-3V electromagnetic
model, including the particle and field equations and their numerical discretization in the implicit PIC
algorithm. A verification case with periodic boundary conditions can be found in Appendix A at the end
of the text, showcasing the advertised conservation of global energy and local charge and the accurate
reproduction of analytical growth rates for the electron Weibel instability. Section III presents the new
EM PIC magnetic nozzle simulations and compares the self-consistent Darwin simulations with the previous
electrostatic results and the wave fields derived from the cold-plasma model presented in Section III.A.1.
Finally, conclusions are drawn, and future work is proposed in Section IV.
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II. Methodology

We study the collisionless plasma expansion in an axisymmetric, convergent-divergent, applied magnetic
field B0. The plasma is composed of warm electrons e and single-charge ions i. Our region of interest is
the neighborhood of the axis of the resulting MN, which is aligned with the z direction of the Cartesian
{1z,1x,1y} vector basis. In the paraxial approximation, the applied magnetic field is assumed to change
slowly over lengths comparable to the characteristic radial gradient length of plasma properties R,

R
∂ lnBz0

∂z
= ε ≪ 1. (1)

The divergenceless nature of B0 means that, in the neighborhood of the axis and to order ε, the radial
magnetic field is

Br0 = −r

2

∂Bz0

∂z
. (2)

We shall further assume that the Larmor radius of all particles is small compared to that radial length,

ℓs
R

≤ O(ε), s = i, e. (3)

Then, at the centerline of the MN and over distances comparable to ℓs, the variation of any other fields and
particle distributions in the radial direction is of order O(ε2). This means that fields and distributions can
be taken as radially uniform to order O(ε) within the trajectories of the particles.

Finally, to maintain the solenoidal property of the magnetic field [25], we incorporate the paraxial factor
JB(z) = 1/Bz0(z) into the divergence operator, ensuring:

∇ ·B0 =
1

JB

∂

∂z

(
JBBz0

)
= 0. (4)

By conservation of the magnetic flux, this factor is proportional to the flux tube area At at each nozzle
cross-section At(z)B(z) = constant. The characteristic frequencies for the problem dynamics are the plasma
frequency, which is proportional to the square root of the density ωpe =

√
neq2e/ε0me and the cyclotron

frequency, proportional to the magnetic field strength ωce = eBz0/me. In general, we will have ωpe ≫ ωce ∼
ω, where ω is the frequency of the injected electromagnetic waves fed through the upstream boundary.

A. Particle evolution equations

The Vlasov equation describes the evolution of each plasma species distribution function fs (s = i, e) in the
collisionless limit,

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v × (B +B0)) · ∇vfs = 0, (5)

where we have used E and B to indicate the variable electric and magnetic fields, and B0 for the steady,
applied magnetic field of the MN. Upon discretizing the 1D3V distribution function into macroparticles with
Cartesian velocity coordinates, we get:

fs (z, vz, vx, vy, t) =
∑
p∈s

wpδ (z − zp(t)) δ (vz − vzp(t)) δ (vx − vxp(t)) δ (vy − vyp(t)) . (6)

where δ(x) denotes the Dirac delta function, and the subindex p runs over all macroparticles. Introducing
(6) into (5) we get the following particle evolution equations:

dwp

dt
= 0,

dzp
dt

= vz,p,

dvz,p
dt

=
qs
ms

(Ez + vxpBy − vyBx)−
1

2Bz0

∂Bz0

∂z

(
v2xp + v2yp

)
,

dvxp
dt

=
qs
ms

(Ex + vypBz0 − vzpBy) +
1

2Bz0

∂Bz0

∂z
vzpvxp,

dvyp
dt

=
qs
ms

(Ey − vxpBz0 + vzpBx) +
1

2Bz0

∂Bz0

∂z
vzpvyp.

(7)
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The last term in the each velocity evolution equation represents the magnetic mirror force on the macropar-
ticle.

The macroparticles are injected through the upstream boundary of the domain. The sampling of both
electrons and ions is carried out from a semi-Maxwellian flux with injection densities n∗

e and n∗
i , refer to

[7] for details of the injection routines. A key aspect of the code that allows obtaining simulation results
without spurious sheaths at the upstream or downstream boundaries is the choice of boundary conditions at
both ends: upstream, the number of electrons injected is dynamically modified by an heuristic control law,
while the injection density of ions n∗

i is kept constant. Downstream, the least energetic electrons are reflected
back into the domain, depending on a dynamically-computed threshold energy [26]. This combination of
physically-consistent boundary conditions yields an essentially-quasineutral plasma expansion everywhere.

B. Electromagnetic field equations

To characterize the electromagnetic fields, we introduce the scalar ϕ and vector A potentials,

E = −∇ϕ− ∂A

∂t
,

B = ∇×A.
(8)

Furthermore, we choose to impose the Coulomb gauge, ∇ ·A = 0. Note that in this 1D description (with
∂x = ∂y = 0), the Coulomb gauge requires ∂Az/∂z = 0. Moreover, Az(z) does not contribute to B, while
any arbitrary Ez can be modeled through ϕ alone. Hence, and without loss of generality, we take Az = 0.

To obtain the equation for the electrostatic potential ϕ(z), we follow [15] and consider Ampère’s law,

ε0
∂E

∂t
+ j =

1

µ0
∇×B. (9)

Taking the divergence of this equation eliminates the curl of the magnetic field, yielding:

ε0
∂

∂t
∇2ϕ = ∇ · j ⇒ ε0

∂

∂t

∂

∂z

(
JB ∂ϕ

∂z

)
=

∂(JBjz)

∂z
. (10)

This equation is equivalent to the time derivative of Poisson’s equation, when charge conservation ∂tρ = −∇·j
is taken into account. Numerically, and because of the strict charge conservation property of the algorithm,
integrating Poisson’s equation or (10) yield identical results.

The boundary conditions for the electrostatic potential ϕ are the same as in [7]. The upstream potential
is fixed to a reference value (Dirichlet BC); downstream, the following Neumann condition on ϕ is imposed,
arising from integrating equation(10) in z

ε0
∂

∂t

∂

∂z
ϕ− jz = C(t)B(z). (11)

where the integration constant C(t) can only depend on time, and the factor B(z) comes from integrating in
a flux tube of varying cross sectional area. Approaching steady-state, time derivatives of ϕ go to zero, and
in the case of a current-free magnetic nozzle, jz = 0. Hence, we fix C(t) = 0 for all t, and use equation (11)
to solve for ∂ϕ/∂z as a function of jz at the boundary [7].

To find the equation for the vector potential A = Ax1x +Ay1y, we come back to Ampère’s equation (9)
to obtain:

−ε0

(
∂∇ϕ

∂t
+

∂2A

∂t2

)
+ j = − 1

µ0
∇2A. (12)

The Darwin approximation to Maxwell’s equations is a simplification used in the study of quasistatic elec-
tromagnetic fields, particularly in scenarios where the effects of electromagnetic radiation can be neglected
compared to sources, such as plasma currents [27]. This approximation is applicable in systems where the
variations in the fields are slow enough so that part of the displacement current can be considered negligible.
The approximation is derived by neglecting the term on ∂2A/∂t2 [23]. The final equations for Ax and Ay

are then:

∂

∂z

(
JB ∂Ax

∂z

)
= −µ0J

Bjx, (13)

∂

∂z

(
JB ∂Ay

∂z

)
= −µ0J

Bjy. (14)
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Regarding the boundary conditions for A, time-varying Dirichlet conditions for a right-hand polarized wave
at a frequency ω at the upstream boundary are imposed. At the downstream boundary, we set Ax,nz =
Ay,nz

= 0. This is justified by having an upstream electron cyclotron surface that absorbs the incoming
electromagnetic power as shown in Section III. In fact, simulation results confirm that the A potential
reaching the downstream end is near zero and that reflection is negligible.

C. Numerical implementation

Next we summarize the discretization of the field and particle equations presented in the last section. The
present implementation of the model can work with analytical mesh maps z(ξ), where ξ is the coordinate
in logical space [28]. These are used to accommodate non-uniform meshes that can accurately resolve
field gradients and maintain a good balance of macroparticles per cell with a reduced number of total
cells. This is accomplished by the introduction of the map Jabobian ∂ξz into the field equations. The
particle mover equations must also account for the mesh map through a hybrid mover strategy that advances
velocities in physical space and positions in logical space. For simplicity, we have not expanded in ξ the
neither the continuous nor the discrete equations; refer to [7, 28] for details. Following [29] and [7], a
segment-averaged weighting strategy is introduced that allows particles to cross several cells within a single
suborbit providing additional gains in computational performance. Again, the necessary modifications to
the weighting equations are skipped for simplicity in this model section, but can be found in [7].

In the following, the cell faces are identified with semiinteger indexes (i+ 1/2) and the cell centers with
integer indexes (i). For simplicity, we consider a uniform mesh with nz cells at ∆z intervals, although, as
mentioned earlier, the algorithm can also employ nonuniform grids via a mesh map z(ξ). Figure 1 sketches
the discrete space-time positions used in the simulation. Potentials are discretized at cell centers and at
integer timesteps. Currents are computed at semiinteger timesteps, the axial one at cell faces while the
transversal components are saved at cell centers. The electromagnetic field computation is performed with
second-order-centered finite differences (in time or space) from the corresponding potentials according to (8).
The operator ∂2/∂z2 appearing in (10) and (12) is discretized as (fi+1 − 2fi + fi−1)/∆z2 to be consistent
with the repeated application of the discrete version of ∂/∂z [30].

The particle evolution equations (7) are integrated with a second-order time-centered Crank-Nicolson
implicit scheme similar to [30]. Particle orbits are solved in one or several suborbits. Instead of using the full
time step ∆t, varying substeps ∆τνp are used for each suborbit ν, chosen so that

∑
∆τνp = ∆t. This method

relies on the difference in scales between the slow field dynamics, represented by ∆t, and the rapid particle
dynamics, represented by ∆τ . The substep is controlled by an error estimator [7] and might be different for
each particle in the simulation. By doing so, we ensure accurate orbit integration while minimizing memory
access, as particle coordinates are stored in local registers during subsequent suborbits.

The scattering of the electric fields to particle positions is consistent with the weighting of the current
components to ensure exact global energy conservation [30] (not proven here):

Eν+1/2
z,p =

∑
i

En+1
z,i+1/2 + En

z,i+1/2

2
S1

(
zν+1/2
p − zi+1/2

)
,

Eν+1/2
x,p = −

∑
i

An+1
x,i −An

x,i

∆t
S2

(
zν+1/2
p − zi

)
,

Eν+1/2
y,p = −

∑
i

An+1
y,i −An

y,i

∆t
S2

(
zν+1/2
p − zi

)
,

JBȷ
n+1/2
z,i+1/2 =

1

∆t∆z

∑
p

∑
ν

qpv
v+1/2
p,z S1

(
zν+1/2
p − zi+1/2

)
∆τνp ,

JBȷ
n+1/2
x,i =

1

∆t∆z

∑
p

∑
ν

qpv
v+1/2
p,x S2

(
zν+1/2
p − zi

)
∆τνp ,

JBȷ
n+1/2
y,i =

1

∆t∆z

∑
p

∑
ν

qpv
ν+1/2
p,y S2

(
zν+1/2
p − zi

)
∆τνp ,

(15)

where S1 and S2 represent first and second order splines respectively. The wave magnetic field components
might be computed with standard finite differences and scattered to particle positions similar to E or
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Figure 1. Diagram of the space-time simulation domain. All field quantities are shown at the positions where
they are computed. A sample particle trajectory is displayed in green. One of the suborbits (solid green)
crosses two cells, the space-time slope changes to reflect that the mesh map need not be uniform. The fields
are interpolated to the particle position at mid-orbit (ν + 1/2). Cells are uniform in logical space; the mesh
map to physical space can be any smooth function z(ξ).

alternative expressions exist that ensure conservation of the system canonical moment [30].
After discretization, a coupled system of nonlinear algebraic equations must be solved. Given a guess of

the particle particle coordinates at the new time step X2 = {zn+1, vn+1
z , vn+1

x , vn+1
y }p and the scalar and

vector potentials at the cell centers X1 = {ϕn+1
i ,An+1

i }, a nonlinear residual vector F(X1,X2) = 0 can
be formed and solved iteratively. The particle and field equations are coupled through the moments of the
distribution function, in particular j, required as sources into the field equations. As a result, this method
results in an impractically large number of unknowns. To make the problem manageable, Chen et.al. [15]
exploited the fact that the new particle coordinates depend on the potential, which allows us to express
the residual as F1(X1, f2(X1)) = G(X1) = 0. Finding f2(X1) involves integrating the equations of motion
for each particle, given the potentials on the cell centers X1, and accumulating the moments to form the
residual vector G(ϕn+1

i ,An+1
i ) from the field equations. This process, known as particle enslavement, allows

a global nonlinear solver, such as the Jacobian Free Newton Krylov (JFNK) method, to handle a significantly
reduced system of equations without compromising accuracy.

It can be shown that this numerical procedure ensures the conservation of global energy and local (per
cell) charge [28] to nonlinear solver and machine roundoff error, respectively. Furthermore, the stability
characteristics of the implcit PIC method have been studied in the literature [31] proving a stable algorithm
and the absence of finite grid stabilities for cell sizes much larger than the local Debye length and timesteps
much longer than the plasma period.

III. Magnetic nozzle simulations

In this section, we present the preliminary results of our study.
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A. Simulation setup

The fundamentals of the simulation setup are similar to the one in [7]. Notably, the domain size has been
expanded tenfold to allow for multiple R-wave wavelengths while maintaining the same relative magnetic
field strength,

B(z) = B0
r3L

(r2L + z2)
3/2

1z, (16)

with rL = 0.012 m and a magnetic field strength at the throat B0 = 0.096 T. The domain is roughly 0.2
m long extending from z = −0.5rL to z = 16rL. The magnetic topology creates a convergent, divergent
nozzle with throat at z = 0. The plasma injection density and temperature are n∗

e = 1018 m−3 and T ∗
e = 10

eV. Electrons and ions are injected through the upstream end with equal temperatures T ∗
∥e = T ∗

⊥e = T ∗
∥i =

T ∗
⊥i = T ∗

e .

Figure 2. Relative magnetic field strength (left axis, blue) and local cell size over injection Debye length (right
axis, green). The electron cyclotron resonance surface is depicted by a vertical black dashed line.

Figure 2 shows the simulation domain and the mesh employed. A nonuniform mesh is used, with the
smallest cell size at the entrance ∆z = λ∗

D, and much larger in the rarefied plasma downstream ∆z = 60λ∗
D,

where λ∗
D is the reference Debye length at injection. This mesh map adapts well to the most prominent

potential gradients at the beginning of the domain and keeps the number of macroparticles per cell well
balanced. The integration time step is ∆t = 2.5 ω−1

pe and about 2 million macroparticles fill the domain in
the steady state of all simulation cases.

A right-hand circularly polarized wave with frequency f = ω/2π = 2.6 · 108 Hz enters the domain from
the upstream boundary. The domain displays an electron-cyclotron resonance (ECR) surface (ωce = ω) as
the magnetic field decreases downstream the MN throat. Eventually, the plasma density is low enough to
transition to an underdense regime (ωpe < ω). In between these two critical transitions, the R-wave is known
to become evanescent [32]. Consequently, we only expect a marginal fraction of the input power to tunnel
downstream.

All parameters are physical with the exception of a reduced ion-to-electron mass ratio mi/me = 100 (to
keep the simulation comparable to previous works [7]), and a reduction in the speed of light constant by a
factor 10. Contrary to many electromagnetic Vlasov-Maxwell algorithms, this reduction does not address
any numerical concern related to fast wave propagation— because the Darwin approximation kills light speed
traveling modes— but was merely introduced to decrease the characteristic wavelength λ ∝ de = c/ωpe and
have several wavefronts inside the small simulation domain. A larger domain would involve much longer
characteristic ion transit times and simulations. However, larger domains and realistic mass ratios (already
demonstrated in [7]) are still well within the feasible limits of our model and are the objective of ongoing
research beyond this preliminary study.
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In the following, we study the results of different simulation cases:

• Electrostatic case (ES): No wave is fed into the nozzle. The vector potential components are set to
zero throughout the simulation domain Ax = Ay = 0. The domain is initially empty, a transient similar
to the one reported in [7] takes place. This simulation is performed for reference and comparison, as
well as to cross-verify with the previous 1D1V version of the code in that work (which assumed exact
conservation of the magnetic moment µ rather than solving for vx, vy of the macroparticles).

• Self-consistent electromagnetic cases (EM): We set the analytical vector potential corresponding
to the R-wave as Dirichlet boundary condition in the upstream boundary {Ax,0(t), Ay,0(t)} as ex-
plained in Section II.B. The vector potential and consequently the transverse electric field components
evolve self-consistently according to the instantaneous plasma currents. We study two different power
scenarios, EM.high with wave intensity (power per unit area) I ∼ 160 W/cm2, and EM.low where
the wavefield amplitudes are halved and, as a consequence, the intensity is reduced by a factor of 4,
I ∼ 40 W/cm2.

• Imposed cold-plasma wavefields case (IW): Rather than solving self-consistently for the trans-
verse fields, the cold-plasma-wave solution, described below, is prescribed in the whole domain. These
fields are then used to move the particles. The analytical intensity of the incoming wave is I =
cn|E|2/2 ∼ 160 W/cm2, where n is the refractive index of the wave, similar to the EM.high case.

Each EM and IW case is initialized from the steady state of the ES case.

1. Case IW: imposed fields

The cold-plasma model is a widely used linear approximation for the propagation of electromagnetic waves
through plasmas [32]. This model solves the full-Maxwell equations in the frequency domain and accounts
for the linearized induced plasma currents. The main assumptions followed are to drop the thermal/pressure
term in the electron-momentum equation and to keep only first-order terms in the plasma response, in the
form of the anisotropic dielectric tensor κ. The frequency domain second-order wave equation coming from
the combination of Ampere’s and Faradays’ laws is:

∇× (∇× Ê) = −∇2Ê +∇(∇ · Ê) =
ω2

c2
κ · Ê. (17)

where ω is the wave frequency, and E = Ê exp(−iωt). Following [33], we restrict this equation to a 1D
domain with spatially-varying magnetic field and plasma density. We also assume that the effect of ions
on wave propagation is small at ω, and keep only the electron contribution. Using the circular polarization
basis, Ê(z) = ÊR1R + ÊL1L, where 1R = (1x + i1y)/

√
2 and 1L = (1x − i1y)/

√
2, we find the following

uncoupled equation for ER

d2ÊR

dζ2
+

(
1 +

η

ξ − iγ

)
ÊR = 0 (18)

where ζ = (ω/c)z, η = (ωpe/ω)
2 and ξ = ωce/ω − 1. Finally, γ is a damping factor that captures collisional

and kinetic wave damping in this fluid model. This factor (which could also be a function of z), is selected
to match the kinetic results of the Darwin model presented in the next subsection.

This equation is solved for ER(z, t) = ÊR(z) exp(−iωt) taking into account the applied magnetic fieldB0,
and the steady-state plasma density profile from the ES case. The resulting field is imposed at each z an t,
and particles are moved accordingly. To find solutions that correspond to power being injected only from the
upstream side and not from the downstream side, uniform plasma regions are temporarily added upstream
and downstream of the actual domain with the same properties as the first and last node, respectively, to
facilitate the imposition of boundary conditions for the forward- and backward-traveling waves.

B. Stationary plasma profiles

Figure 3 shows the steady-state results, achieved after roughly 5000 plasma periods once the wave starts to
be introduced through the upstream boundary. The profiles are depicted against the inverse of the magnetic
field strength (increasing with z). The results are smoothed using a moving average with a window in time
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Figure 3. Steady state profiles of the electron perpendicular temperature (a), electron parallel temperature

(b) and electron total temperature (c). Simulation cases ES ( ), EM.low ( ), EM.high ( solid) and IW

( dash). The ECR surface is shown with a black dashed line.

of 500 ω−1
pe to reduce PIC noise. Here we focus on the wave effects in the plasma expansion; for a general

explanation of electrostatic magnetic nozzle mechanisms, refer to [34, 35, 7].
The effects of wave heating become evident when the perpendicular temperature in Figure 3.(a) is ex-

amined. In the ES scenario, the magnetic moment µ = m|v⊥|2/2B is exactly conserved, so that the electron
perpendicular energy only responds to changes in the magnetic field strength. This can be observed in the
almost linear decrease of T⊥e with 1/B for the ES line (blue). The magnetic mirror force acts behind this
reduction, converting the perpendicular electron energy to axial. For the EM and IW cases, this behavior is
modified before and in the resonance region, where an increase in T⊥e is remarkable. Heating is caused by the
power transfer from the wave to the electrons, as further explained in Section III.C. However, downstream
of the ECR, where the wave fields are negligible, the trend T⊥e ∼ B−1

0 resumes.
Previous studies [35] and our reference ES case in Figure 3.(b) indicate that electrostatic magnetic nozzles

tend to keep the electron parallel temperature fairly constant throughout the expansion. However, when
the wave is activated, a different structure emerges. In the EM and IW cases, there is a significant drop of
approximately 25% in the parallel temperature before the ECR, followed by a recovery downstream, ulti-
mately reaching a level similar to that in the ES case. This phenomenon hints at a non-trivial evolution of
the electron velocity distribution function (EVDF), which is inspected in section III.D. The total temper-
ature Te = (2Te,⊥ + Te∥)/3 in pane (d) is the consequence of the dynamics explained for the parallel and
perpendicular ones, and is everywhere larger than in the ES case.

Overall, electron energy (directed and thermal) is increased by the interaction with the wave with re-
spect to the energy available at injection, which is the sole source of energy in the ES case. Any electron
perpendicular energy is converted into axial energy thanks to the magnetic mirror effect, as discussed be-
fore. This additional axial electron energy drives a larger drop in electrostatic potential as shown in Figure
4.(a). Ultimately, it is through the mediation of this electrostatic potential that the axial electron energy
is converted into axial ion energy, leading to ion acceleration. This is clearly observed in Figure 4, where
ui and ni are depicted. Their behaviors are the natural consequence of the profiles of ϕ and Bz0 by virtue
of ui ∝

√
ϕ and the paraxial continuity equation niui/B = const. In the EM cases, a greater acceleration

and a faster expansion is observed than in the ES case. The density distribution, in turn, is important for
wave propagation, as it determines ωpe. Nevertheless, the variations in density are minimal in this respect,
particularly upstream of the ECR where the wavefields are most significant. This partially validates our use
of the ES solution’s density profile for wavefield calculations in the IW, rather than dynamically updating it
as the density changes.

Concerning the variations among the simulation cases, although the wave intensity is comparable in
the EM.high and IW cases, nearly all previously discussed profiles show that the IW lines fall between the
EM.low and EM.high results. This suggests a lower power coupling in the IW case, which is corroborated
by the power absorption plot shown in Figure 5.(c), as commented on in the next section.

Finally, in several of the previous figures, some minor spatial fluctuations are observed downstream. This
could be due to these preliminary simulations not being fully converged to steady state; however, we observe
some oscillating structures in the EVDF analysis of Section III.D, which could be causally linked to them.
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Clarification of these fluctuations is object of ongoing research.

Figure 4. Electrostatic potential, normalized ion velocity and ion density over magnetic field strength. Simu-

lation cases ES ( ), EM.low ( ), EM.high ( solid) and IW ( dash). The ECR surface is shown with
a black dashed line.

C. Transverse electric fields and power deposition

The transverse fields Ex and Ey are shown in Figure 5.(a). The incoming wave has a right-hand circular
polarization as observed in the 90 deg phase difference between the fields. The fields are maximum and
nearly constant in the region between the entrance and the throat, where they increase slightly, before being
damped in a broad region up to the position of the resonance. The transfer of electromagnetic power to the
plasma in this area is clearly observed in pane (b), the power absorption peaks just before the resonance
position, but the deposition region is comparable to the fields wavelength. The absorption before the ECR
surface could be caused by electrons resonating at different frequencies because of the Doppler effect. This
effect is significant in our simulations because of the high thermal velocity over the speed of light caused by
the artificial reduction of c. A similar behavior was observed by Porto et.al. [9]. The power per electron
in pane (c) shows an even more remarkable deposition near the resonance driven by a reduction in density
downstream. This figure is important because it determines the local changes in temperature discussed in
Section III.B [24]. In both (b) and (c), there is a region of negative power transfer from the particles to
the wave prior to the main heating peak. We anticipate that this might be caused by the synchronization
of the particle gyro-phase with the transverse fields, but further inspection, e.g. exploring the evolution of
individual particle orbits, is needed to understand this behavior.

Figure 5. Transverse field Ex and Ey (a), power absorption (b) and power absorption per electron (c). Solid
lines correspond to the EM.high case and dashed lines to the IW case.

The differences observed between the EM and IW fields in Figure 5. (a) are minor in both the amplitude
and phase of the fields. The EM case seems to propagate with a slightly longer wavelength and its magnitude
is larger in the throat region z = 0. The power deposition in panes (b) and (c) is qualitatively equivalent,

10
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



but the EM case shows a slightly higher deposition, notably near the ECR. This small mismatch was also
confirmed by integrating the power deposition j ·E and comparing it with the wave intensity.

The EM damping rate is successfully reproduced by the IW simulation after adjusting the parameter γ
in the cold plasma model. The final value γ = 0.5ω is high compared to the usual collision frequencies in
EPTs plume and sources [36]. This large value could be again attributed to the broadening of the heating
region, in fact, Merino et al. [33] showed that the γ parameter fundamentally controls the width of this area,
but not much the total power absorbed. These findings indicate that the Darwin approximation is valid in
this regime, as it produces results comparable to the full Maxwell cold-plasma equation. Indeed computing
a posteriori the missing ∂2A/∂t2) term from our solution and comparing it against the j term shows that
the former is 2–3 orders of magnitude smaller than the latter. Only very far downstream, where the plasma
density is very low, does this term becomes comparable to the plasma currents. In fact, in this region the
wave propagation regime approaches vacuum conditions, where the full-Maxwell equations are needed for
the accurate simulation of the fields. However, as we will see in Section III.C, the transverse fields are almost
negligible in that region.

Additionally, the good agreement between the kinetic-Darwin and the imposed-cold-plasma waves, by
adjusting the collisional parameter, indicates that the cheaper cold-plasma model can be adequately tuned
by means of kinetic simulations to accurately replicate the macroscopic aspects of wave propagation and
damping of the latter. This hints at the interesting possibility of having a hierarchy of models, where the
most complex/expensive ones are used to train/tune the simpler ones, achieving the best of both worlds.

D. Electron velocity distribution function

Figure 6 shows the steady-state electron velocity distribution function (EVDF) normalized by the density in
each z cross section, and projected in various particle coordinates for the ES, EM.high, and IW simulation
cases. In the electrostatic scenario (first column), the conservation of the magnetic moment µ (first row)
per particle results in an almost uniform Maxwellian phase space distribution everywhere except near the
throat, where particles with small µ become confined. In contrast, a noticeable increase in µ is seen between
the throat and the ECR surface for the EM.high and IW cases (second and third columns), after which
the normalized magnetic moment returns to its usual trend and remains nearly constant before the exit.
Although nothing relevant is observed in the ES case, the gyrophase plots (second row) for the EM.high
and IW cases show the presence of almost vertical strips of depleted or increased phase-space density that
correlate well with half the wavelength of the R-wave. These structures are purportedly caused by the
synchronization of particles in their gyro-orbits with transverse-wave fields.

The axial electron velocity is shown in the last row of Figure 6. In all cases, the distribution appears
to be in general Maxwellian-like downstream of the initial ∼ 5 cm but with an abrupt cut in the negative
velocity half close to vz/vt,e ∼ 2. This behavior is caused by the threshold energy in the downstream particle
boundary conditions that reflects only the least energetic electrons. An interesting observation in cases EM
and IW, is the formation of a structure of increased density around the position of an effective resonant
surface ωeff = ωce where ωeff = ω − vzk is the Doppler shifted wave frequency seen by the particles due to
the non-negligible thermal speed over the wave phase velocity. This effective resonance line is represented
by a black dashed line in the last row of Figure 6. Furthermore, the development region of the Doppler
structure corresponds well to the decrease in parallel temperature in Figure 3.(b) and the negative power
deposition area in Figure 5.(b). The precise cause of this behavior is not clear and may involve mediation of
the mirror force and synchronization of particles and wave fields. In addition, we should bear in mind that
the phase plots are the sum of different populations of electrons (free, reflected, and trapped) with notably
different properties, as studied in previous works [7, 35].

The differences between EM.high and IW cases are, once again, minor and are mainly attributed to a
lower power coupling in the IW case. The EM.high case features particles with higher perpendicular energy
(and µ), and a more evident structure at the Doppler line. Certain downstream oscillations are more visible
in the µ plot of the EM case. These could be related to the structures observed in Figures 3 and 4 and will
be discussed in future work.
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Figure 6. Phase space density of the electron velocity distribution function (EVDF) for different simulation
cases. Magnetic moment µ (first row), gyrophase α (second row) and parallel velocity vz (third row). The
quantities are normalized with characteristic simulation values, particularly the thermal velocity of electrons
at injection vt,e. For a better visualization, the maps are divided by the electron density in each z cross section.
The throat is depicted by a green dash vertical line while the ECR surface is depicted by a blue dashed line.
The black dashed lines in the last row correspond to the effective Doppler shifted resonance surface.

IV. Discussion and conclusion

The study introduced a novel electromagnetic implicit PIC model for electric propulsion, enabling the
investigation of various phenomena including the transfer of energy from electromagnetic waves to the per-
pendicular electron temperature, its impact on the electrostatic potential and ion acceleration, and the
changes in the electron velocity distribution function, with observations such as the Doppler broadening in
the ECR heating area.

In addition, the comparison of the electromagnetic kinetic simulations with the cold-plasma model showed
similar wave propagation and absorption characteristics once the damping parameter is adjusted in the
latter. This comparison partially validates both approaches and, in particular, the Darwin approximation
to Maxwell’s equations, which is nevertheless seen to be highly accurate in dense plasmas in our test case.
Furthermore, the good agreement of the tuned cold-plasma wave model with the kinetic solution supports
the valuable possibility of using the latter in fitting phenomenological parameters for reduced, faster models.

The performance of the method can be evaluated as follows. Our preliminary implementation is not
optimized and is intended to demonstrate the ability of the algorithm to solve relevant plasma thruster
problems. For comparison with other methods, we use a back-of-the-envelope estimate like the one in [30]
on the computational savings of implicit Darwin electromagnetic algorithms vs. classical explicit methods.
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That work shows the following CPU wall time ratio:

CPUexp

CPUimp
∼ 0.01
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where d is the physical space dimensionality of the problem, k is the characteristic wave number of the
propagating fields, va = B0/

√
µ0m0n0 is the Alfvén speed and NFE is the number of times the particle’s

are moved before achieving convergence in the non-linear solver. For a plasma similar to the one studied
before but using Xe mass ratio and the actual value of the speed of light, thus realistic plasma thruster
conditions, speed-ups of order ∼ 100 are obtained in 1D, ∼ 2500 in 2D and ∼ 60000 in 3D. This relies
on maintaining good convergence and a bounded NFE ∼ 10, which has been demonstrated feasible in the
past by Chen et.al. [20] by using appropriate preconditioning techniques (not implemented in this study).
The estimate also assumes an essentially-quasineutral plasma domain, so fine sheath structures need not be
captured. However, in the presence of Debye sheaths, non-uniform meshes and population control algorithms
could help maintain the previous scaling. The notable computational gain figures justify the efforts toward
building higher dimensional implicit PIC codes and applying them to realistic study cases.

We conclude that the implicit PIC scheme together with the Darwin approximation surpasses the per-
formance of explicit PIC algorithms (and moreover so if the full Maxwell equations are implemented), while
retaining accuracy and adding conservation properties. Future research will focus on employing realistic
simulation parameters, specifically the speed of light constant and the ion-to-electron mass ratio, as well as
the implementation of an optimized code version that can exploit the full potential of the algorithm.

Appendix A: Verification: Periodic Electron Weibel Instability

To further verify our implementation of the implicit PIC-Darwin model, we replicate the electron Weibel
instability simulations conducted by Chen et al. [30], where additional details are available. In essence,
the Weibel instability is an electromagnetic instability that arises in an unmagnetized plasma because of
velocity-space anisotropy. When the plasma is hotter in the perpendicular direction, a perturbation in the
magnetic field can generate a self-reinforcing plasma current that amplifies the original disturbance.

Figure 7. Numerical magnetic field energy and linear growth rate for the electron Weibel instability simulation.

We introduce one such perturbation in the perpendicular velocity vp = vp0 + a cos(2πz/L), where a ≪ 1.
Electrons are sampled uniformly in the physical space from an anisotropic Maxwellian distribution with
thermal velocity vte =

√
Tez/me = 0.025c and Te⊥/Tez = 2.56. The ion distribution function is isotropic

with Ti = Tez. From linear theory, the solution of the dispersion relation [37] shows that the magnetic energy
must evolve as WB = WB0 exp(2γωpet), where γ = 0.004 is the linear growth rate for the initial parameters
introduced before.

The analytical results from linear theory and the numerical magnetic field energy computed by the
implicit electromagnetic PIC, WB,PIC =

∑
i(B

2
y,i+1/2 + B2

z,i+1/2)∆z/2, are shown in Figure 7. In the

13
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



simulations, we use a uniform grid with nz = 64 cells in a domain of L = 32c/ωpe with periodic boundary
conditions. About 8000 particle per cell are employed and a quiet-start procedure (Sobol sequence) is needed
to prevent excessive noise in the initialization. An excellent match with the linear growth rate is observed
up to saturation in Figure 7. The results also closely follow those of [30]. It has been checked that energy is
conserved up to the non-linear tolerance of the JFNK solver and local charge to machine round-off error.
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