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Turbulence, azimuthal oscillations and instabilities in Hall thrusters can effec-
tively contribute to the cross-field electron transport. In this work, stability and
high-frequency oscillations in the Hall-thruster discharge are studied in the axial-
azimuthal plane with a linear fluid perturbation model, accounting for global
effects, such as plasma inhomogeneity and boundary conditions. The proposed
perturbation model includes electron pressure effects in the electron momentum
equation, that are disregarded in some high-frequency analyses. The effect of
electron temperature perturbations on stability is discussed by comparing results
with and without first-order temperature terms in the electron momentum equa-
tion. These results suggest that electron temperature should not be overlooked
in high-frequency stability analyses. For the case with no temperature pertur-
bations, the stability analysis is complemented with a parametric study and a
comparison with local dispersion relations. The impact of oscillations on electron
transport is assessed, including contributions from inertia, which are usually not
taken into account and are noted to be nonnegligible according to our results.

Nomenclature

E,B = electric and magnetic field vectors

E,B = electric and magnetic field magnitudes

x, y, z = radial, azimuthal and axial coordinate

t = time

1x,1y,1z = unitary vector in the radial, azimuthal and axial direction

ω = complex frequency

ωr = oscillation frequency (real part of ω)

γ = growth rate (imaginary part of ω)

ky, kz = azimuthal and axial wave numbers

λy = azimuthal wavelength

L = typical length of axial variation of macroscopic variables

n = plasma density

ne, ni = electron and ion number density

νe = electron collision frequency

νi = ionization frequency

νw, νwe = wall particle-loss and energy-loss frequency

E′i = energy loss per particle due to ionization and radiation

ue,ui,un = electron, ion and neutral fluid velocity vectors
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ujk = fluid velocity in the j-th direction (y, z) of k-th species (e, i)

φ, Te = electric potential and electron temperature

qe = electron heat flow vector

qye, qze = electron heat flow vector in the azimuthal and axial direction

e,me,mi = electron charge, and electron and ion masses

cs, ce = sound and electron thermal speed

ϕ = generic macroscopic variable

ϕ0, ϕ̃1 = zeroth and first-order macroscopic variable

ϕ1 = complex amplitude of first order macroscopic variable

ωce = electron cyclotron frequency

ωlh = lower-hybrid frequency

χ = Hall parameter

N = number of points in discretization

Γe,Γi,Γn,Γm = flux of electrons, ions, neutrals and mass

ṁA = mass flow rate through the anode

gm, gc = mass flux and total current densities

Vd = discharge voltage

Lch, dc, R = length, width and mean radius of the channel

zmax = location of the maximum magnetic field with respect to the anode

LAN = distance from anode to external cathode

αB = anomalous diffusion coefficient

ν̃w = dimensionless parameter for the wall losses model

TSEE = electron temperature yielding 100% of secondary electron emission

aw = accommodation factor

Lm1, Lm2 = characteristic lengths of the magnetic field profile in the channel and in the plume

Id = discharge current

uph = oscillation phase speed

Fyt = equivalent azimuthal force produced by oscillations

I. Introduction

Numerical simulations of Hall thrusters are not currently able to accurately reproduce the large
cross-field electron transport observed empirically,1 especially close to exit of the channel. Classical
collisional theories fail in predicting the electron transport, so that there must be collisionless
transport mechanisms that are not yet fully understood. In macroscopic electron models, this is
typically solved by adding extra collisionality with tunable parameters. However, this approach
is not useful to reach predictive models that could be used for design tasks. Plasma turbulence
and oscillations in the azimuthal direction have been considered to possibly explain this anomalous
electron current by correlated azimuthal oscillations of plasma density and azimuthal electric field
producing an axial drift.2 Other contributions from oscillations to transport, than the one we have
just mentioned, are considered in this work.

The complex physical phenomena taking place in Hall thrusters lead to a wide variety of azimuthal
oscillations at different scales and frequency regimes.3 At low frequencies (5-25 kHz), rotating
spokes have been observed in the near-anode region and unconventionally long channels.2 Although
the physical phenomena leading to the formation of spokes is unclear, some of its characteristic
have been successfully reproduced in nonlinear kinetic4 and fluid5 simulations; and with linear fluid
stability analysis.6

The low-to-medium frequency band (20-500 kHz) is occupied by gradient drift instabilities, as
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measured in experiments.7 Dispersion relations with homogeneous background plasma has been
proposed that show instability criteria based on magnetic and density gradients,8 and predict
oscillations with significant azimuthal component in the close-anode and near-plume regions.9

In the high-frequency range (1-10 MHz) azimuthal instabilities, close to the channel exit and near
plume regions, are observed at two different scales:

• Hall thruster circumference. The mean value is close to 27 cm in the SPT-100 model, with
average radius R = 4.25 cm. Azimuthal waves travelling with phase speed of the order of the
electron drift velocity have been observed experimentally and predicted theoretically.10 This
speed has been shown to be fairly constant along the channel, which suggest the presence of
non-local mechanisms. This is the reason why there are multiple examples in the literature of
high-frequency global stability analysis,11–13 using a macroscopic formulation for all species in
the plasma. Electron inertia has been noted to play an important role, since it is fundamental
in the existence and derivation of the corresponding dispersion relation.10

• Electron Larmor radius `e and smaller. This is of the order of millimeters for typical values
of Hall thrusters. It was introduced theoretically, using kinetic dispersion relations, in the
1970s14,15 as the Electron Cyclotron Drift Instability (ECDI), and it is attracting the interest
of the scientific community because of anomalous cross-field electron transport. The theory
predicts that this instability can develop in E ×B plasmas with homogeneous background.
Experiments16 show two azimuthally counter-propagating waves at scales 1.14-0.70 mm with
phase velocity 2.5 km/s (this is of the order of the ion sound speed for electron temperature
Te ≈ 8.6 eV). From the theory and simulation perspective, the approach used to study this
modes is purely kinetic.17,18 There is no evidence (to the best of our knowledge) on the
capabilities of macroscopic models to capture this instability.

Although at different scales, these two types of azimuthal instabilities have common features: the
frequency range and axial location close to the channel exit. The big difference in the orders of
magnitude of phase speeds is directly related to the difference in scale. It is not completely cleat if
the ECDI could be reproduced by fluid models or whether there is a connection between the two
introduced types of electron drift waves.

This work attempts to complete global high-frequency stability analyses in fluid models by extend-
ing them to smaller scaler scales. It has been noted that cold electrons are usually assumed in
similar analyses (Ref. 13 is a good summary of fluid perturbation models in this frequency regime),
which do not seem justified in all regions of the discharge and, thus, is not suitable for studying
instabilities with a global approach. Moreover, the fluid equations are simplified in such a way that
one single differential equation is reached for the perturbation potential, removing any effect from
boundary conditions involving other variables (among other possible effects).

In Sec. II the model used to study the stability of the Hall thruster discharge is introduced. The
proposed perturbation model minimizes the number of assumptions, while still keeping those that
are reasonable in the high-frequency regime (e.g. neglecting ionization or decoupling of neutral
species). In Sec. III results are shown and discussed assuming negligible electron temperature
oscillations. This assumption is undone in Sec. IV and the results are compared with previous
ones.

II. Perturbation fluid model

The presence of instabilities is studied using a small perturbation method and a fluid description for
every species in the plasma: singly-charged Xenon ions, electrons and neutral Xenon (sub-indexes
i, e and n, respectively). Under this approach, the plasma variables are expressed as

ϕ(y, z, t) = ϕ0(z) + ϕ̃1(y, z, t) (1)

where ϕ represents every plasma variable, z is the coordinate along the thruster axis (with origin
at the anode) and y is the azimuthal coordinate pointing in the direction of the electron drift
(thus, x is the radial coordinate). This is, the complete solution is separated into a stationary
axisymmetric background (ϕ0) and a small peturbation (ϕ̃1), which contains the non-stationary
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and azimuthal behavior. The plasma variables used in this work should be understood as radially
averaged, which leads to the appearance of source terms in macroscopic equations accounting for
plasma-wall interaction effects.19

The axial evolution of background, or zeroth-order, variables come as equilibrium solutions to
the stationary axisymmetric fluid equations,19 for given value of parameters. Then, the temporal
and spatial evolution of small perturbations (the first order solution) is approximately governed
by linearized fluid equations. This linear system is, in addition, homogeneous. In our analysis,
perturbation equations are Fourier-transformed in time and azimuthal coordinates, i.e.

ϕ̃1(y, z, t) = Re{ϕ1(z) exp (−iωt+ ikyy)} (2)

where ϕ1 is the complex amplitude of the waves and keeps the axial dependence of the perturba-
tions. Then, the set of fluid equations form a system of ordinary differential equations that govern
the axial behavior of the complex amplitudes of first order variables. Solving this type of problem
with the corresponding boundary conditions is a global approach to stability.

The Fourier expansion can be also made in z, under which the derivative operator d/dz, applied to
first order variables in the equations, becomes ikz. This is strictly valid in the limit of the Boussinesq
approximation kzL � 1 (which is not satisfied, in general, in Hall thrusters due to important
inhomogeneities in the background plasma), where L is a characteristic length associated to the
background plasma gradients. This approach is local, in the sense that stability can be studied at
each z independently, with frozen values of background variables and gradients. Moreover, local
dispersion relations cannot account for the effect of boundary conditions. This work focuses on the
global approach, but we try to establish a connection between local and global results.

Regarding boundary conditions (required in the axial direction), both the complete perturbed
solution and the background plasma satisfy the same ones. This fact can be used to obtain first
order boundary conditions, which are homogeneous.

Figure 1: Schematic representation of a Hall thruster,20 with Vd being the discharge
voltage, Id the discharge current and Γi,e,n,m the ion, electron, neutral and mass fluxes.

An schematic view of a Hall-thruster discharge is displayed in Fig. 1, which shows relevant axial
positions. The considered discharge region extends from the anode wall (A) to the cathode or
neutralized (N). It contains the thuster channel (from A to E) and a portion of the near plume
(from E to N). Points D and S are located at the positions of quiescent and interior sonic ions.
Point B denotes the anode sheath edge, where the quasineutral plasma region starts and ions are
also sonic but flowing towards the anode wall. Both zeroth and first order solutions are assumed
to satisfy quasineutrality from B to N (which will be later checked) and, thus, quasineutral models
are used in a domain from B to N. An anode sheath model is used to translate boundary conditions
from A to B.
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Table 2: Nominal parameters of the SPT-100 Hall thruster, where ṁA is the mass
flow at the anode, Vd is the discharge voltage, Bmax is the maximum magnitude of the
magnetic field (located at zmax), Lch is the channel length, LAE is the anode-cathode
length, dc is the channel width, R is the average channel radius, TeN is the temperature
of cathode electrons, uznB is the injection velocity of neutrals, Lm1,2 are characteristic
lengths for the magnetic field profile and αB, ν̃w, TSEE and aw are parameters required
for collisional and wall-interaction models.19

ṁA 4.75 mg/s Vd 300 V

Bmax 251 G zmax 2.5 cm

Lch 2.5 cm LAE 3.35 cm

dc 1.5 cm R 4.25 cm

TeN 5 eV uznB 300 m/s

αB 0.094 ν̃w 0.17

TSEE 36.8 eV aw 0.85

Lm1 1.5 cm Lm2 0.5 cm

A. Two-dimensional macroscopic model

Due to the assumptions made on the first order problem (introduced later in this section), the
perturbation neutral equations are uncoupled from other species. They are required, though, in
order to solve for the background19 plasma behavior. The macroscopic transport equations, only
for ion and electron species, for the sake of conciseness, read

∂n

∂t
+∇ · (nui) = n(νi − νw) (3a)

∂ui

∂t
+ ui · ∇ui = − e

mi
∇φ+ νi (un − ui) (3b)

∂n

∂t
+∇ · (nue) = n(νi − νw) (3c)

∂ue

∂t
+ ue · ∇ue = − 1

men
∇ (nTe) +

e

me
(∇φ− ue ×B)− νeue (3d)

∂

∂t

(
3

2
nTe

)
+∇ ·

(
3

2
nTeue

)
= nTe∇ · ue −∇ · qe − nνiE′i − nνweTe +menνeu

2
e (3e)

0 =
5

2
nTe∇Te + eqe ×B +meνeqe (3f)

where n is the quasineutral plasma density, ui = uzi1z is the ion velocity vector, ue = uye1y+uze1z

is the electron velocity vector, φ is the electric potential, Te is the electron temperature, qe =
qye1y + qze1z is the electron heat flow vector, B = B1x is the magnetic field vector, νi is the
ionization frequency, νw is the wall particle-loss frequency, νe is the total electron collision frequency,
νwe is the wall energy-loss frequency, E′i accounts for energy losses due to ionization and radiation,
e is the electron charge in absolute value, mi is the ion mass and me is the electron mass. The
macroscopic variables are averaged over the width dc. The plume expansion produces an increase
in dc, which is neglected for the purposes of this work. The electron inertia has been neglected in
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the heat flow transporta (Eq. (3f)).

The boundary conditions of background and perturbed plasma variables are:

1. The total discharge current Id flowing through the electric circuit. It can be shown to be
equal to the total current (contribution of ions and electrons) next to the cathode plane.
That is to say

gc = enN (uziN − uzeN ) (4)

where gc ≡ Id/(2πRdc).

2. The ion axial velocity uzi satisfies the Bohm condition uziB = −csB at the anode sheath
edge, with cs =

√
Te/mi being the ion sonic speed.

3. The anode wall potential is set to zero. In the zeroth order problem, this condition fixes the
arbitrary reference potential. The potential at the sheath edge follows20

eφB
TeB

= ln

√
TeB

2πmeu2zeB
(5)

provided that φA = 0. This expression comes from a stationary, unmagnetized, collisionless
and isothermal macroscopic sheath model and the required matching with the quasineutral
particle flux at the sheath edge.

4. The heat flux at the anode sheath edge (qzeB) can be also estimated as

qzeB = nBuzeB

(
eφAB −

1

2
TeB

)
(6)

that ensures matching with the axial heat flow from the sheath model.21

5. The temperature of injected electrons at the cathode plane (TeN ).

6. The azimuthal velocity of injected electrons (uyeN ). Being able to satisfy this condition
requires keeping electron inertia terms in the azimuthal equation of motion. Electron diffu-
sive models, such as the one used here to compute the background plasma response, make
mathematically impossible to force a boundary condition for uye.

7. Total mass flow (contribution of neutrals and recombined ions) injected at the anode, which
is expressed as

gm = mi (uziBn+ uznB) (7)

where gm ≡ ṁA//(2πRdc).

8. Injection velocity of neutrals at the anode sheath edge (uznB).

9. A boundary condition is required at interior sonic points (where the ion axial velocity satisfies
u2zi = Te/mi) that ensures a smooth transition between subsonic and supersonic regions of
the discharge.20 Sonic singularities can only be allowed at sheath edges.

The zeroth order plasma solution is integrated with these boundary conditions20 and the pertur-
bations must be such that the perturbed plasma solution satisfies them as well. The calculation of
the zeroth order solution is not described in this document since it has been thoroughly explored
in the literature.19–21

B. First order model

For the perturbation model, it is assumed that: (i) the perturbed ion motion is purely axial,
(ii) collision frequencies are not perturbed, (iii) properties of neutrals are not perturbed and (iv)
perturbations are quasi-neutral (ñ1 ≡ ñe1 = ñi1) and electrostatic. Using the small perturbation

aWhile this is consistent in the zeroth order solution, it is not in first order. A fully consistent perturbation
model would require to include inertial terms in the electron heat flow equation.
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approach in Eq. (1) and the fact that the background plasma profiles are solution to stationary
axisymmetric equations, yield

uzi0
dn1
dz

+ n0
duzi1

dz
=

(
iω − duzi0

dz

)
n1 −

dn0
dz

uzi1 ≡ F1 (8a)

uzi0
duzi1

dz
+

e

mi

dφ1
dz

=

(
iω − duzi0

dz

)
uzi1 ≡ F2 (8b)

uze0
dn1
dz

+ n0
duze1

dz
=

(
iω − ikyuye0 −

duze0
dz

)
n1 −

dn0
dz

uze1 − ikyn0uye1 ≡ F3 (8c)

uze0
duze1

dz
+

Te0
men0

dn1
dz
− e

me

dφ1
dz

+
1

me

dTe1
dz

=

(
iω − ikyuye0 −

duze0
dz

− νe0
)
uze1+

+
eB

me
uye1 +

Te0
men20

dn0
dz

n1 −
1

men0

dn0
dz

Te1 ≡ F4 (8d)

uze0
duye1

dz
= (iω − ikyuye0 − νe0)uye1 −

(
duye0

dz
+
eB

me

)
uze1−

− iky
Te0
men0

n1 + iky
e

me
φ1 − iky

1

me
Te1 (8e)

3

2
uze0Te0

dn1
dz

+
3

2
uze0n0

dTe1
dz

+
5

2
n0Te0

duze1
dz

+
dqze1

dz
=

(
iω

3

2
Te0 − iky

3

2
uye0Te0−

− 3

2
uze0

dTe0
dz
− 5

2
Te0

duze0
dz

− νi0E′i0 − νwe0Te0 +meνe0u
2
ye0

)
ne1+

+

(
−3

2

dn0Te0
dz

+ 2meνe0n0uze0

)
uze1 +

(
−iky

5

2
n0Te0 + 2meνe0n0uye0

)
uye1+

+

(
iω

3

2
n0 − iky

3

2
n0uye0 −

3

2
uze0

dn0
dz
− 5

2
n0

duze0
dz

− νwe0n0 −
5

2

n0Te0
meνe0

k2y

)
Te1+

+ ikyχ0qze1 (8f)

5

2
n0Te0

dTe1
dz

= −5

2
Te0

dTe0
dz

n1 −
5

2
n0Te0

(
1

Te0

dTe0
dz

+ ikyχ0

)
Te1 −meνe0χ

2
0qze1 ≡ F7 (8g)

where ionization and wall source terms are neglected in the continuity and momentum equations
and 1 + χ2

0 ≈ χ2
0 holds, being χ0 = ωce/νe0 the Hall parameter and ωce = eB/me the electron

gyrofrequency. Ionization and wall interaction. The azimuthal component of the heat flow pertur-
bation

qye1 = −iky
5

2

n0Te0
meνe0

Te1 − χ0qze1 (9)

coming from Eq. (3f) projected along this direction, was conveniently substituted in order to reduce
the computational cost of solving the stability problem. The inertia of electrons is not included
in the first order electron heat flow, for simplicity. A fully consistent model requires to keep these
terms, provided that they are not neglected in the electron momentum equation. This can be done
as future work.

The system of first order fluid equations written in the form of Eqs. (8) hides the role played by
sonic points in the model. From Eqs. (8a), (8b), (8c), (8d) and (8g), an equation involving only
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the first order axial gradient of uzi1 can be derived

n0
(
Te0 −miu

2
zi0 −meu

2
ze0

) duzi1
dz

= meuze0uzi0F3−

− n0uzi0
(
miF2 +meF4 −

2

5

F7

n0Te0

)
+
(
Te0 −meu

2
ze0

)
F1 ≡ G1 (10)

where we note that meu
2
ze0 � miu

2
zi0. This expression makes clearer the relevance of sonic points,

where Te0 = miu
2
zi0 and there is a zero factor multiplying duzi1/dz that may lead to singularities

depending on the value of the right-hand side (G1). Although the interior sonic point of the
perturbed plasma moves with respect to the zeroth order position22 (and this displacement can
be computed as a post-processed result), we should only care about the zeroth order one for the
application of the regularizing boundary condition. Similarly to the zeroth-order case20 , the first
order problem solved here has two sonic points of different type:

1. At the interior of the quasineutral plasma, where the zeroth-order ion flow undergoes a sonic
transition. A continuous and smooth behaviour close to this point requires G1S = 0, which
is a necessary boundary condition of the problem and makes possible for duzi1/dz to take a
finite value while still satisfying Eq. (10).

2. At the anode sheath edge, where ion velocity satisfy the Bohm condition. Here, the matching
with the non-quasineutral sheath. Singularities are allowed at this boundary, where G1B 6= 0
and, thus, the axial derivatives of perturbation variables tend to ±∞.

The boundary conditions follow closely those in Sec. IIA:

1. The perturbation on the total current at the cathode plane is zero, which yields

gc1 = e(uzi0N − uze0N )n1 + en0Nuzi1N − en0Nuze1N = 0 (11)

2. For the perturbed solution to satisfy Bohm condition at B, it is required that

uzi1B = − cs0B
2Te0B

Te1B = − 1

2mics0B
Te1B (12)

Moreover, this condition is required in order to ensure the validity of the small perturbation
assumption close to the anode singularity.22 Numerical solutions of the first-order problem
verify that, certainly, this is required to have moderate growth of perturbations at the anode
boundary and good convergence behaviour with the number of grid points.

3. The perturbation potential at the anode wall (φ1A) is zero. At the sheath edge the first order
potential follows the linearized potential drop equation

eφ1B =

(
eφ0AB

Te0B
+

1

2

)
Te1B −

Te0B
uze0B

uze1B (13)

4. The heat flux matching condition and the sheath edge yields

qze1B =

(
eφ0AB −

1

2
Te0B

)
uze0Bn1B +

(
eφ0AB −

3

2
Te0B

)
n0Buze1B +

eφ0AB

Te0B
n0Buze0BTe1B

(14)

5. The temperature of injected electrons is assumed to be known and therefore Te1N = 0.

6. The azimuthal electron velocity perturbation is considered to be zero at the cathode axial
position, i.e. uye1N = 0. This condition is required in the first order problem because of
keeping electron inertia effects. This is not the case of the integration of the zeroth order
model, in which electron transport is diffusive and there are no axial gradients of uye0 involved
in the equations.

7. The regularizing boundary condition at point S required to ensure smooth behaviour close
to the sonic point, i.e. G1S = 0.
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The first order fluid equations and boundary conditions are homogeneous, reason why null pertur-
bations are always a valid, but trivial, solution to the system. However, self-sustained oscillation
(the eigenmodes of the problem) can still take place at specific values of the complex frequency ω
(the eigenvalues), for given ky and background solution. The real and imaginary parts of ω are
the oscillation frequency (ωr) and the growth rate (γ). Positive γ denotes a growing perturbation
and, thus, an unstable behavior. The numerical method used to solve the frequencies and modal
shapes of the perturbation problem is described in the Appendix A.

III. Results: without electron temperature perturbations

Stability is firstly investigated assuming null temperature perturbations. The system of equations
to be solved comprises Eqs. (8a)-(8e) with Te1 ≈ 0 and the corresponding boundary conditions.
However, Eqs. (8f) and (8g) can still be used to make an estimate of Te1 and qze1 in order to check
if temperature perturbation terms are negligible in the electron momentum equation.

(a) Oscillation frequency (b) Growth rate

Figure 2: Global dispersion relations of the two most unstable modes, with Te1 =
0. Red and blue colours denote instability (γ > 0) and stable behavior (γ < 0),
respectively. Diamond and cross markers account for negative and positive sign of
the ordinate variable, respectively.

Fig. 2 shows ωr and γ for the two most unstable modes at each kyLch. Instabilities are found
at two ranges of kyLch with clearly distinguished characteristics (outside from these ranges these
modes become very stable and are difficult to track):

• kyLch within the range 0.75 to 3.25 (this is λy ∼ 21 to 5 cm). The oscillations are concentrated
in the subsonic region (see an example in Fig. 3). Only the perturbation potential shows
significant oscillations in the supersonic ion flow.

The values of ωr fall in the medium-frequency band. This is, approximately, from 100 to 300
kHz. The azimuthal phase velocity (uph = ωr/ky) of the waves is within the range 10-35
km/s, which is of the order of the background electron axial velocity close to the anode. The
wave propagates in the +E ×B direction.

Comparing the relative orders of magnitude of the different terms in the electron momentum
equation, we note that inertia terms are only important in the azimuthal direction and close
to the anode (see Fig. 5a). Electron inertia is not a dominating effect but, even so, neglecting
it makes this mode non-dominant (in terms of growth rate) and has significant effect on the
evolution of the perturbations. Regarding electron pressure, neglecting it does not seem
appropriate, as done in some similar works in the literature.11–13 Finally, collisions play a
negligible role in these modes.

The features of this mode remind the close-anode gradient drift oscillations mentioned in the
introduction and recently discussed in the literature.8,9 On the other hand, close-anode oscil-
lations with similar λy have been identified as rotating spoke instabilities2 possibly enhancing
electron transport in the close-anode region. The rotating spokes are measured, however, at
rather lower frequencies (ωr ∼ 5-25 kHz) than those obtained by our calculations.
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(a) Plasma density (b) Electric potential

(c) Electron axial velocity (d) Electron azimuthal velocity

(e) Ion axial velocity

Figure 3: Perturbation map in the axial-azimuthal plane, with Te1 = 0, for the most
unstable mode at kyLch = 1.75, with frequency 239 kHz. Perturbations scaled in order
to get φ1 = 30 mV at the location of maximum module of the complex amplitude.

• kyLch within the range 11.25 to 13.75 (this is λy ∼ 1.4 to 1.0 cm). In this case, the oscillations
are found completely in the external part of the discharge (see an example in Fig. 4) and are
mainly azimuthal, although some small amplitude fast axial waves are noticed (especially in
ũye1).

The oscillation frequency ωr is found to be of the order of 1-5 MHz, that is similar to the
lower-hybrid frequency ωlh at the exit. The azimuthal phase speed uph takes values in the
range 10-40 km/s and modes in both ±E × B directions are found. This is close to uzi0 in
the plume. Since the ion Mach number is, here, of the order of 10, uph is greater than cs0 by
one order of magnitude.

Looking at the different terms contributing to the electron momentum equation, the magnetic
force seems to be mostly balanced by the electric force. However, electron inertia terms
cannot be neglected since they are comparable to magnetic and electric forces in some small
regions of the plume. It has been verified that neglecting them leads to a large impact in
the evolution of perturbations. Electron pressure plays a secondary role (let us note that
pressure fluctuations are only produced by n1 since Te1 = 0 was assumed) and collisional
terms are negligible.
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(a) Plasma density (b) Electric potential

(c) Electron axial velocity (d) Electron azimuthal velocity

(e) Ion axial velocity

Figure 4: Perturbation map in the axial-azimuthal plane, with Te1 = 0, for the most
unstable mode at kyLch = 13.5, with frequency 2.91 MHz. Perturbations scaled in order
to get φ1 = 30 mV at the location of maximum module of the complex amplitude.

The oscillation frequency and location of the perturbations resemble to the characteristics
of electron drift modes (introduced in Sec. I) although λy and uph take intermediate values
between large and small-scale electron drift waves. Moreover, there are two unstable branches
of modes in Fig. 2 corresponding to azimuthally counter-propagating modes with similar
features to those aforementioned. This is also observed in ECDI empirical results in the
literature.23 Although there seems to be a connection between the modes shown here and
electron drift waves at other scales, there is no experiment10,16,23,24 or simulation17,25 (to
the best of our knowledge) that could appropriately reproduce or refute the modes computed
with our model (in some cases due to insufficient ky-spectrum resolution).

Under the obtained results, it is still not clear if fluid models capture the physics required to
see instabilities at scales of the electron Larmor radius `e. Nevertheless, our analysis predicts
instabilities in the centimeter range (this is at scales one-order-of-magnitude smaller than
the thruster circumference), which is an advance towards such small scales, with respect to
other global macroscopic perturbation works.13 Let us remark that there are some effects
missing in our model that could be non-negligible at `e and sub-`e scales, e.g., non-neutral
or gyroviscous effects. Moreover, it was assumed that Te1 = 0, which is undone in the next
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section.

The first order model described in Sec. IIB assumes quasineutral plasma perturbations. Once
results have been obtained, the level of compliance of the solution with this assumption can be
assessed. This is done using first-order Poisson equation in order to estimate the difference between
ion and electron densities from the Laplacian of the potential perturbation. Provided that this
difference (ni1 − ne1) is much smaller than the quasineutral result for the plasma density (n1QN ),
the quasineutral approximation is expected to provide accurate results. Results, for the examples
in Fig. 3 and 4, are shown in Fig. 6 and reveal that the obtained modes can be approximately
considered quasineutral.

(a) kyLch = 1.75 and ωr = 239 kHz. See Fig. 3.

(b) kyLch = 13.5 and ωr = 2.91 MHz. See Fig. 4.

Figure 5: Absolute values of the terms in the first order axial and azimuthal electron
motion equations (Eqs. (8d) and (8e), respectively), with Te1 = 0, scaled with νrefcref/µ,
being νref = 9.83× 104 s−1, cref = 2.97 km/s and µ = 4

√
me/mi = 0.0451.

A. Parametric dependence

In this section the global stability calculations are repeated for different background plasma so-
lutions, corresponding to parametric variations with respect to the nominal case in Table 2. The
maximum amplitude of the magnetic field is modified accordingly with other parameters in order
to keep optimum thruster operation.26 Three parameters are varied:

• The discharge voltage (Vd). Instabilities within the frequency range 1-10 MHz at scales
kyLch ∼ 9− 14 (λy ∼ 1.1-1.7 cm for nominal Lch) are found in every case with oscillations in
the near plume, as Fig. 4, and growing values of ωr with Vd. This response of the frequency to
increasing Vd has been observed empirically in high frequency oscillations in Hall thrusters.27
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(a) kyLch = 1.75 and ωr = 239 kHz. See
Fig. 3.

(b) kyLch = 13.5 and ωr = 2.91 MHz.
See Fig. 4.

Figure 6: Validity of the quasineutral perturbation assumption for solutions with
Te1 = 0.

Regarding the near-anode instabilities found, in the nominal case, at larger scales (see and
example in Fig. 3), they are not found in the case Vd = 700 V but are present for Vd = 200 V
in a very narrow kyLch range in Fig. 7b. Also for these modes, ωr increases with Vd. These
two features resemble the rotating spoke instabilities, as reported in the literature.28

• The channel length (Lch). This parameter seem to have a greater impact on the frequency
spectrum (see Fig. 8). High-frequency oscillations in the near plume are found for every
parametric case within similar scales. For the case Lch = 1.4 cm, analogous modes also
appear at larger scales kyLch ∼ 0.5−6 (λy ∼ 1.4-18 cm for Lch = 1.4). These high-frequency
large scale modes fit with the characteristic of electron drift modes at scales of the thruster
circumference.13

If the channel length is increased (Lch = 5.5 cm), near-anode modes become dominant at
scales kyLch < 8 (λy > 4.3 cm for Lch = 5.5 cm) with ωr ∼ 35− 62 kHz. These frequencies
are closer to those typically associated to rotating spokes. Moreover, rotating spokes were
observed in a long-channel (10 cm) thruster2 for the first time and PIC simulations29 suggest
that they appear if the anode-cathode distance is large enough.

Also in the case Lch = 5.5 cm, new unstable modes appear at the smallest studied scales
with ωr ∼ ωce ∼ 800 MHz and uph ∼ ce0 ∼ 1, 600 km/s. These modes are characterised by
oscillations in the near-plume region and diminished n1 and uzi1. Because plasma density
perturbations are small compared to other variables, the first-order solution highly violates
quasineutrality and these modes are not reliable.

• Anode mass flow rate (ṁA). The main difference with respect to the nominal parametric
case is that close-anode modes are unstable within a wider range of scales, i.e., for λy > 1.6
cm. Although ωr shows a general drop, oscillation frequencies remain close to 100 kHz.
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(a) Oscillation frequency (b) Growth rate

Figure 7: Global dispersion relations of the most unstable mode, with Te1 = 0 and
the parametric cases: Vd = 200 V, Bmax = 179 G (cyan); Vd = 700 V, Bmax = 383 G
(magenta) and nominal Vd = 300 V, Bmax = 251 G (black). Dot and cross markers
account for negative and positive sign of the ordinate variable, respectively.

(a) Oscillation frequency (b) Growth rate

Figure 8: Global dispersion relations of the most unstable mode, with Te1 = 0 and
the parametric cases: Lch = 1.4 cm, Bmax = 401 G (cyan); Lch = 5.5 cm, Bmax = 383 G
(magenta) and nominal Lch = 2.5 cm, Bmax = 251 G (black). Dot and cross markers
account for negative and positive sign of the ordinate variable, respectively.

(a) Oscillation frequency (b) Growth rate

Figure 9: Global dispersion relations of the most unstable mode, with Te1 = 0 and
the parametric cases: ṁA = 8.5 mg/s, Bmax = 249 G (magenta) and nominal ṁA = 4.75
mg/s, Bmax = 251 G (black). Dot and cross markers account for negative and positive
sign of the ordinate variable, respectively.

B. Cross-field electron transport

The net axial long-term impact of perturbations in the electron transport is assessed with the
azimuthal electron momentum equation averaged over one wave period and one azimuthal wave-
length. If plasma variables are still expressed as in Eq. (1), the averaging operation cancels
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firs-order terms out, yielding
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〉
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= −
〈
∂

∂y

(
ñ1T̃e1

)〉
− e〈ñ1Ẽy1〉 − eBn0uze0 (15)

where the angle brackets denote the averaging operator, electrons collisions were neglected (this is
expected in regions where transport is mainly driven by turbulence) and the second order magnetic
force is neglected against the zeroth order part. The zeroth-order electron inertia is neglected also
against the magnetic force, although some comments will be made concerning this matter. The
previous equation can be expressed as

Fyt − eBn0uze0 = 0 (16)

in which all averaged quadratic terms were condensed into an equivalent azimuthal force (Fyt), that
balances out the magnetic force produced by the axial electron current. This expression highlights
how quadratic terms impact the axial electron transport. But it also reveals that uze0 > 0 is
required whenever Fyt > 0, which is unconventional in Hall thrusters and can be observed to
happen in Fig. 10.

The zeroth-order electron inertia is neglected in Eq. (15) and in the model used for background
solutions.19 This is justified as long as duye0/dz � ωce, that may fail close to the anode and in
the plume. Thus, the zeroth-order electron inertia could contribute to the anomalous transport21

and correct the sign of Fyt.

The anomalous electron transport due to plasma oscillations is typically explained in the literature
using the quadratic term e〈ñ1Ẽy1〉 in Eq. (15). However, we show here the existence of other
quadratic terms, coming from electron inertia and electron pressure, that could also enhance cross-
field transport. We find that the inertia contribution can be of the same order than the electrostatic
one (see Fig. 10), in the two types of instabilities introduced previously in this section.

(a) kyLch = 1.75 and ωr = 239 kHz. See
Fig. 3

(b) kyLch = 13.5 and ωr = 2.91 MHz.
See Fig. 4

Figure 10: Second order contributions to the average cross-field electron transport
expressed as an equivalent azimuthal force Fyt.

C. Comparison with local stability results

Here we try to establish a connection between the wave modes obtained with global and local
approaches. Local dispersion relations are firstly derived for a specific assumed ordering (let us
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remind that the axial-gradient operator applied to forst order variables is ikz). For the background,
we assume that

uzi0 ∼ uze0 ∼ cs0 uye0 ∼
cs0
µ
∼ ce0µ eφ0 ∼ Te0 = mic

2
s0 νe0 ∼ ωceµ

d

dz
∼ µ

`e0
(17)

being cs0 =
√
Te0/mi ∼ 3× 103 m/s the ion sonic speed, ce0 =

√
8Te0/(πme) ∼ 2.5× 106 m/s the

electron thermal speed, µ = 4
√
me/mi ≈ 0.0451 for Xenon as propellant, ωce = eB/me ∼ 0.4 GHz

the electron cyclotron frequency and `e0 ∼ ce0/ωce ∼ 2 mm the electron Larmor radius. On the
other hand, wave properties and perturbations are assumed to obey

ω ∼ ωceµ kz ∼
ω

cs0
∼ 1

µ`e0
ky ∼

ω

uye0
∼ 1

`e0
(18)

and
uye1
uye0

∼ uze1
cs0
∼ ε uzi1

cs0
∼ n1
n0
∼ eφ1
Te0
∼ εµ2 (19)

respectively; with ε being an arbitrary scaling parameter for the perturbations. Keeping only the
dominant terms in Eqs. (8a)-(8f) yields

kzuzi0n1 + kzn0uzi1 = ωn1 (20a)

kzmiuzi0uzi1 + kzeφ1 = ωmiuzi1 (20b)

kzuze1 = −kyuye1 (20c)

kz
Te0
n0

n1 − kzeφ1 = −ieBuye1 (20d)

kzmeuze0uye1 = (ω − kyuye0 + iνe)meuye1 − ky
Te0
n0

n1 + kyeφ1 + ieBuze1 (20e)

The values of ω that allow non-trivial solutions to these equations are

ω±ia = kz (uzi0 ± cs0) (21)

ωed = kyuye0 + kzuze0 − iνe0 (22)

The modes with ω±ia are critically stable and propagate with axial phase speed uzi0± cs0 and, thus,
can be identified as ion acoustic waves. They propagate in opposite directions in the subsonic
region, while they can only move downstream in the supersonic part of the discharge. On the other
hand, the mode with ωed is associated to the drift motion of electrons (both azimuthal and axial)
and is damped by collisions. For oblique waves (|ky| ∼ |kz|) and azimuthal waves (|ky| > |kz|), ωed is
approximately independent of kz, since |uye0| � |uze0| within the whole domain. Let us emphasize
that the employed ordering leads to equations without zeroth-order axial gradients, which usually
play a role in local instability criteria.9,30,31 Furthermore, the magnetic field is not involved in
these modes because Eqs. (20c) and (20d) imply a balance of pressure and electromagnetic forces
in the azimuthal direction.

The ordering assumed in order to derive the previous expressions is not completely coherent with
the results of the global analysis and it is unable to predict any instability. Even so, complex
frequencies of local modes computed numerically (see Appendix A) with a more complicated model
(e.g. Eqs. (8a)-(8f)) are easy to correlate with either ω±ia or ωed (see Figs. 11 and 12). This result
suggests that Eqs. (21) and (22) properly capture some fundamental characteristics of the local
modes obtained with more complete models.

In Figs. 11 and 12, the cases ky ∼ ±kz is considered (for one specific example with kyLch = 12.5),
because these seem to be dominant contributions to the kz-spectrum in global solutions (examples
in Figs. 4 and 3). The numerical result, as well as the analytical one, shows a change in the
sign of Re{ω±ia} with the sign of kzLch; while Re{ωed} is nearly independent of kzLch. Moreover,
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the analytical expressions are fairly accurate close to the anode and to the cathode. At the exit
Re{ω±ia} ∼ ±1.5 MHz, which is of the order of the aforementioned modes with oscillations in the
near plume (see Figs. 2 and 4). The value of Re{ω±ia} moves to lower frequencies when closer
to the anode (Re{ω±ia} ∼ ±100 kHz close to point D), within the range of those unstable global
modes with oscillations in the subsonic region (see Figs. 2 and 3). The frequencies of unstable
modes, computed with a global approach, are, in every case, closer to those of ion-acoustic-like
local modes.

Regarding the ability of local analyses to predict instability, the numerical results show γ > 0 for
ion-acoustic-like mode in the subsonic region (independently of the sign of kz), which is coherent
with some of the obtained global modes. Regarding instabilities in the near plume region, they are
shown in Fig. 12b when the signs of ky and kz differ. Nevertheless, it is the local mode associated
to the electron drift motion that become unstable, whose frequencies are significantly greater than
1-5 MHz.

Although we have tried to establish a connection between local and global analyses, this is not direct
since inhomogeneities in Hall thrusters and the effect of boundary conditions are not covered by
local analyses. This fact has been already reported in the literature.6 Moreover, adding kz increases
the dimension of the parametric space and makes the stability analysis difficult and not directly
comparable to global results (where a discrete and large number of kz, within an interval given by
the grid refinement, is studied at the same time).

(a) Oscillation frequency

(b) Growth rate

Figure 11: Local dispersion relations
for kyLch = kzLch = 12.5 computed nu-
merically with Eqs. (8a)-(8f) (solid line)
and analytically from Eqs. (21) and
(22) (broken line). Red and blue col-
ors denote positive and negative signs,
respectively.

(a) Oscillation frequency

(b) Growth rate

Figure 12: Local dispersion relations
for kyLch = −kzLch = 12.5 computed nu-
merically with Eqs. (8a)-(8f) (solid line)
and analytically from Eqs. (21) and
(22) (broken line). Red and blue col-
ors denote positive and negative signs,
respectively.

IV. Results: with electron temperature perturbations

In this section, electron temperature perturbations are allowed (Te1 6= 0). The system of equations
to be solved comprises Eqs. (8) and the corresponding boundary conditions. This system includes
two new variables, i.e. Te1 and qze1, with respect to the model used in the previous section.

The dispersion relation for the most unstable mode (with nominal parameters) at each kyLch is
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displayed in Fig. 13 in magenta. The eigenvalues of the case with Te1 = 0 are also plotted in black,
for comparison. Let us remark that, in contrast to Fig. 2, instabilities can be identified with cross
markers in Fig. 13b.

Looking at Fig. 13b, we observe that the two unstable regions of the ky-spectrum found with
Te1 = 0 broaden in the case with Te1 6= 0. Unstable modes are consequently found in the complete
range of studied kyLch. Nevertheless, the unstable modes found now are noted to be modifications
of those observed with Te1 = 0:

(a) Oscillation frequency (b) Growth rate

Figure 13: Global dispersion relations of the most unstable mode, comparing the
results for Te1 = 0 (black) and Te1 6= 0 (magenta). Diamond and cross markers account
for negative and positive sign of the ordinate variable, respectively. The unstable
character of the modes is determined solely by the sign of γ in the (b) panel.

• For kyLch ≤ 6 (this is λy ≥ 2.6 cm) the unstable modes concentrate the oscillation in the
near-anode subsonic region and ωr take values between 50 and 180 kHz. Modes with very
similar characteristics were found with Te1 = 0 at slightly higher frequencies. Even though
pressure perturbations due to Te1 are not completely negligible, the first order Lorentz force
and pressure oscillations due to n1 are greater in the close-anode region. This fact would
explain why, when neglecting the pressure term involving Te1, some of the main features of
these modes are recovered.

The perturbation maps, quasineutrality check and azimuthal equivalent force look very sim-
ilar to those in Figs. 3, 6a and 10a, respectively. There is, however, a non-negligible contri-
bution to Fyt from pressure terms in Eq.(15).

Including the temperature calculation in the perturbation model seems to lower the oscillation
frequency of these modes. This result may reinforce the idea that they are a manifestation
of the well-known rotating spokes. Since we are moving towards lower frequencies, some of
the assumption done initially should be reconsidered.

• For kyLch ≥ 6 (this is λy ≤ 2.6 cm) unstable modes are found with oscillations taking place
in the near plume (see Fig. 14). The values of ωr range (in absolute value) from 1 to 60
MHz. However, in the vicinity of kyLch = 13, the values of ωr there is a good matching with
the dominant modes when Te1 = 0. These evidences suggest that the modes obtained with
Te1 6= 0 are a modified version of those explained with Te1 = 0. In the case Te1 6= 0, these
modes are unstable within a broader region of the ky-spectrum and, thus, they are able to
evolve towards larger frequencies (but still relatively close to typical values of electron drift
modes).

Despite the aforementioned similarities between both models, considering Te1 introduces
important differences because pressure oscillations due to Te1 become one of the dominant
terms in the electron momentum equation (see Fig. 17). Namely, the axial wavelengths of ñ1,
φ̃1 and ũzi1 become shorter; the maximum amplitudes of ũze1 and ũye1 increase by a factor
of 2; and the amplitude of ñ1 decrease by one order of magnitudeb (compare Figs. 4 and 14).
As consequences from the last point, inertia terms dominates over pressure and electrostatic

bRemind that the magnitude of the perturbation is arbitrary and was chosen such that φ̃1 is bounded between
±1 × 10−4Vd.
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contributions to electron transport (see Fig. 16), and the quasineutral approximation fails
(see Fig. 15).

Under this result, it would be needed to have a model that allowed for non-neutral petur-
bations on ion and electron densities, with the computational domain going from point A
to N (instead of from B to N). This is, however, not direct and lies beyond the scope of
this work. It is difficult to keep consistency between a quasineutral zeroth order model and
a non-neutral first order model, due to, e.g., the treatment of the anode sheath (assumed
infinitely thin in the zeroth order problem) or the different definition of the sonic point (in a
non-neutral model each species has its own sonic point at different locations).

Nevertheless, our results suggest that the effect of Te1 should be considered. Not only because
the corresponding terms are not negligible in the electron momentum equation, but also
because it seems to play a relevant role in terms of instability within a wide range of scales.

(a) Plasma density (b) Electric potential

(c) Electron axial velocity (d) Electron azimuthal velocity

(e) Ion axial velocity (f) Electron temperature

Figure 14: Perturbation map in the axial-azimuthal plane, with Te1 6= 0, for the most
unstable mode at kyLch = 13.5, with frequency 4.28 MHz. Perturbations scaled in order
to get φ1 = 30 mV at the location of maximum module of the complex amplitude.

V. Conclusion

High-frequency azimuthal oscillatory modes are studied in this work, for Hall thrusters, in the
axial-azimuthal plane, using a global small perturbation approach and a macroscopic description

19
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15-20, 2019



Figure 15: Quasineutral assump-
tion validity on the most unsta-
ble mode, found with Te1 6= 0 at
kyLch = 13.5 with ωr = 4.28 MHz.

Figure 16: Impact on electron
transport of the most unstable
mode, found with Te1 6= 0 at
kyLch = 13.5 with ωr = 4.28 MHz.

Figure 17: Absolute values of the terms in the first order axial and azimuthal electron
motion equations (Eqs. (8d) and (8e), respectively), with Te1 6= 0; scaled with νrefcref/µ,
being νref = 9.83 × 104 s−1, cref = 2.97 km/s and µ = 4

√
me/mi = 0.0451. The mode is the

most unstable one for kyLch = 13.5. See Fig. 14

for all plasma species. The background plasma solution is stationary and axisymmetric and the
numerical method to compute it is well known.19 The system of equations governing the pertur-
bations, in the high-frequency regime, is introduced in Sec. IIB with the corresponding boundary
conditions. After Fourier-transforming the first order variables in time and azimuthal coordinates,
the resulting system of equations is of ordinary-differential type, with the axial coordinate being
the independent variable. The solution to this problem yields the spectrum of complex frequencies
and the corresponding complex-amplitude profiles for the first order variables, for given ky and
background plasma solution. A numerical method to solve this type of problems is proposed in
Appendix A.

Initially, first-order effects from electron temperature are neglected, as it is typically done in other
high-frequency analyses.11–13 Two clearly distinguishable types of unstable modes are found at
different azimuthal scales: (i) within λy ∼ 5-21 cm, ωr ∼ 100-300 kHz and characteristics in
common with close-anode gradient drift9 and rotating spoke2 oscillations; and (ii) with λy ∼ 1
cm, ωr ∼ 1-5 MHz and oscillations in the near plume, resembling electron drift modes at larger10

and smaller14 scales. When comparing these results with modes obtained from a local stability
analysis, the range of frequencies 1 − 5 MHz corresponds to ion-acoustic-like waves. Local modes
associated to the electron drift motion have frequencies well beyond this band.
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The effect of the electron temperature perturbations is noted to be far from negligible. Pressure
fluctuations due to Te1 become one of the dominant terms in the electron momentum equation.
Nevertheless, modified versions of the aforementioned instabilities can be identified, but occupying
a broader range of azimuthal scales. Modes of type i are moved towards slightly smaller frequencies
(50-180 kHz, which is closer to typical values of rotating spokes) but keeping the main properties
already described. Modes of type ii have, in contrast, larger frequencies (1-60 MHz) and the
values of plasma density perturbations decrease by one order of magnitude. As a consequence,
the quasineutral assumption of the first-order model is violated. Even so, our results show that
electron temperature effects cannot be disregarded and produce instabilities at large and small
azimuthal scales.

Regarding the impact of plasma oscillations in cross-field electron transport, there is an electrostatic
contribution from the correlation of azimuthal oscillations of plasma density and azimuthal electric
field (the one that is typically considered), but we also suggest a possible non-negligible contribution
from electron inertia and pressure terms. This is confirmed by our results.

A. Numerical method

The system of linearized macroscopic equations can be written as a general homogeneous system
of ordinary differential equations

Ā · dx1

dz
=
(
B̄ + iωC̄ + ikyD̄ + k2yD̄2

)
· x1 (23)

with x1 = x1(z) being the vector first order variables and having length m (for the sake of
generality); and the coefficients of matrices Ā, B̄, C̄, D̄ and D̄2 being functions of z and x0 = x0(z).
Similarly, each boundary condition of the problem is homogeneous and can be expressed as a
linear combination of the perturbation variables at the corresponding point of application (since
our boundary conditions do not involve axial gradients).

Because of the first-order problem being homogeneous, a trivial solution is zero perturbation.
However, for given ky and background plasma state x0(z), the problem also admits non-trivial
solutions at specific values of the complex frequency ω. These values of ω and the corresponding
complex perturbation profiles are the eigenvalues and eigenfunctions of the first order problem,
respectively.

Solving the Eigen Boundary Value Problem (EBVP) described by Eq. (23) and boundary condi-
tions takes in account global effects on stability, such as axial gradients and boundary conditions
themselves. Alternatively, a local stability analysis takes the Fourier transform of the perturbations
also in the axial direction, under which the axial gradient operator, applied to first order variables,
becomes ikz. The methods used to solve local and global linear stability of the Hall-thruster
discharge are described in this appendix section.

Global stability

The system given by Eq. (23) is solved in a discrete way on an uniform grid with N points covering
the distance from the anode sheath edge (B) to the cathode (N). The unknowns of the discrete
problem (X1) are the values of the first order variables at the grid points. Let us use j as an
index going from 1 to N to denote the position of points in the grid, with j = 1 corresponding to
point B. This is a total of mN unknowns, which require of the same number of equations in order
to solve the problem: m boundary conditions and m (N − 1) first order macroscopic equations.
The m (N − 1) fluid equations come from evaluating each equation in system (23) in N different
axial positions of the domain, which do not necessarily coincide with grid points. There are plenty
of possibilities to proceed. Here, we will described the method that has been observed to have
the most numerically robust behavior and that was used to obtain the presented results (some
comments will be made on considered alternatives, highlighting the numerical difficulties found).

The proposed method evaluates the first order system (23) at intermediate points in between grid
points (the non-integer index j + 1/2 denotes the midpoint between grid points j and j + 1). This
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directly yields m(N − 1) equations, which can be written, analogously to Eq. (23), as the system

Āg ·
dX∗1
dz

=
(
B̄g + iωC̄g + ikyD̄g + k2yD̄2,g

)
·X∗1 (24)

where X∗1 stands for the vector of first order quantities at midpoints, which is m(N − 1) elements
long. The matrices in the previous expression are squared with column length m(N − 1), and are
global versions of those in Eq. (23). Their coefficients come from evaluating the local matrices at
each midpoint. The specific arrangement of these coefficients within global matrices depends on
the order used for the elements in vector X∗1 .

Eq. (24) has to be expressed in terms of the unknown vector X1. In order to do so:

• The first-order derivatives at midpoints (collected in dX∗1/dz) are estimated, using grid-point
values, with the centered finite difference formula

dx1

dz

∣∣∣∣
j+1/2

≈ xj+1
1 − xj

1

∆z
(25)

where ∆z is the grid step. Using this equation it is possible to build a finite difference matrix
F̄ such that

dX∗1
dz
≈ F̄ ·X1 (26)

• The values of perturbations at midpoints (collected in X∗1 ) can be estimated as the mean of
the values at the two nearest grid points, i.e

x
j+1/2
1 ≈ xj

1 + xj+1
1

2
(27)

This expression can be used to build an averaging matrix M̄ such that X∗1 ≈ M̄ ·X1

The size of matrices F̄ and M̄ is m(N − 1)×mN .

Using these two approximations in Eq. (24) yields

Āg · F̄ ·X1 =
(
B̄g + iωC̄g + ikyD̄g + k2yD̄2,g

)
· M̄ ·X1 (28)

This is an algebraic system of equations for X1 which must be completed, however, with the
boundary conditions of the problem. This is evident when looking at the dimensions of the matrices
in the previous expression (including the multiplication by F̄ and M̄ in the left and right-hand
sides, respectively): m(N − 1)×mN .

The set of linear homogeneous boundary conditions of the problem can be expressed as linear
combinations of the the discrete unknowns of the problem Ḡ ·X1 = 0. The complete discrete
system of equations that gives an approximate solution to the EBVP of Eq. (23) reads[(

Āg · F̄−
(
B̄g + ikyD̄g + k2yD̄2,g

)
· M̄

Ḡ

)
−

(
C̄ · M̄

0̄

)
iω

]
·X1 = 0 (29)

and has the form of a generalized algebraic eigenvalue problem with ω and the corresponding X1

being the eigenvalues and eigenvectors, respectively. By separating the eigenvector in each first
order variable, the axial evolution of the perturbation complex amplitudes are obtained. This
problem can be solved with several MATLAB routines (eig, eigs or polyeig). The method shows
numerical convergence with the number of grid points and has been successfully verified with test
EBVPs with analytical solution.

As aforementioned, alternative discretizations could be used. One possibility is to evaluate the
first order fluid equations at grid points (instead of at midpoints) and use forward, centered and
backward finite difference schemes for estimating axial gradients at left boundary, interior points
and right boundary, respectively. However, the complete system (23) cannot be evaluated at every
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grid point, since this provides mN equations before including boundary conditions in the count.
Therefore, m fluid equations must be disregarded in order to make room for boundary conditions.
It is not trivial to decide which discrete first order equations should be eliminated from the system.
Moreover, this approach leads to the appearance of spurious normal modes, which is not observed
if using a centered method. These differences in numerical behavior has been successfully identified
in test EBVP with analytical solution.

Local stability

After applying the Fourier transform in the axial direction (assuming 1/kz much larger than the
characteristic length associated to background plasma gradients) and moving all terms to the
right-hand side, Eq. (23) reads(

B̄ + iωC̄ + ikyD̄ + k2yD̄2 − ikzĀ
)
· x1 = 0 (30)

which has the form of an algebraic eigenvalue problem of dimension m. The values of ω providing
non-trivial solutions can be solved independently for each axial position. The same aforementioned
MATLAB solvers can be used.
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