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Magnetic nozzles are a key component in electrodeless plasma thrusters, acting as their
main accelerating device. Non-stationary phenomena common to the entire range of E ˆB
devices, such as oscillations and instabilities, are believed to be some of the main mecha-
nisms behind anomalous cross-field transport, leading to reduced efficiency. Concurrently,
they could be an enabler for electron detachment, necessary for the operation of the device.
In this work we present a local linear analysis of fluid instabilities relevant for said devices,
expanding on previous works with the addition of plasma inhomogeneities in the direction
parallel to the magnetic field, with a rigorous inclusion of magnetic curvature effects, finite
Larmor radius effects and 3D wave propagation, allowing for a general formulation of drift-
driven instabilities in partially magnetized plasmas. Instability conditions are first studied
analytically, and then applied to hybrid PIC/fluid/wave simulation data of a helicon plasma
thruster.

I. Introduction

A variety of plasma thrusters operate as partially magnetized E ˆ B discharges, with electrons closely
following magnetic field lines and the heavier ions moving freely from magnetic forces effects. Two notable
classes of plasma thrusters are the Hall Thruster (HTs)1–3 and Electrodeless Plasma Thrusters (EPTs)4,5 ,
the latter commonly relying on a Magnetic Nozzle (MN)6 as their accelerating device. E ˆ B discharges
are known to be subject to oscillations, instabilities, and turbulence,7 which under certain circumstances
lead to non-classical transport of electrons across magnetic field lines, suggesting the existence of additional
mechanisms not captured by usual steady-state drift diffusion electron models.

There is ample literature on the study of instabilities through local linear analysis, all sharing the common
intention of finding sound physical principles and criteria behind anomalous behaviours in plasmas through
a limited but analytically accessible formulation.8–13 For a two-species Maxwellian plasma at equilibrium,
consisting of unmagnetized ions and magnetized electrons, the choice of studying its oscillations by means
of either a fluid or a kinetic approach ultimately falls upon the scale of the considered problem. The
fluid approach is generally considered valid as long as the perpendicular wavenumber kK times the electron
Larmor radius ρe is a small number, kρe ă 1; in the parallel direction, the condition |k∥ce| ă |ωe| needs
to be respected, with k∥, ce and ωe the parallel wavenumber, the thermal electron velocity, and the wave
frequency in the electron reference frame. This second condition implies that particles moving at thermal
velocity parallelly are slower than the wave, so that from an observer moving at the wave phase velocity the
plasma behaves as a whole and therefore can be treated as a fluid; at the same time, kinetic paticle-wave
interactions such as Landau Damping are neglected. The advantages of employing a fluid approach over a
kinetic one lie in its reduced complexity,14 at the price of assuming a priori the aforementioned upper limits
on kK and k∥.

HT plasmas have been thoroughly studied analytically, numerically and experimentally.7,13,15–19 Oscil-
lations have been found from the kHz to the tens of MHz ranges. Morozov et al.20 employed a two-species
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fluid model with cold, inertialess electrons to justify experimentally observed azimuthally rotating struc-
tures. That work is regarded as the first to study the effect of plasma gradients and relative drift between
plasma species on the onset of plasma instabilities, which will be referred to as drift-gradient instabilities.
It was later expanded on by Esipchuk et al.21 with electron inertia and electromagnetic effects, by Frias et
al.22 with inertialess electrons with the addition of density and temperature gradients, and by Smolyakov
et al.23 with the further inclusion of electron inertia and off-diagonal parts of the electron stress tensor,
all of them sharing the common focus on HT plasmas. This last work included the effect of drift-resistive
instabilities as well, originating from the combination of relative inter-species drift and collisional effects,
previously studied by Litvak et al.24 for both electrostatic and electromagnetic waves. Ramos et al.11 pro-
vided a more general derivation of fluid electrostatic instabilities in E ˆ B plasmas, examining in detail
drift-gradient and drift-dissipative instabilities in a variety of frequency and wavelength regimes along with
stream instabilities, a class of unstable phenomena uniquely driven by relative drift between species, first
presented by Bunemann.25

Among the few works including wave propagation both along and across magnetic field lines, the one
of Krall26 from 1971 stands out. In the context of general E ˆ B discharges, his proposed kinetic model
was able to recover in the negligible Larmor radius limit (kKρe ! 1) results known from fluid theory plus a
stream instability driven by parallel propagation.

In the case of MNs and EPTs, not much work has been carried out in the analysis of their unsteady
behaviour yet. Recent experimental works have suggested the presence of both azimuthal oscillations ex-
tending up to the hundreds of kHz27,28 and azimuthal-axial oscillations.29,30 Desjardins et al.31 observe
mainly-azimuthal fluctiations in geometrically-comparable linear plasma devices, in the kHz range. Various
candidate frameworks have been proposed to explain these phenomena, from the destabilization of elec-
trostatic lower hybrid waves29 to the magnetosonic wave,32 the latter being electromagnetic in nature. In
[31], the oscillations are identified as a mixture of drift-resistive electron drift waves and Kelvin-Helmoltz
instabilities.

The naming conventions of instabilities in partially magnetized plasmas are abundant, and at times
conflicting. Two main labelling categories can be identified, relevant to two different frequency regimes: the
Electron Cyclotron Drift Instability (ECDI13,19), relevant to frequencies comparable to harmonics of the
electron gyrofrequency in the electron frame, and Lower-Hybrid Drift Instabilities (LHDI23,29,33), relevant
instead to frequencies close to the lower-hybrid frequency. Notable fluid limits of the latter are the drift-
gradient Modified Simon-Hoh Instability (MSHI23) and the Modified Two-Stream Instability (MTSI26).

What stands out from the existing body of work on E ˆ B discharges is that many of the identified
instabilities are particular limits of a more general dispersion relation. In fact, it can be stated that a whole
family of fluid instabilities stem from the presence of a non-zero interspecies drift, be it gradient-driven or
otherwise, allowing the presence of ‘slow waves with phase velocity smaller then the drift velocity, or, in other
terms, with negative Doppler-shifted frequency. These waves are described as carrying negative energy:34

when coupled with an energy sink—either a positive energy wave or a dissipative process such as inelastic
collisions—they can become unstable.35

All of the above is based on a 1D description of equilibrium gradients, as it is the relevant case in
HTs, Penning and magnetron discharges. In this work we derive a novel formulation for electrostatic drift
waves, taking into account inertial, gyroviscous, collisional and 2D gradients as well as 3D wave propagation,
conditions relevant to MNs and EPTs. The derivation is carried out in a fluid framework, assuming cold,
unmagnetized ions and warm electrons. We will assume long wavelengths, kKρe ă 1 and |k∥ce| ă |ωe|. We
further assume our plasma to have isotropic temperature at equilibrium and our oscillations to be isothermal.

We focus on the low-mid frequency range ωci ! ω ă ωce, with ωcs being the cyclotron for the s-th species
(i “ ions, e “ electrons), and work with power expansions on the small parameter ρe{L ! 1, with L being
the shortest local characteristic equilibrium length. As a novelty in our approach, the resulting system of
algebraic equations is solved by iterating on this small parameter. An a priori choice has to be made on
the order of magnitude of the inertial terms with respect to the cyclotron terms, i.e. whether the electron
Doppler-shifted frequency ωe ” ω ´ k ¨ ue0 is comparable with ωce or if ωe “ ωce Opρe{Lq. We will refer to
the former choice as to the ‘High-Frequency’ (HF) regime, while to the latter as the ‘Low-Frequency’ (LF)
one, a differentiation similar to that presented in [11].

The obtained dispersion relation is then applied to input data from pre-existing hybrid PIC/fluid/wave
MN simulations, in order to investigate the eventual triggering for instabilities in these devices. The findings
are qualitatively contrasted with available experimental data.
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The rest of the paper is structured as follows: in section II we will show the general derivation procedure
of the dispersion relation in the two frequency regimes, and we will obtain the detailed formulation of the LF
one, comparing it with formulations found in literature. In section III we will show analytical solutions of
the LF dispersion relation, expressing general instability criteria for both drift-gradient and drift-dissipative
perturbations. In section IV we will specialize the dispersion relation to a simulated MN plasma using the
data from Jimenez et al.36,37 as input for the equilibrium plasma quantities and gradients. Finally, in section
V we will present a summary and discuss the main findings of this work.

II. The dispersion relation

This section presents the derivation of the local, linear, electrostatic dispersion relation for an EˆB two-
fluid plasma composed of cold, unmagnetized ions i, and warm, magnetized electrons e. The model retains
perpendicular and parallel gradients, wave propagation in all three directions, and collisional phenomena.

We next work in the context of an axisymmetric MN, with the axis of symmetry coinciding with the
z axis. We define the local coordinate system t1∥,1K,1θu, with 1∥ “ B{B, 1θ perpendicular to the (z, r)
meridian plane, and 1K “ 1θ ˆ 1∥. Due to the zeroth-order axisymmetry of the discharge, gradients of the
zeroth-order quantities are contained in the p1∥,1Kq plane.

Being our model fluid, we limit the normalized perpendicular wavenumber to values kKρe0 ă 1, with
ρe0 “ ce0{ωce0 the electron gyroradius at equilibrium, ωce0 the equilibrium electron gyrofrequency, ce0 ”
a

Te0{me the equilibrium electron thermal velocity, Te0 the (isotropic) equilibrium electron temperature
(in eV ), me the electron mass. For the same reason, in the parallel direction, where motion of electron
particles is essentially the free thermal drift, the wavelength must be larger than the distance covered by a
single particle during an oscillation, a condition which can be expressed as |k∥ce0| ă |ωe|. We introduce the
reference small parameter, ϵ “ ρe{L, with L the smallest reference equilibrium length in our plasma.

A. General electron equations

Warm, magnetized electrons are described by their continuity and momentum equations, which read:

Bne

Bt
` ∇ ¨ pneueq “ νPne, (II.1)

Bue

Bt
` ue ¨ ∇ue “ ´

∇ ¨ Pe

mene
´

e

me
p´∇ϕ ` ue ˆ Bq ´ νeue, (II.2a)

where νP represents the particle production rate, ϕ the electrostatic potential, νe is used to model dissipative
forces on the electrons coming from collisional phenomena, and Pe the complete electron pressure tensor
including the gyroviscous contribution.

Each quantity Q in the equations above is expended as a zeroth order, time independent part, plus a
first order contribution, through which we will model any oscillatory phenomena,

Qpx, tq “ Q0pxq ` Q1 pxq exppipk ¨ x ´ ωtqq ` CC, (II.3)

with x “ sK1K ` s∥1∥ and with the subscripts 0 and 1 referring to equilibrium values and their first order
corrections, respectively. The nomenclature CC serves as a reminder that complex conjugates need to be
added to recover a real quantity; in the following it is omitted for brevity. It is easy to check that the first
order terms of the gradient of Q is composed of two contributions,

ikQ1 ` ∇Q1, (II.4)

with |∇ lnQ1| “ k O pϵq.

B. Zeroth-order equilibrium

In this work, the zeroth order equilibrium plasma quantities and gradients are taken from the hybrid
PIC/fluid simulations of the MN of a helicon plasma thruster, presented in [36, 37] The full detail of the
model, its numerical implementation, and the results can be found in that work and references therein.
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These simulations implement essentially the same electron equations as above, except that they drop elec-
tron inertia terms in equation (II.2a), consider a scalar electron pressure Pe0 “ pe0I with pe0 “ ne0Te0, and
implement an energy equation for the electron temperature Te0, together with a heat flux closure. Ions and
neutrals are treated kinetically as macroparticles.

C. First-order perturbation equations

We next model the first order electrostatic (B1 “ 0) perturbations. For simplicity, we shall model the CGL
part of the pressure tensor as an isotropic, isothermal scalar pressure, Pe1 “ pe1I ` Πe1, with pe1 “ ne1Te0

and Te1 “ 0. Here, Πe is the gyroviscous tensor. The zeroth and first order terms of the divergence of Πe,
relevant in the following, are given in appendix A.

In linearized perturbed form, the continuity equation (II.1) for electrons reads, then:

´iωne1 ` n0 p∇ ¨ ue1 ` ue1 ¨ ∇ lnn0q ` ue0 ¨ ∇ne1 ` ne1∇ ¨ ue0 “ νPne1 . (II.5)

Defining the Doppler-shifted frequency as ωe ” ω´k ¨ue0 and the normalized number density he1 ” ne1{ne0,
and rearranging terms, this becomes:

´ iωehe1 ` ue0 ¨ ∇he1 ` ik ¨ ue1 ` ∇KueK1 ` ∇∥ue∥1

´ ueK1∇K lnB0 ´ ue∥1∇∥ lnB ` ue1 ¨ ∇ lnn0 “ ´he1

ˆ

∇ ¨ pn0ue0q

n0
´ νP

˙

. (II.6)

The first order electron momentum equation (II.2a), projected along 1K,1θ,1∥, yields:

ueK1

“

´iωe ` νe ` ue0 ¨ ∇ lnueK1 ` ∇KueK0 ´
`

∇∥ lnB
˘

ue∥0
‰

` ueθ1ωce0

` ue∥1
“

∇∥ueK0 ´
`

∇∥ lnB0

˘

ueK0 ` 2 p∇K lnB0que∥0
‰

“

´
ikKpe1 ` ∇Kpe1

men0
´

∇ ¨ Πe1

men0
¨ 1K `

ˆ

∇Kpe0
men0

`
∇ ¨ Πe0

men0
¨ 1K

˙

he1 ` pikK ` ∇K lnϕ1q
eϕ1

me
, (II.7a)

ueK1 r´ωce0 ` ∇Kueθ0s ` ueθ1 r´iωe ` νe ` ue0 ¨ ∇ lnueθ1s ` ue∥1∇∥ueθ0 “

´
ikθpe1
men0

´
∇ ¨ Πe1

men0
¨ 1θ `

∇ ¨ Πe0

men0
he1 ¨ 1θ ` ikθ

eϕ1

me
, (II.7b)

ueK1

“

´2
`

∇∥ lnB0

˘

ueK0 ` ∇Kue∥0 ´ p∇K lnB0que∥0
‰

` ue∥1
“

´iωe ` νe ` ∇∥ue∥0 ´ p∇K lnB0queK0

‰

` ue0 ¨ ∇ue∥1 “

´
ik∥pe1 ` ∇∥pe1

men0
´

∇ ¨ Πe1

men0
¨ 1∥ `

ˆ∇∥pe0

men0
`

∇ ¨ Πe0

men0
¨ 1∥

˙

he1 `
`

ik∥ ` ∇∥ lnϕ1

˘ eϕ1

me
. (II.7c)

Equations (II.6) to (II.7c) can be cast in matrix form for the first order form of the amplitudes, Qe “

rueK, ueθ, ue∥, hesT , as

AeQe1 “

´

Kp0q ` Kp1q
¯ eϕ1

me
, (II.8)

where Kp0q “ i
“

kK, kθ, k∥, 0
‰T

and Kp1q “
“

∇K lnϕ1, 0,∇∥ lnϕ1, 0
‰T

. The 4ˆ4 matrix Ae depends on zeroth
order plasma quantities, their gradients and on the gradients of their first order perturbations, symbolically
written as Ae “ Ae pωs,k,Qe0,∇Qe0,∇Qe1q. This matrix can be expanded in terms of the small parameter
ϵ:

´

Ap0q
e ` Ap1q

e ` ...
¯

Qe1 “

´

Kp0q ` Kp1q
¯ eϕ1

me
(II.9)

so that A
pn`kq
e “ A

pnq
e O

`

ϵk
˘

. For the first two terms of the expansion, A
p0q
e and A

p1q
e , their dependencies

will be

Ap0q
e “ Ap0q

e pω,k,Qe0q , Ap1q
e “ Ap1q

e pω,k,∇Qe0,∇Qe1q , (II.10)
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so that all gradient terms are contained in A
p1q
e .

This expansion must be continued until the retained Ae matrix is invertible, so that ue1 and he1 can be
obtained as linear functions of ϕ1.

If ωe is of the same order of magnitude of ωce0, A
p0q
e is invertible. Then, we can compute the ‘dominant’

part of Qe1, noted as Q
p0q

e1 , as

Q
p0q

e1 “

´

Ap0q
e

¯´1

Kp0q eϕ1

me
; (II.11)

from this, we can compute its derivative in a generic direction xk (appearing in A
p1q
s ) through the differential

form:

BQ
p0q

e1

Bxk
pϕ1, ω,k,Qe0q “

BQ
p0q

e1

Bϕ1

Bϕ1

Bxk
`

ÿ

Qe0Ptn0,
Te0,B0,ue0u

BQ
p0q

e1

BQe0

BQe0

Bxk
(II.12)

and we can obtain the full expression of Qe1, accurate to the O pϵq order:

Qe1 “ Q
p0q

e1 `

´

Ap0q
e

¯´1

Kp1q eϕ1

me
´

´

Ap0q
e

¯´1

Ap1q
e Q

p0q

e1 . (II.13)

However, if ωe much smaller of ωce0, namely ωe “ O pωce0 ϵq, then A
p0q
e is singular and the computation

of Qe1 requires direct inversion of equation (II.8). In this case, the first order quantity gradients can be
computed by assuming a weakly inhomogeneous plasma, neglecting second order spatial derivatives of any
Qe0 and Qe1:

BQe1

Bxk
pϕ1, ω,k,Qe0,∇Qe0,∇Qe1q »

BQe1

Bϕ1

Bϕ1

Bxk
`

ÿ

Qe0Ptn0,
Te0,B0,ue0u

BQe1

BQe0

BQe0

Bxk
, (II.14)

so that Ae » Ae pω,k,Qe0,∇Qe0q and Qe1 can be expressed as a function of ϕ1 and Ae alone.
The zeroth-order drift velocity ueθ0 is one of the relevant parameters for the expansion. In equilibrium,

ueθ0 results from the sum of an E ˆ B drift and a diamagnetic drift, as shown in 11. Two limiting cases
will be analysed: a High-Frequency (HF) one one where ueθ0 “ O pce0q and ωe “ O pωceq, relevant for the
ECDI, and a a Low-Frequency (LF) one where ueθ0 “ O pce0 ϵq and ωe “ O pωce ϵq, relevant for LHDI. Their
equilibrium parallel velocity, on the other hand, will be assumed to be at most in the order of the ion sound
speed, |ue∥0| ď O pcs0q, with cs0 ”

a

Te0{mi the ion sound speed and mi the ion mass.

For the HF case, A
p0q
e is invertible; however, for the LF case, presented next,A

p1q
e needs to be kept to be

able to invert equation (II.8).

D. Ion solution

Cold, unmagnetized, singly-charged ions are described by the same equations (II.1) to (II.2a), neglecting the
magnetic force (B “ 0), pressure tensor (Pi “ 0), and collisional phenomena (νi “ 0). Otherwise, the same
procedure as above applies, mutatis mutandi (e.g. substituting e with i).

Ion motion at equilibrium is of order ui0 ď O pcs0q, consistently with other studies and observations of

MNs3839.40 For ions, A
p0q

i is invertible, and the dominant solution Q
p0q

i1 is (neglecting A
p1q

i terms)

u
p0q

i1 “
k

ωi

eϕ1

mi
, (II.15a)

h
p0q

i1 “
k2

ω2
i

eϕ1

mi
. (II.15b)
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E. Construction of the dispersion relation

Once hi1 and he1 have been found as functions of ϕ1, a closure relation for ϕ1 is needed. One possibility is,
naturally, to employ Poisson’s equation, here expanded up to the O pϵq order:

´ ∇2ϕ1 “
«

k2 ´ p2ikK ´ ∇K lnBq∇K lnϕ1 ´
`

2ik∥ ´ ∇∥ lnB
˘

∇∥ lnϕ1

ff

ϕ1 “
n0e

ε0
phi1 ´ he1q , (II.16)

with ε0 the vacuum dielectric permittivity. Though the definition of the plasma frequency of the s-th species,

ωps “

d

n0e2

msε0
(s “ i, e) , (II.17)

we can see that at the leading order in ϵ, substituting of equation (II.15) in (II.16) yields

k2

˜

1

ω2
i

´
1

ω2
pi

¸

eϕ1

mi
“ he1 (II.18)

Alternatively, the system can be closed with the assumption of quasineutrality, which is just the ε0 Ñ 0
limit of equation (II.16), i.e. hi1 “ he1. This is also the limit found for ω2

pi " ω2
i in equation (II.18), and

hence we shall use this for the low frequency dispersion relation.

F. Low frequency dispersion relation

In this limit case, ωe and ue0 are of order O pϵq with respect to ωce and ce respectively: this makes A
p0q
e

singular, so that A
p1q
e has to be considered for the system to be solved as a function of ϕ1. Recalling the

conditions for the validity our model, we impose the upper limits on the perpendicular wavenumber kKρe ă 1
and on the parallel wavenumber |k∥ce| ă |ωe|; this last condition, in the present case, implies |k∥ρe| ď O pϵq.
In the following, we drop the subscript 0 on magnetic field and temperature for brevity, so that B ” B0,
Te ” Te0, ωce ” ωce0 and ce ” ce0.

With the chosen ordering for ue0, the inertial convective terms appear as O
`

ϵ2
˘

terms and are therefore
neglected; then, making use of the following definitions:

ωK ” ωe ´
kθc

2
e

2ωce
∇K ln

´pe0
B2

¯

, ω∥ ” ωe ´
kθc

2
e

ωce
∇K ln

´pe0
B4

¯

, (II.19)

which are the Doppler-shifted frequencies multiplying the velocity in the directions perpendicular and parallel
to the magnetic field respectively, accounting for gyroviscous cancellation.41 The linearized electron system
becomes:

´ i rωK ` iνesueK1 `

„

ωce

ˆ

1 ´
k2ρ2e
2

˙

` i
kKc

2
e

ωce
∇K ln

ˆ?
pe0ueθ1

B

˙ȷ

ueθ1

` i
kθc

2
e

ωce

”

ik∥ ` ∇∥ ln
´pe0ue∥1

B5{2

¯ı

ue∥1 ` c2e rikK ` ∇K lnhe1she1 “ rikK ` ∇K lnϕ1s
eϕ1

me
, (II.20a)

´

„

ωce

ˆ

1 ´
k2ρ2e
2

˙

` i
kKc

2
e

ωce
∇K ln

ˆ?
pe0ueK1

B

˙ȷ

ueK1 ´ i rωK ` iνesueθ1

´ i
kKc

2
e

ωce

”

ik∥ ` ∇∥ ln
´pe0ue∥1

B5{2

¯ı

ue∥1 ` ic2ekθhe1 “ ikθ
eϕ1

me
, (II.20b)

´ i
kθc

2
e

ωce

”

ik∥ ` ∇∥ ln
´?

BueK1

¯ı

ueK1 ` i
kKc

2
e

ωce

”

ik∥ ` ∇∥ ln
´?

Bueθ1

¯ı

ueθ1 ´ i
“

ω∥ ` iνe
‰

ue∥1

` c2e
“

ik∥ ` ∇∥ lnhe1

‰

he1 “
“

ik∥ ` ∇∥ lnϕ1

‰ eϕ1

me
, (II.20c)
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”

ikK ` ∇K ln
´n0ueK1

B

¯ı

ueK1 ` ikθueθ1 `

”

ik∥ ` ∇∥ ln
´n0ue∥1

B

¯ı

ue∥1 ´ iωehe1 “ 0 . (II.20d)

Keeping only leading order terms, the determinant De of the above system is

De “ ´ω2
ce

`

ω∥ ` iνe
˘

#

ωe

ˆ

1 ´
k2ρ2e
2

˙2

´
kθc

2
eK

ωce

”

∇K ln
´n0ueK1

B

¯

´ ∇K lnhe1

ı

ˆ

1 ´
k2ρ2e
2

˙

` k2ρ2e pωK ` iνeq ` ρ2ek
2
K

kθc
2
eK

ωce
∇K ln

ˆ

ueK1

ueθ1

˙

´
R∥

ω∥ ` iνe∥

+

, (II.21)

where we have defined

R∥ “ ´c2e

„

`

ik∥ ` ℓ∥ ` ℓn
˘

ˆ

1 `
k2ρ2e
2

˙

` ℓT k
2ρ2e

ȷ

ˆ

„

`

ik∥ ` ∇∥ lnhe1

˘

ˆ

1 ´
k2ρ2e
2

˙

` ik∥k
2ρ2e ` ℓKk

2
θρ

2
e ` ℓθk

2
Kρ

2
e

ȷ

, (II.22)

with

ℓK “ ∇∥ ln
´?

BueK1

¯

, ℓθ “ ∇∥ ln
´?

Bueθ1

¯

, ℓ∥ “ ∇∥ ln

ˆ

ue∥1
?
B

˙

,

ℓn “ ∇∥ ln

ˆ

n0
?
B

˙

, ℓT “ ∇∥ ln

ˆ

Te
?
B3

˙

.

(II.23)

We can now compute he1 keeping only leading order terms:

Dehe1

eϕ1{me
“

De

c2e
`

ω2
ce

c2e

ˆ

1 ´
k2ρ2e
2

˙

`

ω∥ ` iνe
˘

„

ωe

ˆ

1 ´
k2ρ2e
2

˙

`
kθc

2
e

ωce
∇K ln

ˆ

he1

ϕ1

˙ȷ

` ω2
ce

ˆ

1 ´
k2ρ2e
2

˙„

`

ℓ∥ ` ℓn
˘

ˆ

1 ´
k2ρ2e
2

˙

`
`

ℓ∥ ` ℓn ` ℓT
˘

k2ρ2e

ȷ

∇∥ ln

ˆ

he1

ϕ1

˙

; (II.24)

Now, neglecting second order spatial derivatives, we can simplify the following algebra through |∇ωce| "

|∇ωe|. Then, from equation (II.14) the gradient of De can be approximated as:

∇De « 2 p∇ lnBqDe . (II.25)

The gradient of lnhe1 is:

∇ lnhe1 “ ∇ ln

ˆ

Dehe1

eϕ1{me

˙

´ ∇ lnDe ` ∇ lnϕ1 » ∇ lnϕ1 . (II.26)

Accordingly, equation (II.24) simplifies to:

Dehe1

eϕ1{me
“

De

c2e
`

ω2
ce

c2e

ˆ

1 ´
k2ρ2e
2

˙2
`

ω∥ ` iνe
˘

ωe , (II.27)

while yielding for the velocities (keeping only leading order terms):

DeueK1

eϕ1{me
“ iωce

ˆ

1 ´
k2ρ2e
2

˙

`

ω∥ ` iνe
˘

kθωe , (II.28a)

Deueθ1

eϕ1{me
“ ´iωce

ˆ

1 ´
k2ρ2e
2

˙

`

ω∥ ` iνe
˘

kKωe , (II.28b)

Deue∥1

eϕ1{me
“ iω2

ce

ˆ

1 ´
k2ρ2e
2

˙„

`

ik∥ ` ∇∥ lnϕ1

˘

ˆ

1 ´
k2ρ2e
2

˙

` ik∥k
2ρ2e ` ℓKk

2
θρ

2
e ` ℓθk

2
Kρ

2
e

ȷ

ωe . (II.28c)
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As in equation (II.26), equations. (II.28a) to (II.28c) allow us to compute the gradients of each velocity
component:

∇ lnueK1 “ ∇ lnueθ1 “ ´∇ lnB ` ∇ lnϕ1 , (II.29a)

∇ lnue∥1 “ ∇ lnϕ1 . (II.29b)

The above relations imply:

ℓK “ ℓθ “ ℓ∥ “ ∇∥ lnϕ1 ´
∇∥ lnB

2
, (II.30)

while R∥ (equation (II.22)) becomes:

R∥ “ ´c2e

"„ˆ

ik∥ ` ∇∥ ln

ˆ

n0ϕ1

B

˙˙ˆ

1 `
k2ρ2e
2

˙

´
∇∥ lnB

2
k2ρ2e

ȷ

` k2ρ2e∇∥ ln

ˆ

Te

B

˙*

ˆ

"„ˆ

ik∥ ` ∇∥ ln

ˆ

n0ϕ1

B

˙˙ˆ

1 `
k2ρ2e
2

˙

´
∇∥ lnB

2
k2ρ2e

ȷ

´ ∇∥ ln
´n0

B

¯

ˆ

1 `
k2ρ2e
2

˙*

. (II.31)

Recalling the definition of ωK from equation (II.19), the determinant can finally be rewritten as

De “ ´ω2
ce

`

ω∥ ` iνe
˘

#

ωe

ˆ

1 `
k4ρ4e
4

˙

´
kθc

2
e

ωce

”

∇K ln
´ n0

B2

¯

` k2ρ2e∇K lnTe

ı

` iνek
2ρ2e ´

R∥

ω∥ ` iνe

+

. (II.32)

By defining the following frequencies:

ωMe ” ´
kθc

2
e

ωce
∇K ln

´ n0

B2

¯

, ωTe ” ´
kθc

2
e

ωce
∇K lnTe , (II.33)

and by coupling equation (II.27) with equation (II.15) through quasineutrality we get, keeping only leading
order terms and by neglecting every O pϵq order term, the following dispersion relation:

0 “

«

k2

ω2
i

e

mi
´

e

mec2e

ωMe ` k2ρ2e pωe ` ωTe ` iνeq ´ R∥{
`

ω∥ ` iνe
˘

ωe ` ωMe ` k2ρ2e pωTe ` iνeq ` k4ρ4eωe{4 ´ R∥{
`

ω∥ ` iνe
˘

ff

ϕ1

” f pωi,kqϕ1. (II.34)

Being R∥ complex, the relation ωi “ ωipkq becomes in turn complex @k P R even in the absence of

collisions (νe “ 0). Physically, were Im
␣

R∥
(

‰ 0 , it could either imply that aq the parallel gradients either
act as power sources or sinks for the instability, destabilizing the flow across the entire k spectrum, or that
bq the described instability is apparent, that is, an otherwise stable wave moving through a spatial envelope,
transforming a spatial amplification (or decay) to a temporal amplification (or decay).42

Only for one value of ∇∥ ln pn0ϕ1{Bq, that is,

∇∥ ln

ˆ

n0ϕ1

B

˙ref

”
1

2

„

∇∥ ln
´n0

B

¯

´ ∇∥ ln

ˆ

Te

B2

˙

k2ρ2e
1 ` k2ρ2e{2

ȷ

(II.35)

does the dispersion relation fpωi,kq “ 0 admit real values of ωi as solutions in the collisionless case, being
R∥ completely real:

R∥ “ c2e

ˆ

1 `
k2ρ2e
2

˙2
#

k2∥ `
1

4

„

∇∥ ln
´n0

B

¯

`
k2ρ2e

1 ` k2ρ2e{2
∇∥ ln

ˆ

Te

B

˙ȷ2
+

. (II.36)
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It can be shown that any choice other than (II.35) is equivalent to selecting a frame of reference moving with
respect to the one with Im

␣

R∥
(

“ 0. Let’s choose for example a slightly different shape for ∇∥ ln pn0ϕ1{Bq,
say

∇∥ ln

ˆ

n0ϕ1

B

˙

“ ∇∥ ln

ˆ

n0ϕ1

B

˙ref

` ki (II.37)

with ki small and real. It is quite easy to see that, upon substitution in equation (II.31), ki behaves as the
imaginary part of the now complex parallel wavenumber k∥ ` iki. Then, if ωpkq P IR was a stable solution
for ki “ 0, its new form for ki ‰ 0 will be:

ω
`

k ` iki1∥
˘

» ωpkq ` i
Bω

Bk∥
ki ” ωpkq ` ivg∥ki “ ωrpkq ` iγ (II.38)

with vg∥ the parallel group velocity in the parallel direction, γ “ Impωq and ωr “ Repωq. It is then a
simple exercise to show that selecting ki ‰ 0 corresponds to selecting a frame moving with parallel velocity

v∥ “ vg∥ki{
”

∇∥ ln pn0ϕ1{Bq
ref

ı

‰ 0 with respect to the frame with ki “ 0. We therefore choose this stable

reference frame with ki “ v∥ “ 0 as the one of interest, continuing with the closure ∇∥ ln pn0ϕ1{Bq “

∇∥ ln pn0ϕ1{Bq
ref

.
Substituting equation (II.31) into equation (II.34) and dividing by ϕ1, the dispersion relation finally

renders as:
k2c2s
ω2
i

“
ωMe ` k2ρ2e pωe ` ωTe ` iνeq ´ R∥{

`

ω∥ ` iνe
˘

ωe p1 ` k4ρ4e{4q ` ωMe ` k2ρ2e pωTe ` iνeq ´ R∥{
`

ω∥ ` iνe
˘ (II.39)

with R∥ containing effects of both parallel wave propagation and gradients.
Equation (II.39) is clearly akin to equation (31) from [23], with the additions of magnetic field curvature

effects, parallel dynamics and plasma inhomogeneities in the K-∥ plane.

1. Notable limits of the low frequency dispersion relation

From here, two notable limits can be taken: the dispersion relations for MSHI23 and the MTSI,26 respectively

k2c2s
ω2
i

“
ωMe

ωe ` ωMe
(k2ρ2e Ñ 0, R∥ Ñ 0) , (II.40)

and

k2c2s
ω2
i

“ ´
c2ek

2
∥

ω2
e ´ c2ek

2
∥

(k2ρ2e Ñ 0, ∇Q0 Ñ 0) , (II.41)

both expressed in their quasi-neutral limit.
Lastly, if we assume ∇∥ lnQ0 “ 0, ν∥ " ωe and kρe ! 1, we recover

k2c2s
ω2
i

“

ωMe ` i

˜

k2ρ2eνe `
c2ek

2
∥

νe

¸

ωe ` ωMe ` i

˜

k2ρ2eνe `
c2ek

2
∥

νe

¸ (II.42)

which is the cold, unmagnetized ion limit of equation (13) from [43].
The first two limits (II.40)-(II.41) express the two main ingredients for stream and drift gradient insta-

bilities, which are interspecies drifts due to gradients (in the perpendicular direction) or due to different
thermal velocties (in the parallel direction), as will be later shown in section III.A. The third limit (II.42)
shows how the combined presence of drifts and collisions naturally introduces destabilization in the problem
by introducing imaginary terms in the dispersion relation, a concept further explored in section III.B. As a
summary, these three limits show the building blocks for fluid instabilities that arise in partially magnetized
plasmas.
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III. Low frequency instabilities

Now, we specialize the quasineutral limit of the dispersion relation obtained in equation (II.39) to the
Magnetic Nozzle case, using simulated data from Ref. [36] for the equilibrium plasma quantities and their
gradients.

In general, solutions of the dispersion relation ωi “ ωi pkq come in two regimes: a higher frequency pair
of electron drift waves with ωi „ k ¨ ue0, and a lower-hybrid pair, with ωi „ kρeωLH . This is a framework
similar to that analysed in [11] for the ‘low-frequency modes in the low-drift regime’, with an added fourth
branch due to the inclusion of parallel dynamics.

In the collisionless limit, only the lower-hybrid branches experience destabilization in the form of a
reactive instability (pair of complex conjugate solutions). In the collisional case, one of the two electron
drift waves can be destabilized as well, namely the one with frequency in the electron frame ωe ă 0 . The
reason, as anticipated in the introduction, has to do with the existence of ‘slow’ electron waves in presence
of zeroth order drifts. In the collisionless case the only energy sinks present in the plasma are ion acoustic
waves, whose frequency lies in the ωLH range: when the two types of wave have matching frequencies and
wavenumbers, an unstable interaction takes place. When inelastic collisions are present in the medium they
act as an energy sink, destabilizing the slow electron wave without the need of coupling with the ion sound
wave.

In general, the presence of collisions widens considerably the parametric instability region, while at the
same time lowering the growth rates of the drift gradient instabilities identified in the collisionless limit.
The analysis is therefore focused mostly on drift-gradient (collisionless) instabilities; notwithstanding this,
at the end of this section, a paragraph is dedicated to drift-resistive (collisional) instability conditions and
how resistive effects alter the collisionless case.

A. Drift-gradient instabilities

Defining:

∆ ” ωi ´ ωe “ k ¨ pue0 ´ ui0q , ∆∥ ” ωi ´ ω∥ , (III.1)

the former being the Doppler shift between the two species, equation (II.39) can be hugely simplified by
considering either lower-hybrid wave solutions ω2

i „ k2c2s “ k2ρ2eω
2
LH or electron drift wave solutions ω2

i „

∆2 " k2c2s. Here we are assuming |ue0| " |cs|, as expected in current-free MNs.
For the electron drift wave solutions, equation (II.39) approximately becomes

ω2
e `

ˆ

ωMe

k2ρ2e
` ωTe ` ∆ ´ ∆∥

˙

ωe `
`

∆ ´ ∆∥
˘

ˆ

ωMe

k2ρ2e
` ωTe

˙

´
R∥

k2ρ2e
» 0 (III.2)

admitting solutions

ωi “ ∆ ´
1

2

ˆ

ωMe

k2ρ2e
` ωTe ` ∆ ´ ∆∥

˙

»

–1 ˘

b

“

k2ρ2e
`

∆ ´ ∆∥ ´ ωTe

˘

´ ωMe

‰2
` R∥

k2ρ2e
`

∆ ´ ∆∥ ` ωTe

˘

` ωMe

fi

fl , (III.3)

which are always stable for R∥ ě 0.
Moving to the lower-hybrid branches, following the assumption k2c2s ! ∆2 and expanding up to the

second power of ωi{∆, we get

ω2
i ´

k2c2sωi

∆∥

`

∆ ` ∆∥
˘ `

1 ` k4ρ4e{4
˘

´
`

ωMe ` k2ρ2eωTe

˘

ωMe ` k2ρ2e pωTe ´ ∆q ` R∥{∆∥

´ k2c2s
∆
`

1 ` k4ρ4e{4
˘

´ ωMe ´ k2ρ2eωTe ´ R∥{∆∥

ωMe ` k2ρ2e pωTe ´ ∆q ` R∥{∆∥
» 0 (III.4)

whose solution ωi “ ωir ` iγ has real and imaginary parts:

ωir “ k2ρ2e
ω2
LH

2∆∥

`

∆ ` ∆∥
˘ `

1 ` k4ρ4e{4
˘

´
`

ωMe ` k2ρ2eωTe

˘

ωMe ` k2ρ2e pωTe ´ ∆q ` R∥{∆∥
, (III.5)

γ » ωLHkρe

d

∆ p1 ` k4ρ4e{4q ´ ωMe ´ k2ρ2eωTe ´ R∥{∆∥

ωMe ` k2ρ2e pωTe ´ ∆q ` R∥{∆∥
. (III.6)
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The expression for γ allows us to retrieve the following general instability criterion:

„

∆

ˆ

1 `
k4ρ4e
4

˙

´ ωMe ´ k2ρ2eωTe ´
R∥

∆∥

ȷ „

ωMe ` k2ρ2e pωTe ´ ∆q `
R∥

∆∥

ȷ

ą 0 . (III.7)

This relation underlines how the electron drifts in the ion reference frame are the ones driving the instability,
whether they may be due to aq gradients in electrostatic potential, pressure or magnetic field, or bq thermal
motion along the magnetic field lines.

1. Long-wavelength limit

Taking the limit kρe Ñ 0 of relation (III.7), the instability criterion simplifies to:

„

∆ ´ ωMe ´
R∥

∆∥

ȷ „

ωMe `
R∥

∆∥

ȷ

ą 0 . (III.8)

This expression can be easily shown to be a generalization of the MSHI and the MTSI conditions, whose
relevant dispersion relations expressed at the end of section II. Neglecting parallel propagation and gradients,
R∥ “ 0, yields the MSHI criterion

r∆ ´ ωMesωMe ą 0 ; (III.9)

Instead, dropping perpendicular inhomogeineities (ωMe “ 0, ∆∥ “ ∆) yields the MTSI condition

∆2 ą R∥ . (III.10)

2. Finite Larmor radius effects

As kρe becomes non-negligible, rearranging the relation (III.7) yields a finite Larmor radius correction to
the criterion in (III.8):

„

∆ ´ ωMe ´
R∥

∆∥

ȷ „

ωMe `
R∥

∆∥

ȷ

ą

k2ρ2e

«

ˆ

ωTe ´
k2ρ2e∆

4

˙ˆ

ωMe `
R∥

∆∥

˙

´ pωTe ´ ∆q

ˆ

∆ ´ ωMe ´
R∥

∆∥

˙

` k2ρ2e

ˆ

ωTe ´
k2ρ2e∆

4

˙

pωTe ´ ∆q

ff

, (III.11)

implying that even if the condition for long-wavelength instabilities are not respected (for instance, left-hand
side of (III.11) ă 0), we can still have an onset for larger values of the normalized wavenumber kρe. On the
other hand, if the long-wavelength criterion from (III.8) is satisfied, higher values of k2ρ2e might cause ωi to
become real, quenching the instability.

B. Drift-resistive instabilities

Up until now we have considered a collisionless plasma. When collisional effects are included, the dispersion
relation becomes a complex polynomial in ωi, yielding in general complex solutions as a result. To understand
the conditions for which at least one solution might yield an unstable growth, we can perform a standard
marginal stability analysis,11 finding out the conditions for which at least one branch admits ωi P R as a
solution, meaning that its imaginary part is changing sign (thus moving to or from a stable configuration to
an unstable one).

Supposing then ωi P R and solving the imaginary part of equation II.39:

␣

νe
“

ωMe ` k2ρ2e pωe ` ωTeq
‰

` k2ρ2eνeω∥
(

pω2
i ´ k2c2sq “ k2c2sωeνe

ˆ

1 ´
k2ρ2e
2

˙2

; (III.12)
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solving now the real part:

␣

ω∥
“

ωMe ` k2ρ2e pωe ` ωTeq
‰

´ k2ρ2eν
2
e ´ R∥

(

pω2
i ´ k2c2sq “ k2c2sωeω∥

ˆ

1 ´
k2ρ2e
2

˙2

. (III.13)

Multiplying both sides by
␣

νe
“

ωMe ` k2ρ2e pωe ` ωTeq
‰

` k2ρ2eνeω∥
(

and substituting equation (III.12) into
(III.13):

␣

ω∥
“

ωMe ` k2ρ2e pωe ` ωTeq
‰

´ ν2e ´ R∥
(

k2c2sωeνe

ˆ

1 ´
k2ρ2e
2

˙2

“

“

ωMe ` k2ρ2e
`

ωe ` ω∥ ` ωTe

˘‰

k2c2sωeω∥νe

ˆ

1 ´
k2ρ2e
2

˙2

; (III.14)

in general, equation (III.14) admits only ωe “ 0 as a solution for νe ‰ 0, which in turn implies ω2
i “ k2c2s.

This is only ever satisfied by having ∆ “ ˘kcs, which indicates that a real solution is only possible for
ue0 “ ˘cs (assuming k » |kθ|).

Using analytical continuation,

0 » fpωi,kq
ˇ

ˇ

νe“0
`

Bf

Bωi
δωi `

Bf

Bνe
νe (III.15)

yields the growth rate due to destabilization from dissipative forces:

δωi “ ´
Bf{Bνe
Bf{Bωi

ˇ

ˇ

ˇ

ˇ

νe“0

νe. (III.16)

Computing the partial derivatives, and substituting them into equation (III.16):

δωi “ ´
iνe

`

ω2
i ´ k2c2s

˘

´

k2ρ2e ` R∥{ω2
∥

¯

2ωi

“

ωMe ` k2ρ2e pωe ` ωTeq ´ R∥{ω∥
‰

`

´

k2ρ2e ` R∥{ω2
∥

¯

pω2
i ´ k2c2sq ´ k2c2s p1 ´ k2ρ2e{2q

2
;

(III.17)

taking the limits ω2
i Ñ k2c2s and ωe Ñ 0 of equation (III.17) then yields:

γ “ ´νe
`

ω2
i ´ k2c2s

˘ k2ρ2e ` R∥{ω2
∥

2ωi

“

ωMe ` k2ρ2eωTe ´ R∥{ω∥
‰

´ k2c2s p1 ´ k2ρ2e{2q
2 . (III.18)

Using the marginal stability condition ωi « ∆, ω∥ « ∆ ´ ∆∥, and assuming |ωMe| " k2c2s:

γ » νe
`

∆2 ´ k2c2s
˘ k2ρ2e ` R∥{

`

∆ ´ ∆∥
˘2

k2c2s p1 ´ k2ρ2eq
2

´ 2∆
“

ωMe ` k2ρ2eωTe ´ R∥{
`

∆ ´ ∆∥
˘‰ . (III.19)

We conclude that, given that R∥ ě 0 for any k∥ and any combination of parallel gradients, destabilization
can happen a) for supersonic drifts (|∆| ą kcs) when the denominator is negative, or b) for subsonic drifts
in the opposite case. However, while dissipative forces in the perpendicular plane can be neglected in the
long-wavelength limit (kρe Ñ 0), parallel friction always has to be considered.

For our high-drift case of interest, electron drift waves |ωi| „ ∆ " kcs can be shown to be destabilized
when ωe ă 0 (substituting equation (III.3) in (III.17)). It can also be shown through equation (III.17) that
drift gradient instability growth rates are in general lowered by the added dissipation. From this, we can
state that while collisions offer a more general destabilization criterion, they also tend to reduce unstable
growths excited by gradients alone.
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Figure IV.1: Simulation data from Ref. [36]. Contour plots for n0, ϕ0 and ueθ0. The red dots represent the
three points for which a ωi-k plot has been obtained.

IV. Application to MN simulation data

As a means of illustration, in this paragraph, numerical solutions of (II.39) are obtained for each point
in the entire 2D map shown in Figure IV.1, stemming from the simulations of the MN of a helicon plasma
thruster reported in 36. The simulation data was obtained through a 2D hybrid code, HYPHEN-EPT, with
electrons modelled as a magnetized diffusive fluid, while the heavy species are simulated through a PIC
formulation,44,45 and wavefields are solved in the frequency domain using a cold-plasma-wave model.36

Three points have been chosen from the shown MN region, two in the near-plume and one in the far-plume
part of the discharge, to show three different ωi pkq trends for a drift-gradient instability. Each location shows
a different evolution of γ w.r.t., starting from the triggering of a quasi-MSHI in the first case and ending
with a short-wavelength instability, mostly driven by parallel dynamics, in the third case. Table 1 shows
their coordinates, and associated zeroth-order plasma quantities and gradients.

z r ωLH cs ueθ0 ∇K lnn0 ∇K lnB ∇K lnTe ∇∥ ln
`

n0

B

˘

∇∥ lnTe

[cm] [cm] [106 s´1] [103 m/s] [105 m/s] [m´1] [m´1] [m´1] [m´1] [m´1]

4.5 3.4 8.1 1.9 1.7 ´39.4 7.5 ´2.5 0.4 ´0.0

8.4 2.5 3.2 1.9 4.5 ´98.7 2.5 3.2 ´1.9 ´0.2

20.8 8.5 0.2 1.9 12.7 ´23.5 2.2 1.6 0.1 ´0.6

Table 1: Coordinates, zeroth-order plasma quantities and gradients at the three reference points.

Figure IV.2 presents the real and imaginary parts of the solution ωi pkq for the near-plume point with axial
and radial coordinates pz, rq “ p4.5, 3.4q cm. For k∥{kθ “ kK{kθ “ 0 it presents an instability mainly driven
by perpendicular dynamics, respecting the MSHI criterion from equation (III.9) and developing mostly in
long-wavelength regime kρe ! 1. The instability disappears for small values of the ratio k∥{kθ; the effect of
kK is on the other hand negligible, leaving the shape of the solution almost unchanged. For this very reason,
in this point and in the following ones, the solutions have been plotted with kK{kθ “ 0.
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Figure IV.2: Real frequency (top figure) and growth rate (bottom figure) for the long-wavelength destabi-
lization of the lower-hybrid branch for the point of coordinates pz, rq “ p4.5, 3.4q cm. Black lines are for
k∥ “ 0; blue lines for k∥{kθ “ 2 ¨ 10´2. Relevant zeroth-order plasma quantities and gradients are shown in
Table 1.

Figure IV.3: Real frequency (top figure) and growth rate (bottom figure) for the destabilized lower-hybrid
branch for the point of coordinates pz, rq “ p8.4, 2.5q cm, with onset in the long-wavelength regime and peak
in the short-wavelength regime. Black lines are for k∥ “ 0; blue lines for k∥{kθ “ 2 ¨ 10´2; red lines for

k∥{kθ “ 4 ¨ 10´2. Relevant zeroth-order plasma quantities and gradients are shown in Table 1.
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Figure IV.3 shows the destabilized lower-hybrid branch for the point pz, rq “ p8.4, 2.5q cm. In this case
the MSHI is no longer respected as the perpendicular components of the electric field and density gradient
have different sign, so that the inclusion of parallel dynamics is responsible for the destabilization of the
lower-hybrid branch. The instability develops at a slight larger kρe but still in the long-wavelength regime.
However its peak is reached in the short-wavelength, at kρe “ O p1q. Once again, |k∥| ą 0 has a stabilizing
effect, separating the ion sound wave and the ‘slow’ electron wave.

Figure IV.4: Real frequency (top figure) and growth rate (bottom figure) for the short-wavelength desta-
bilization of the lower-hybrid branch for the point of coordinates pz, rq “ p20.8, 8.5q cm. Black lines are
for k∥ “ 0; blue lines for k∥{kθ “ 8 ¨ 10´2; red lines for k∥{kθ “ 16 ¨ 10´2. Relevant zeroth-order plasma
quantities and gradients are shown in Table 1.

Figure IV.4 shows the ωi-k plot of the unstable lower-hybrid branch at the point pz, rq “ p20.8, 8.5q cm.
In this case, far from the MSHI condition, the effect of parallel dynamics R∥{∆∥ is negligible when compared
to the large Doppler shift ∆ „ kθueθ0, as shown by the small growth rate peak when k∥{kθ “ 0 (black line).
The instability is then driven by finite parallel propagation |k∥{kθ| ą 0, creating a separate short-wavelength
onset region as the ratio |k∥{kθ| grows (blue line). Eventually, the long and short-wavelength onset regions
collapse into a single one for larger values of said ratio (red line).

These three cases have been analysed to apply the concepts and criteria developed in section III on a
relevant configuration. We may now move our attention on the study and identification of the most unstable
modes developing in a MN, as predicted by our model.

For each point of the map, the maximum growth rate γmax “ max
k,ωr

pγ pk, ωrqq has been obtained, with

the associated wavenumber and real frequency k˚, ω˚
ir respecting the conditions ρek

˚ ă 1 and |k˚
∥ ce| ă |ω˚

e |.

The mode associated with γ “ γmax is then the most unstable for that particular point of the nozzle; 2D
maps of γmax, ω

˚
ir and k˚ are shown in Figure IV.5.

The regions with larger γmax are mostly found in those same points where |ueθ0| reaches its peaks. This
can be explained by looking at the relation between γ and ∆ from equation (III.6), with γ 9

„

?
∆ and by

noting that, in general, ∆
`

ωMe ` R∥{∆∥
˘

ą 0. A similar consideration can be done with the plot of ω˚
ir,

recalling the expression of ωir from equation (III.5), and with the plot of k˚
θ ρe, as ∆9kθ. All these first

three plots show very similar trends, as they all share a direct correlation with the Doppler shift ∆ and the
zeroth-order electron drift velocity ueθ0. The ratio k˚

∥ {k˚
θ is quite negligible in the near plume. As we’ve

stated in the discussion of the three ωi-k plots, in this region the effect of a finite parallel propagation is, in
general, to stabilize the wave. This is not true in the ueθ0 ă 0 region and in the far-plume region, as shown
in Figure IV.4. The role of k˚

K, on the other hand, is quite marginal, as we’ve stated beforehand. It follows
a trend more or less similar to that of k˚

∥ , peaking in a region of small γmax.

In those points where γmax is reached for k˚ρe “ 1, a kinetic formulation of the problem would be more
suitable.
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Figure IV.5: 2D maps of γmax, ω
˚
ir and k˚ resulting from a point-wise local analysis across the MN plume

region in the collisionless limit.

Figure IV.6: 2D maps of γmax and ω˚
ir in kHz across the MN plume region in the collisionless case. Black

line represents the 1 kHz contour line.
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Figure IV.6 shows the same 2D maps for γmax and ω˚
ir, this time expressed in kHz. Most of the instabilities

and their associated real frequencies fall in the 1 kHz—1 MHz range, decreasing as we move from the near-
plume to far-plume region of the discharge. The modes with larger γmax have a mainly-azimuthal associated
wavenumber, k˚ » k˚

θ 1θ.

Figure IV.7: 2D maps of γmax, ω
˚
ir and k˚ across the MN plume region in the collisional case.

The effect of collisions on the instability peaks are negligible, as electron-neutral collision frequencies
remain in the order νe ď O pωLHq, barely affecting the O pωLHq growth rates, as shown in Figure IV.7.
Overall, the 2D maps of γmax, ω

˚
ir and k˚ remain almost unchanged moving from the collisionless to the

collisional case, as the most unstable modes are of the drift-gradient type.
The inclusion of parallel gradients in the dispersion relation plays a major role in the stability of the

solution. Their presence allows the onset of instabilities in those points of the nozzle where the MSHI
criterion from equation (III.9) does not hold, even without k∥ ‰ 0. This statement is further illustrated
by the plots of Figure IV.8, which have been computed by using a form of equation (II.39) without parallel
gradients, ∇∥ lnQe0 “ 0. These plots present a substantially different map for γmax, with the majority of
the instabilities taking place in those regions satisfying the MSHI criterion. The map of k˚

θ shows milder
peaks, loosely following the ones of γmax. k˚

∥ has a much more prominent role in the onset of instabilities:

this is due to the fact that, in the absence of parallel gradients, R∥9k2∥. In the regions where the MSHI
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criterion is not satisfied, then, instabilities can only be driven by finite parallel propagation i.e. k∥ ‰ 0.

Figure IV.8: 2D maps of γmax, ω
˚
ir and k˚ resulting from a point-wise local analysis across the MN plume

region in the collisionless limit neglecting parallel gradients.

We conclude this section with a qualitative comparison with the avaialble experimental data. Recalling
Figure IV.5 and IV.6, we have shown that the most unstable modes predicted by our model consist of
mainly-azimuthal waves with associated real oscillation frequency ω˚

ir in the 1 kHz—1 MHz range. While
Hepner et al.29 and Vinci30 do find fluctuations in a similar frequency range, they both describe waves with
combined axial-azimuthal propagation (where the presence of a large k∥ introduces kinetic effects which
elude our fluid model). Among the cited experimental works, our predicted unstable modes seem to more
qualitatively describe fluctuations observed by Takahashi et al.32 and Maddaloni et al.,28 which fall in the
10-100 kHz range and consist of mostly azimuthal waves.

V. Summary

We have derived a model to study local linear stability of 3D electrostatic isothermal waves in a partially
magnetized plasma presenting inhomogeneities in both parallel and perpendicular directions of the magnetic
field, taking into account magnetic curvature effects, parallel dynamics, gyroviscosity and inertial effects
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from a fluid perspective. The equilibrium plasma temperature have been assumed to be isotropic.
The presented model is based on expansions of the momentum and continuity equations in the small

term ϵ “ ρe{L, showing the detailed of the dispersion relation in the Low Frequency regime, that is, ωe “

Opωce ϵq. Our proposed novel matrix approach is particularly convenient for assessing the effect of plasma
inhomogeneities by iteratively including larger powers of ϵ.

From this analysis, we have provided simple and general instability criteria for both drift-gradient and
drift-dissipative instabilities, highlighting the role of each drift and their interplay in the onset of drift-driven
unstable oscillations and the effect of finite Larmor radius effects on the onset/quenching of exponential
growth.

As a final step, the dispersion relation has been specialized to the study of the Magnetic Nozzle of an
Helicon Thruster, using the data from [36] as a reference. Maps of growth rate, real oscillation frequency
and wavenumber have been provided for the most unstable modes predicted to arise in the Magnetic Nozzle,
showing the onset of mostly azimuthal instabilities in the 1 kHz—1 MHz range. These findings are in quali-
tative agreement with some of the available experimental data. The analysis has highlighted the importance
of including parallel inhomogeneities in the formulation of the dispersion of an E ˆB plasma discharge such
as that of a Magnetic Nozzle, as these gradients may drive instabilities even when conditions for MSHI are
not met and in the absence of an axially propagating wave, and the absence of important collisional efffects.

However, for this model fluid model to be valid we are intrinsically limited to the study of long wave-
lengths, kρe ă 1, and small parallel propagation, |cek∥| ă |ωe|. To overcome these limitations, a more
consistent as well as complex kinetic approach could be employed.

This work represents a first step in a general formulation of local linear fluid instabilities in MNs and
their effects on anomalous electron transport. Future steps include the addition of a quasilinear analysis to
gauge the second-order effect of oscillations on transport as well as presenting the derivation of the dispersion
relation relevant for the High Frequency regime.
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A. Gyroviscous Tensor Divergence

From the definition of the gyroviscous tensor , assuming isotropic temperature TeK “ Te∥ and fast-ordering
dynamics:41
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we can obtain at the 1st order, assuming ue0 » ueθ01θ and neglecting Opρ2e{L2q terms:
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(A.2a)
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