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The problem of anomalous transport in partially magnetized 𝑬0 × 𝑩0 plasmas, such as
the Hall thruster discharge, remains still unsolved. In this context, the electron cyclotron
drift instability (ECDI) has been considered as a possible candidate triggering azimuthal
oscillations that result in cross-field electron transport. In this article, we further explore
this instability by revisiting the linear kinetic theory and through nonlinear particle-in-cell
simulations with a recently developed in-house 2D electrostatic code. A simplified scenario
on a periodic plasma starting from homogeneous equilibrium conditions is able to reproduce
the growth and saturation stages of the ECDI, that lead, indeed, to an anomalous electron
current. However, in the long term, oscillations vanish and so it does the electron cross-field
axial transport. Then, instead a fully periodic plasma, injection conditions through the axial
boundaries are explored. We distinguish several regimes depending on the ion residence time
compared with the saturation time of the ECDI. When this two are similar, the plasma is able
to hold a stationary azimuthal oscillation that carries an electron cross-field transport.

I. Introduction

The problem of anomalous electron cross-field transport remains as one of big open challenges for the community of
𝑬0 × 𝑩0 plasmas. In the field of plasma propulsion, this problem has been mainly studied in the context of Hall-thruster
discharges and represent one big obstacle on the way towards to predictive efficient numerical models. The large drift of
electrons in the azimuthal direction of the Hall thruster is a source of several families of azimuthal oscillations that are
potential candidates to explain the anomalous transport and have been observed experimentally [1–6]. The classical
explanation [7] for the impact of oscillations on transport relies on the correlation of oscillations in density and electric
field in the 𝑬0 × 𝑩0 direction under the presence of a magnetic field.

The amount of articles devoted to the analysis of instabilities and turbulence in Hall thrusters is extensive. With a
macroscopic description for ions and electrons, some of the authors of this article have conducted global [8] and local
[9] linear stability analyses. In these references two-stream, drift-gradient and drift-dissipative instabilities are discussed.
Similar recent studies by other authors are [10–14].

When using a kinetic formulation for the electrons, the analytical studies of instabilities is usually limited to a
homogeneous and collisionless plasma. For the conditions of a Hall thruster, where electrons are magnetized but ions
are not, the dispersion relation of the electron cyclotron drift instability (ECDI) is obtained[15, 16]. This classical
instability have been revisited, during the last two decades, by several authors [17–21], in the context of Hall thrusters.
Also from the point of view of kinetic simulations [17, 22–26] and experiments [4–6, 27].
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Kinetic models aimed to analyze electron turbulence and anomalous transport in the plane perpendicular to 𝑩0 can
be classified in 1D azimuthal[22, 25, 26] and 2D axial-azimuthal [17, 23, 24]. The latter case has been the subject of a
recent benchmark by several groups [28]. Many 2D simulations include a number of phenomena that makes challenging
to compare the results with the ECDI linear theory; such as, inhomogeneous magnetic field, collisions, ionization or
electrical connection between anode and cathode. The 1D simulations are closer to the linear theory of the ECDI but
they still add effects that are not considered in the dispersion relation, such as refreshing of particle velocities or collisions.

In this work, we revisit in section II the linear theory of the ECDI in the limit of perpendicular propagation. Then, in
section III, we present a recently developed in-house two-dimensional particle-in-cell (PIC) code that is intended to
be used in the simulation of electrostatic instabilities in 𝑬0 × 𝑩0 plasmas. The numerical model is used in section IV
to simulate the ECDI in a periodic plasma starting from equilibrium conditions and with an uniform magnetic field
𝑩0 perpendicular to the domain. From analogy with a Hall thruster geometry, this is the axial azimuthal plane. This
simulation setup is intended to comply exactly with the assumptions used in the derivation of the ECDI dispersion
relation. Indeed, the ECDI develops but oscillations vanish in the long term. In section V, axial periodic conditions are
modified by injection surfaces at fixed electric potential. Different behaviors are identified depending on the value of the
ion residence time relative to the characteristic saturation time of the ECDI.

II. Linear theory of the electron-cyclotron drift instability
The propagation of waves is studied in a homogeneous equilibrium plasma subjected to mutually perpendicular

magnetica 𝑩0 = 𝐵01𝑥 and electric 𝑬0 = 𝐸01𝑧 fields. From analogy with a Hall-thruster geometry, let us refer to the
directions of 𝑩0, 𝑬0 and 𝑬0 × 𝑩0 as radial (𝑥), axial (𝑧) and azimuthal (𝑦). Electrons are considered magnetized and
having a drifting Maxwellian velocity distribution function (VDF) with mean velocity 𝒖𝑒0 = 𝑢𝑦𝑒01𝑦 and temperature
𝑇𝑒0. The electron mean velocity is the result of the 𝑬0 × 𝑩0 drift, so that 𝑢𝑦𝑒0 = 𝐸0/𝐵0. On the other hand, ions have
velocity 𝒖𝑖0 = 𝑢𝑧𝑖01𝑧 and are assumed cold and unmagnetized; that is, they do not feel 𝑩0. Implicitly, this means that
ions must also disregard the 𝑬0 so that an homogeneous equilibrium is feasible. For these conditions, coming from the
perturbed Vlasov equation, the electron density perturbation is given by

𝑛𝑒1
𝑛0

=

[
1 +

∞∑︁
𝑚=−∞

𝜔𝑒 exp(−𝑏𝑒)𝐼𝑚 (𝑏𝑒)√
2𝑘 ∥𝑐𝑒

𝑍

(
𝜔𝑒 − 𝑚𝜔𝑐𝑒√

2𝑘 ∥𝑐𝑒0

)]
𝑒𝜙1
𝑇𝑒0

, (1)

being 𝑛0 the equilibrium quasineutral plasma density, 𝜔𝑒 = 𝜔 − 𝑘𝑦𝑢𝑦𝑒0 the electron Doppler-shifted frequency,
𝜔𝑐𝑒 = 𝑒𝐵0/𝑚𝑒 the cyclotron frequency, 𝑏𝑒 = 𝑘2

⊥𝜌
2
𝑒0, 𝜌𝑒0 = 𝑐𝑒0/𝜔𝑐𝑒 the electron Larmor radius, 𝑐𝑒0 =

√︁
𝑇𝑒0/𝑚𝑒 the

electron thermal velocity, 𝑘⊥ the wavevector component perpendicular to 𝑩0, 𝑘 ∥ the parallel one, 𝐼𝑚 the modified Bessel
functions of the first kind and 𝑍 the plasma dispersion function. The perpendicular propagation limit 𝑘 ∥ = 0, we are
interested in, yields

𝑛𝑒1
𝑛0

=

[
1 − exp(−𝑏𝑒)𝐼0 (𝑏𝑒) + 2𝜔2

𝑒 exp(−𝑏𝑒)
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𝑚=1

𝐼𝑚 (𝑏𝑒)
𝜔2
𝑒 − 𝑚2𝜔2

𝑐𝑒

]
𝑒𝜙1
𝑇𝑒0

. (2)

On the other hand, the ion perturbations, from a cold fluid model, follow the expression

𝑛𝑖1
𝑛0

=
𝑘2𝑐2

𝑠0

𝜔2
𝑖

𝑒𝜙1
𝑇𝑒0

(3)

with 𝑘 the magnitude of the wavevector 𝒌, 𝜔𝑖 = 𝜔 − 𝑘𝑧𝑢𝑧𝑖0 the ion Doppler-shifted frequency and 𝑐𝑠0 =
√︁
𝑇𝑒0/𝑚𝑖 the

sound speed. Using expressions (2) and (3), together with the linearized Poisson equation, gives the two-dimensional
dispersion relation

1 + 𝑘2𝜆2
𝐷0 =

𝑘2𝑐2
𝑠0

𝜔2
𝑖

+ exp (−𝑏𝑒) 𝐼0 (𝑏𝑒) + 2𝜔2
𝑒 exp (−𝑏𝑒)

∞∑︁
𝑚=1

𝐼𝑚 (𝑏𝑒)
𝜔2
𝑒 − 𝑚2𝜔2

𝑐𝑒

. (4)

aSubindex ’0’ stands for equilibrium conditions everywhere in the article.
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Here, we have a resonance when 𝜔𝑒 is close to a cyclotron harmonic 𝑚𝜔𝑐𝑒. This dispersion relation is solved for the
complex frequencies 𝜔 = 𝜔𝑟 + 𝑗𝛾 with all other parameters fixed, including 𝒌. An alternative form of writing equation
(4) comes from isolating 𝜔𝑖 , that leads to the following expression for one of the modes:

𝜔𝑖 = ± 𝑘𝑐𝑠0√︃
1 + 𝑘2𝜆2

𝐷0 − 𝑔(𝜔𝑒)
, (5)

where −𝑔(𝜔𝑒) gathers the electron Bernstein terms in the right-hand side of equation (4). This form of the dispersion
relation is the basis for numerically solving the unstable mode of the ECDI relation in reference [19], which is the
approach also followed here. Equation (5) reminds of an ion-acoustic wave with, in the denominator, a non-neutral
correction 𝑘2𝜆2

𝐷
and the resonant destabilizing term 𝑔(𝜔𝑒). Therefore, the unstable scales tend to concentrate in narrow

bands near the resonances. This behavior is characteristic of the ECDI in the perpendicular propagation limit.

The unstable solution of equation (4) for an infinite plasma is shown in figure 1 for 𝑘𝑧 = 0; and equilibrium
conditions 𝑛0 = 1017 m−3, 𝑢𝑧𝑖0 = 5 km/s, 𝑢𝑦𝑒0 = 250 km/s, 𝑇𝑒0 = 2 eV, 𝐵0 = 200 G. The finite plasma dispersion
relation is of interest when considering the simulation results and leads to a discrete spectrum with the reproduced scale
being 𝑘𝑦 = 𝑛2𝜋/𝐿𝑦 . The results here are for 𝐿𝑦 = 2.6793 mm. This the azimuthal domain size used in simulations
shown in the coming sections. This solution is for Hydrogen ions. This decision is based on speeding up simulations.
Since the characteristic frequencies and growth rates of the ECDI approximately scale with 1/√𝑚𝑖 .

In this solution the characteristic resonant behavior of the ECDI can be observed. For this case, the fastest growing
modes take place close to 𝑚 = 1 and 𝑚 = 2 (being 𝑚 = 1 slightly dominant). The 𝑚 = 1 mode from the discrete discrete
dispersion relation has 𝑛 = 7, frequency 𝜔𝑟 = 35.4 MHz, azimuthal wavelength 𝜆𝑦 = 0.38 mm and phase velocity
𝜔𝑟/𝑘𝑦 = 13.5 km/s. The 𝑚 = 2 mode from the discrete dispersion relation has 𝑛 = 13, frequency 𝜔𝑟 = 53.8MHz and
azimuthal wavelength 𝜆𝑦 = 0.21mm. These frequencies are, approximately, one order of magnitude higher than those
expected in Xenon. An important feature of the ECDI is that, usually, 𝜔𝑟 and 𝛾 have comparable magnitudes, making
difficult to differentiate a linear stage in nonlinear simulations.
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Fig. 1 ECDI dispersion relation for Hydrogen ions (𝑚𝑖 = 1.6726 × 10−27 kg) with 𝑘 ∥ = 0 and 𝑘𝑧 = 0; with
equilibrium conditions 𝑛0 = 1017 m−3, 𝑢𝑧𝑖0 = 2.5 km/s, 𝑢𝑦𝑒0 = 250 km/s, 𝑇𝑒0 = 2 eV, 𝐵0 = 200 G. Black solid line is
the solution for an infinite plasma. Red crosses stand for the solution in a finite plasma with 𝐿𝑦 = 2.6793 mm.
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III. Electrostatic particle-in-cell model
To simulate and analyse instabilities and electron transport on a Hall plasma, a recently developed in-house

2D particle-in-cell (PIC) code and Poisson solver are used. Both modules are coded in Fortran and use OpenMP
parallelization capabilities. The Poisson solver uses internally the external libraries LIS (for linear system solution) and
FFTW3 (for Fourier-transform operations). Our PIC code has been conceived as a flexible tool for simulating a diversity
of plasma-discharge scenarios. One of the primary goals of the code is the analysis of Hall-thruster anomalous transport
and instabilities in the axial-azimuthal plane (after previous efforts with fluid models [8, 9]).

The motion of particles is solved numerically by using an standard Boris method. The Poisson solver uses different
schemes depending on boundary conditions. If Neumann or Dirichlet conditions are used for one or more boundaries,
the solver uses a second order finite difference scheme for the Laplace operator and electric field. The final linear system
of equations governing the electric potential is solved with the LIS library. When all boundaries are periodic, spectral
methods are used to easily solve the Poisson equation in the Fourier complex space. The Fourier transform and the
inverse operation are performed with the FFTW3 library. In this latter case a zero average potential is imposed. Finite
difference methods have been tested on periodic domains, imposing a reference potential on an arbitrary single node,
producing sometimes spurious local behavior close to the reference-potential point that can ruin the simulation.

One of the objectives of this work is the simulation of the ECDI in an homogeneous plasma with assumptions as
close as possible to those used in the theoretical derivation of the dispersion relation (4). Electron and singly-charged
ion species are considered and treated with a PIC formulation. Particles of both species are considered with equal
and constant weights. In order to comply with the hypothesis in section II, electron and ion particles are moved with
electric fields 𝑬𝑒 = 𝑬0 + 𝑬1 and 𝑬𝑖 = 𝑬1, respectively; being 𝑬0 = 𝐸0 1𝑧 an equilibrium uniform value and 𝑬1 the
local fluctuation relative to 𝑬0 that comes as solution to the Poisson equation. In addition, electron motion account also
for a magnetic field 𝑩0 = 𝐵0 1𝑥 perpendicular to the simulation plane. That is to say, ions react only to the fluctuating
part of the electric field. Collisions are disregarded.

At the beginning of the simulation, both species are loaded homogeneously with equal densities 𝑛0. Ions are
generated with no temperature and velocity 𝒖𝑖 = 𝑢𝑧𝑖0 1𝑧 . Electron particle velocities are sampled from a drifting
Maxwellian

𝑓𝑒 (𝒗) = 𝑛0

(
𝑚𝑒

2𝜋𝑇𝑒0

)3/2
exp

[
−𝑚𝑒 (𝒗 − 𝒖𝑒0) · (𝒗 − 𝒖𝑒0)

2𝑇𝛼

]
, (6)

with temperature 𝑇𝑒0 and mean velocity 𝒖𝑒 = 𝑢𝑦𝑒0 1𝑦 , where 𝑢𝑦𝑒0 = 𝐸0/𝐵0 is the 𝑬0 × 𝑩0 drift. The properties of the
initial populations correspond to a homogeneous equilibrium state. The evolution observed in subsequent times is a
consequence of plasma instabilities. The results shown in this work apply a moving average to the results in a time
window that coincides with Δ𝑡print. This is done to mitigate the level of noise and it has been carefully checked that
averaged results are representative of the instantaneous behavior.

Regarding boundary conditions, two types of simulations are shown in this article: (i) periodic plasma and (ii) axial
injection with azimuthal periodic conditions. More details about the boundary conditions are given in the corresponding
section.

IV. ECDI simulation in homogeneous equilibrium
In this section, results are shown for an EDCI simulation in a periodic plasma, starting from a homogeneous

equilibrium. Periodic conditions are applied to, both, particles and electric field. Figure 2 summarizes the simulation
setup. Let us remind that, to comply with assumptions behind the ECDI theory, the electric field depends on the species.
The fluctuating part comes from the Poisson solution. The decision on ions not reacting to 𝑬0 allows to disregard
ion acceleration and the consequent axial inhomogeneity that is not accounted for in the ECDI theory. Moreover, ion
acceleration is not consistent with axial periodic conditions and the treatment of ions have been seen to be troublesome
in 1D-𝑦 simulations [22, 26]. The solution for the electric potential 𝜙 and field 𝑬1 = −∇𝜙 uses the spectral version of
the Poisson numerical code. Because of periodic boundary conditions, the number of particles in the domain remains
constant. Moreover, the number of electron and ion particles coincide so that the net charge in the domain is zero.
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Fig. 2 Diagram summarizing the simulation axes, boundary conditions and initial equilibrium state for the
periodic ECDI simulation.

The physical and numerical parameters of the PIC simulation are summarized in tables 1 and 2, separating
fundamental ones in (a) from derived values in (b) that are included to give the main characteristic lengths, frequencies
and velocities of the system. The main features of this simulation have been already described. Other than already said,
a square domain is used with 𝐿𝑦 long enough to properly capture the largest scale of the ECDI, close to the resonance
𝑚 = 1. This is demonstrated by the discrete spectrum in figure 1.

Table 1 Physical parameters of the homogeneous ECDI simulation. Apart from paramters defined in the main
text, 𝜌𝑒0 is the electron Larmor radius, 𝑐𝑒0 =

√︁
𝑇𝑒0/𝑚𝑒 is the electron thermal speed, 𝜔𝑃𝑒0 =

√︁
𝑒2𝑛0/𝜀0𝑚𝑒 and

𝜔𝑃𝑖0 =
√︁
𝑒2𝑛0/𝜀0𝑚𝑖 are, respectively, the electron and ion plasma frequencies; and 𝜔𝑙ℎ = 𝑒𝐵0/

√
𝑚𝑖𝑚𝑒 is the

lower-hybryd frequency.

(a) Fundamental

𝐿𝑦 [mm] 2.6793
𝐿𝑧 [mm] 2.6793
𝐸0 [V/m] 5 × 103

𝐵0 [G] 200
𝑚𝑖 [u] 1

𝑛0 [m−3] 1 × 1017

𝑢𝑧𝑖0 [km/s] 2.5
𝑇𝑒0 [eV] 2

(b) Derived

Lengths
𝜆𝐷0 [𝜇m] 33.3
𝜌𝑒0 [𝜇m] 169

Velocities
𝑢𝑦𝑒0 [km/s] 250
𝑐𝑒0 [km/s] 593
𝑐𝑠0 [km/s] 13.8

Frequencies
𝜔𝑃𝑒0 [GHz] 2.84
𝜔𝑐𝑒 [GHz] 0.560
𝜔𝑃𝑖0 [MHz] 66.3
𝜔𝑙ℎ [MHz] 13.1
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Table 2 Numerical physical and numerical parameters of the homogeneous ECDI simulation. 𝑁𝑦,𝑧 are the
number of nodes in 𝑦 and 𝑧 directions, 𝑁𝑝𝑝𝑐 is the initial number of particles per cell, Δ𝑡 is the simulation time
step, 𝑁𝑡 is the number of time steps, Δ𝑡print is diagnostics print-out time, Δ𝑦 and Δ𝑧 are the grid spacing in 𝑦 and 𝑧

directions; and 𝜔max is the maximum frequency that can be measured according to Δ𝑡print

(a) Fundamental

𝑁𝑦 83
𝑁𝑧 83
𝑁ppc 100
Δ𝑡 [s] 5 × 10−12

𝑁𝑡 6 × 105

Δ𝑡print [s] 1 × 10−9

(b) Derived

Lengths
Δ𝑦 [𝜇m] 32.7
Δ𝑧 [𝜇m] 32.7

Frequencies
𝜔max [GHz] 1.0

The evolution in the 𝑦𝑧-plane of 𝐸𝑦 is represented in figure 3 for several times. In figure 4, the evolution in the
𝑦𝑡-plane and 𝑧𝑡-plane is plotted for fixed 𝑧 = 5𝐿𝑧/6 and 𝑦 = 𝐿𝑦/2, respectively The initial equilibrium state is unstable
because of the ECDI, so that any perturbations in initial population start to grow. The oscillatory field has a growing
amplitude until 𝑡 ≈ 0.3 𝜇s, where saturation of the instability seems to happens. For times after before 0.3 𝜇s there is
little mix of modes and we can detect a quite monochromatic wave with clearly identifiable 𝜆𝑦 and 𝜔𝑟 . The propagation
of this wave is mainly azimuthal and happens in the +𝑬0 × 𝐵0 direction. For times after 0.3 𝜇s, there seems to be a
significant mixing of modes, that can be better observed in figure 3, starting on 𝑡 = 0.5 𝜇s. For subsequent times the
oscillations are damped out and the plasma seem to tend to an equilibrium state that is different from the initial one.

Fig. 3 Time evolution of 𝐸𝑦 in the 𝑦𝑧-plane, for periodic boundary conditions and parameters in tables 1 and 2.
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Fig. 4 Evolution of 𝐸𝑦 in the (a) 𝑦𝑡-plane for fixed 𝑧 = 5𝐿𝑧/6 and (b) 𝑧𝑡-plane for fixed 𝑦 = 𝐿𝑦/2.

The saturation and post-saturation evolution of 𝐸𝑧 and other plasma properties are represented in figures 5 and
6. Let us focus in the saturation behavior for now. Looking at 𝐸𝑧 , we emphasize again that the instability is mainly
azimuthal, what is translated into a milder and more disordered 𝐸𝑧 than 𝐸𝑦 . However, there are some two-dimensional
axial effects that perturb the plasma. The oscillatory behavior of the instability can be also seen in the densities 𝑛𝑖 and
𝑛𝑒 that then to follow the electric field wave. The peaks of 𝑛𝑖 are more prominent that 𝑛𝑒. Even if ions are heavier
than electrons, they are not magnetized and are more easily trapped in the potential wave. The 𝑛𝑒 space evolution
tends to follow 𝑛𝑖 because of the natural tendency of the plasma to locally satisfy quasineutrality, but electrons are
not so so easily trapped because of the magnetic confinement. A visible oscillation develops also in the ion azimuthal
macroscopic velocity 𝑢𝑦𝑖 , electron temperature 𝑇𝑒 and, to a lesser extent, in 𝑇𝑖 .

In the post-saturation state, there is a diminishing of the electric field and oscillations seem to dampen. The plasma
properties seem to converge to a new steady state that is fairly homogeneous. The average densities 𝑛𝑒 and 𝑛𝑖 are,
of course, equal to the initial state since the number of particles in the simulation does not change. However, other
properties related to higher-order moments of the VDF, such as 𝑢𝑦𝑖 , 𝑇𝑖 and 𝑇𝑒, are modified. Since ions are trapped by the
wave, while the ECDI grows, they develop an azimuthal average velocity. One of the effects of the instability is also the
significant heating of, both, electron and ions. Looking at the macroscopic properties, it is clear that the final state of the
populations is much more energetic than the initial equilibrium. Energy conservation is discussed in a coming subsection.

The electron and ion heating is also evident when looking at VDF and particles in phase space. Figure 7 plots
the initial and final 1D-VDF of electrons measured at the central point of the domain. We see that the initial electron
population perfectly matches a drifting Maxwellian VDF, as it should. At the end of the simulation the dispersion in the
electron velocities is much higher and seem to fairly isotropic. The reconstructed VDFs seem to depart from aMaxwellian,
but this should be checked with improved statistics. The evolution of ion particles in the phase space is plotted in figure 8.
We see that the initial cold population evolves towards the formation of vortex-like structures in the 𝑣𝑦-𝑦 plane when close
to the saturation. This type of behavior is characteristic of ion-wave trapping and has been already seen in other works
[22, 26]. After saturation, the vortices are distorted and destroyed but the distribution function of 𝑣𝑦 keeps a one-sided
long tail. Ions are noted to play an important role in the formation and saturation of the ECDI. In the plane 𝑣𝑧-𝑧, there is a
clear ion heating and the distribution function of 𝑣𝑧 , in contrast to 𝑣𝑦 , has a more conventional shape with symmetric tails.
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(a) 𝐸𝑧

(b) 𝑛𝑒

(c) 𝑛𝑖

Fig. 5 Time evolution of 𝐸𝑧 , 𝑛𝑒 and 𝑛𝑖 in the 𝑦𝑧-plane.

These results do not match the behavior reported in other 1D-𝑦 [22, 25, 26] and 2D-𝑧𝑦 [17, 23, 24, 28], where
the plasma and electric field hold sustained oscillations that do not vanish with time. Regarding the comparison
of existing 2D models with our simulations here, it is not trivial since references [17, 23, 24, 28] account for other
effects, such as inhomogeous magnetic field, anode-cathode circuit, ionization or collisions. Here we disregard many
of these effects, since our goal is to get as close as possible to the hypotheses of the ECDI linear theory. A fairer
comparison is that with the 1D-𝑦 models [22, 25, 26]. Regarding the ion treatment, the works [22, 26] account for
a fake axial dimension and the acceleration of the ions due to 𝑬0 . Because ions are accelerated, periodic axial
conditions would lead to a forever growing axial velocity. In order to solve this issue, particles that leave the domain
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through axial boundaries are re-injected with a refreshed velocity. This is, particles that have interacted with the
electrostatic wave and have a modified VDF (see figures 7 and 8) are removed from the simulation and substituted
by particles with the initial VDF. Therefore, the re-injection conditions could have a strong interaction with the
instability. Our approach is different and we cope with ion acceleration, and the resultant axial inhomogeneity, by
disregarding 𝑬0 on the ion motion. Since ions move only according to the electric field fluctuation 𝑬1, periodic
conditions can be applied, not only azimuthally, but also axially. Because there is no change in velocity for particles go-
ing through boundaries, the change in the VDF of ions and electrons from the initial one is solely a result of the instability.

Although our simulation of a periodic plasma does not lead, in the long term, to a sustained oscillation, it can still
offer a valuable physical insight on the ECDI behavior and the influence on electron transport. Several aspects are
discussed in the next subsections.

(a) 𝑇𝑒

(b) 𝑇𝑖

(c) 𝑢𝑦𝑖

Fig. 6 Time evolution of 𝑇𝑒, 𝑇𝑖 and 𝑢𝑦𝑖 in the 𝑦𝑧-plane.
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Fig. 7 Initial and final 1D-VDF of electrons in the (top) azimuthal and (bottom) axial directions. The initial
Maxwellian VDF uses the equlibrium values 𝑛𝑒0 = 1017 m−3 and 𝑇𝑒 = 2 eV. For later times, 𝑛𝑒 and 𝑇𝑒 from the
simulations are used.
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Fig. 8 Evolution of ion particles in the (a) 𝑣𝑦-𝑦 and (b) 𝑣𝑧-𝑧 plasnes of the phase space.

A. Spectral analysis

A simple determination of the characteristic frequency and wavelength of the ECDI oscillation, before saturation,
can be done by inspection of figure 4. According to these results, the wave is mainly azimuthal with almost no axial
propagation (𝑘𝑧 = 0). Although, there are minor 2D axial effects, 7 azimuthal wavelengths fit in the domain. This
means that the obtained monochromatic wave corresponds to the mode number 𝑛 = 7 (𝜆𝑦 = 0.38 mm), that is close to
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the resonance 𝑚 = 1. The approximate frequency of the wave is 𝜔𝑟 = 60 MHz and the phase velocity 𝜔𝑟/𝑘𝑦 = 23
km/s. The dominant wavelength coincide with the largest-𝛾 mode predicted by the linear theory in figure 1, while linear
results underestimate the wave frequency. However, in general, the long-term dominant modes in nonlinear simulation
may not coincide with the most unstable modes in the linear dispersion relation [21]. For example, simulations (not
included) with parameters based on reference [20] do not show such a good matching of simulations and linear results.
As aforementioned, any comparison between the dispersion relation and simulations is challenging in the case of the
ECDI since 𝜔𝑟 and 𝛾 are of the same order.

(a) 0 𝜇s < 𝑡 < 0.25 𝜇s (b) 0.25 𝜇s < 𝑡 < 2 𝜇s

(c) 2 𝜇s < 𝑡 < 3 𝜇s

Fig. 9 Two-dimensional normalized fast Fourier transform of 𝐸𝑦 at the fixed axial position 𝑧 = 5𝐿𝑧/6. The
absolute maximum is marked with a black cross. In panel (b) the dispersion relation 𝜔 = ±𝑘𝑦𝑐𝑠 is plotted
(magenta dashed line) for 𝑇𝑒 = 3.4 eV.

A more detailed analysis of the frequency and wavenumber spectra of the results can be achieved via Fourier
decomposition. Since the oscillations are main azimuthal, let us compute the two-dimensional Fourier transform of
𝐸𝑦 in 𝑦 and 𝑡 for fixed 𝑧 = 5𝐿𝑧/6. To do so, we use three different time windows that correspond to the stages of the
simulation seen in figure 3:

1) 0 < 𝑡 < 0.25 𝜇s. The peaks seem to concentrate in bands near 𝑘𝑦𝑢𝑦𝑒0 = 𝑚𝜔𝑐𝑒, that are the resonant terms in
the dispersion relation 4. The maximum Fourier coefficient is located at 𝑘𝑦𝑢𝑦𝑒0 = 1.1667𝜔𝑐𝑒 and 𝜔𝑟 = 52.4
MHz. This is mode number 𝑛 = 7, near 𝑚 = 1, with a phase speed 𝜔𝑟/𝑘𝑦 = 20 km/s. There is secondary peak at
𝑘𝑦𝑢𝑦𝑒0 = 2.1667𝜔𝑐𝑒 (𝑛 = 13, close to 𝑚 = 2) and 𝜔𝑟 = 113MHz. The phase speed 𝜔𝑟/𝑘𝑦 = 23 km/s, that is
similar to the main mode. The dominant wavelengths match the modes in the dispersion relation with the peaks
in 𝛾 (see figure 1). As aforementioned, the linear results underestimate the frequency of oscillations observed in
the simulations.

2) 0.25 𝜇s < 𝑡 < 2 𝜇s. The bands of the spectrum at the resonant 𝑘𝑦 have been blurred and there seems to be a linear
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relation between 𝑘𝑦 and 𝜔𝑟 . The peak in the spectrum is at the resonance 𝑚 = 1, but its 𝜔𝑟 has been lowered to
40 MHz. The resultant phase speed is𝜔𝑟/𝑘𝑦 = 18 km/s. This spectrum reminds of similar results reported in PIC
simulations[23, 28] and experiments[4], where an ion-acoustic relation is proposed. In case of being an acoustic
wave, it would correspond to an electron temperature of 3.4 eV. This value is, however, rather small compared
with the temperature seen in the simulation in that interval. The acoustic dispersion relation 𝜔 = ±𝑘𝑦𝑐𝑠 for this
𝑇𝑒 is represented in figure 9(b) for comparison. Let us note that the part of the spectrum for propagation in the
−𝑬0×𝑩0 direction (this is 𝑘𝑦 < 0) could correspond to the remnants of the counter-propagating ion-acoustic wave.

3) 2 𝜇s < 𝑡 < 3 𝜇s. Even if the peak still at 𝑘𝑦𝑢𝑦𝑒 = 𝜔𝑐𝑒, there is a mixing of different temporal and azimuthal
scales and it is difficult to differentiate a clearly dominant mode in the spectrum. A clear acoustic-like dispersion
relation is not observed anymore.

B. On energy conservation

Let us discuss in this section the conservation of total energy in the simulation domain for simulations of homogeneous
plasma with periodic boundary conditions. The simulation discussed in this section does not have energy sources neither
volumetric or through boundaries. Total energy integrated in the domain, accounting for particles and electric field
energies, is expected to be conserved. This is, constant

E =

∫
𝑉

[
1
2
𝜀0𝐸

2 + 1
2
(𝑚𝑖𝑛𝑖𝑢

2
𝑖 + 𝑚𝑒𝑛𝑒𝑢

2
𝑒) +

3
2
(𝑝𝑖 + 𝑝𝑒)

]
d𝑉. (7)

The work done by the electric field should act as mechanism that converts species energy on electric-field energy, and
the other way around. However, a non-conventional feature of these simulations is that 𝑬 and its work depends on the
species. It can be proved that, for these conditions, the total energy changes according to

𝜕E
𝜕𝑡

=

∫
𝑉

( 𝒋𝑒 · 𝑬0) d𝑉 (8)

where 𝒋𝑒 = −𝑒𝑛𝑒𝒖𝑧𝑒 and E is defined as in equation (7) with 𝐸 = 𝐸1. Therefore, our simulation violates the conservation
of energy. This was already suspected, looking at 𝑇𝑒, 𝑇𝑖 and 𝑢𝑦𝑖 in figure 6. The plasma at the end of the simulation is
much more energetic compared with the starting equilibrium. The evolution of the net average energy in the domain for
electrons, ions and electric field is plotted in figure 10.
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Fig. 10 Evolution of average energy of (a) particles and (b) electric field in the simulation domain.

C. Anomalous electron current

The simulation discussed in this section is collisionless, therefore there is no axial transport of electrons in the
equilibrium conditions. If a non-zero current 𝑗𝑧𝑒 is observed in the axial direction, it is all an effect of the azimuthal
plasma oscillations. The macroscopic momentum balance in the direction 𝑦 for a magnetized electron flow, with
negligible inertia and no collisions, yields

0 = 𝑒𝑛𝑒𝐸𝑦 − 𝐵0 𝑗𝑧𝑒; (9)
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with 𝑛𝑒 = 𝑛𝑒0 + 𝑛𝑒1. The usual relation[7] between 𝑗𝑧𝑒 and fluctutaions in density (𝑛𝑒1) and azimuthal field (𝐸𝑦) comes
from isolating 𝑗𝑧𝑒 in the previous equation and computing the azimuthal average

⟨ 𝑗𝑧𝑒⟩ =
𝑒

𝐵0
⟨𝑛𝑒1𝐸𝑦⟩, (10)

where the angle brackets stand for the average operation and ⟨𝑛𝑒0𝐸𝑦⟩ = 0. Therefore, an axial cross-field transport is
produced when there are a correlation between the azimuthal oscillations in 𝐸𝑦 and 𝑛𝑒1.

In figure 11, ⟨ 𝑗𝑧𝑒⟩ is represented at axial position 𝑧 = 5𝐿𝑧/6. The blue solid line is the axial current observed in
the simulation directly from the macroscopic properties of the electrons. The magenta broken line stands for ⟨ 𝑗𝑧𝑒⟩
calculated using equation 10. Both curves show the same trend and we can conclude the axial cross-field current is a
result of the oscillations of 𝑛𝑒1 and 𝐸𝑦 . We see that some ⟨ 𝑗𝑧𝑒⟩ develops while the instability grows. After saturation
the anomalous current is lost as oscillations in the plasma diminish.
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Fig. 11 Azimuthally averaged axial electron current at fixed axial position 𝑧 = 5𝐿𝑧/6. The value obtained from
the volumetric weighting (solid blue) is compared with the anomalous current inferred from the correlation of
oscillations in 𝑛𝑒 and 𝐸𝑦 (magenta broken).

V. ECDI simulation with injection conditions
In the previous section, we pointed out the possible interaction of particle injection or refreshing with the ECDI. To

be precise, we suspected that the fact that plasma does not hold a sustained oscillation and an anomalous current may
be related with the use of axial periodic conditions. Such conditions preserve the VDF of the particles resultant of
interacting with the instability. When there is particle removal and injection/refreshing through boundaries, particles
that have already interacted with the wave are removed from the simulation and new particles are injected having a
different VDF that could possibly enhance the instability and lead to a sustained monochromatic oscillation.

Following this reasoning, a new simulation setup is presented here that replaces axial periodic conditions by
injection surfaces. Periodic conditions are kept in the azimuthal direction. Any particle leaving the domain though
axial boundaries is removed from the simulation. A constant flux of ions 𝑔𝑖0 = 𝑛0𝑢𝑧𝑖0 is injected through the
left boundary, with zero temperature and velocity 𝑢𝑧𝑖01𝑧 . A constant flux of electrons 𝑔𝑒0 = 𝑛0𝑐𝑒0/4 is injected
though left and right boundaries, whose velocities are sampled from a Maxwellian VDF with temperature 𝑇𝑒0 and
velocity 𝑢𝑦𝑒01𝑦; being 𝑐𝑒0 =

√︁
8𝑇𝑒0/𝜋𝑚𝑒. The value of 𝑔𝑒0 is the flux produced by half a Maxwellian VDF. The injec-

tion fluxes are chosen such that they match the amount of ions and electrons leaving the domain in equilibrium conditions.
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Fig. 12 Diagram summarizing the simulation axes, boundary conditions and initial equilibrium state for the
ECDI simulation with axial plasma injection.

Once the instability arises, the injected fluxes do not need to coincide with fluxes leaving the domain and the number
of particles in the simulation may change. Moreover, the number of ions and electrons may not coincide so that the
domain could have a net non-zero charge. For that reason, axial conditions on potential are also changed from periodic
to fixed potential 𝜙 = 0. The finite-difference version of the Poisson solver is used. The new boundary conditions are
equivalent to the periodic ones in the equilibrium state. The new simulation configuration is summarized in figure 12.

Other than different boundary conditions, the parameters for the first simulation of this section are the same as in
section (IV). The evolution of 𝐸𝑦 is represented in figure 13. Up to 𝑡 = 0.15 𝜇s, the behavior is similar to the periodic
case of figure 3 and we see the growth of a quite monochromatic wave, with minor differences such as an small non-zero
𝑘𝑧 . In frames 𝑡 = 0.25 𝜇s and 𝑡 = 0.5 𝜇s, the oscillation seem to move far from the injection surface of ions. For later
times, the oscillation level decrease, although there are some remnants of the initial oscillation frames 𝑡 = 2.5 𝜇s and
𝑡 = 3.0 𝜇s.

Even if the initial monochromatic oscillation seem to be more persistent in this case, compared with periodic
conditions, a sustained oscillation was not reached. In previous section, we saw a significant interaction of ions with
the electrostatic wave in the form of ion-wave trapping. Ions seem to play, thus, an important role in the growth and
saturation of the ECDI. The residence time of ions, estimated with the equilibrium velocity, is Δ𝑡𝑖0 = 𝐿𝑧/𝑢𝑧𝑖0 = 1.1 𝜇s.
On the other hand, from previous section, the saturation time of the instability is, approximately, Δ𝑡sat = 0.3 𝜇s. The
limit Δ𝑡𝑖0 ≫ Δ𝑡sat corresponds to the periodic simulation of the previous section. In the opposite limit, Δ𝑡𝑖0 ≪ Δ𝑡sat, we
do not see a sustained oscillation (case not included in the article), since ions do not have time to interact with the wave.
According to this reasoning, we could expect a sustained oscillation in the intermediate regime where Δ𝑡𝑖0 is similar to
Δ𝑡sat. Following this line of thinking, a similar simulation has been performed increasing the ion velocity to 𝑢𝑧𝑖0 = 5
km/s, and modifying the injection flux accordingly. This new 𝑢𝑧𝑖0 yields Δ𝑡𝑖0 = 0.50 𝜇s, that is closer to Δ𝑡sat.
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Fig. 13 Time evolution of 𝐸𝑦 in the 𝑦𝑧-plane, for axial injection conditions and ion residence time Δ𝑡𝑖0 = 1.1 𝜇s.

The evolution of 𝐸𝑦 in figure 14 for times before 0.5 𝜇s is practically the same as for the case of figure 13. That is,
the initial instability formation and saturation. However, after 0.5 𝜇s we can see a second saturation and the formation
of a nearly monochromatic wave that develops at some distance from the ion injection surface. It has been checked that
this wave survive also for longer times. Other characteristic of this long-terms oscillation is that the wavefronts have
some curvature (meaning different axial propagation depending on the axial position). A similar feature is observed in
some 2D-𝑦𝑧 simulations of the Hall discharge [23, 28] close to the exit, where the maximum magnetic field takes place.
Here, however, the used radial 𝑩0 is uniform in the whole domain. This phenomena has to be further investigated.
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Fig. 14 Time evolution of 𝐸𝑦 in the 𝑦𝑧-plane, for axial injection conditions and ion residence time Δ𝑡𝑖0 = 0.5 𝜇s.

To summarize, as it was suggested, the formation of a stationary oscillation seems to be related to the residence time
of ions and how it compares with the characteristic saturation time. Depending on that, several regimes are identified
and the one leading to a stationary monochromatic oscillation is Δ𝑡𝑖0 ∼ Δ𝑡sat. This is the regime interesting from the
point of view of electron anomalous transport, which is discussed later.

Before moving to the analysis of the Fourier spectrum and cross-field transport, let us comment on the electron
heating. In the periodic simulation (see figure 6), a significant electron heating was observed from 2 eV to 14 eV at the
end of the simulation. In the case with injection (figure 15), electrons with 𝑇𝑒 = 2 eV are continuously injected through
axial boundaries. Also, hotter electrons heated by the ECDI are removed when they reach the injection boundaries. The
final electron population satisfies the 2 eV temperature close to the injection surfaces, while the ECDI oscillation heats
them in the central part of the domain. However, the final temperatures are significantly lower than in the periodic
case. The average temperature at the middle axial location is about 4 eV. The electron heating can be also seen in the
broadening of the electron 1D-VDFs, in figure 16, measured in central point. The distribution functions seem flattened
close to the average velocity, departing from the corresponding Maxwellian (with 𝑛𝑒 and 𝑇𝑒 from the simulation).
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Fig. 15 𝑇𝑒 at the end of the simulation, for the case with Δ𝑡𝑖0 = 0.5 𝜇s.
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Fig. 16 1D-VDFs of electrons at the end of the simulation measured at central point of the domain, for the case
with Δ𝑡𝑖0 = 0.5 𝜇s.

A. Spectral analysis

The two-dimensional Fourier transform is computed in figure 17 for the same time windows as in the periodic
simulation. The spectrum for times before 0.25 𝜇s is similar to what already observed. The discrete behavior at the
resonant scales 𝑘𝑦𝑢𝑦𝑒0 = 𝑚𝜔𝑐𝑒 are, however, not so marked as in panel (a) of figure 9. For times between 0.25 and 2
𝜇s, the spectrum suggest again an ion-acoustic-like dispersion relation. For later times, the spectrum is much more
clean than 9(c), where there is significant mix of scales. In this case, there is a clear dominant mode in the long-term
with 𝜔𝑟 = 48MHz and 𝜆𝑦 = 0.44 mm (𝑚 = 1, 𝑛 = 6), that is also close to the peaks for earlier times. The phase speed
of this wave is 𝜔𝑟/𝑘𝑦 = 21 km/s. Following the interpretation of the ion-acoustic mode, these results suggest a sound
wave with an electron temperature of 4.6 eV, that is surprisingly close to 𝑇𝑒 observed in the central part of figure 15. In
every time interval, the simulation spectra show an excellent matching with the acoustic dispersion relation. Also in the
𝑘𝑦 < 0 part of the spectrum.
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(a) 0 𝜇s < 𝑡 < 0.25 𝜇s (b) 0.25 𝜇s < 𝑡 < 2 𝜇s

(c) 2 𝜇s < 𝑡 < 3 𝜇s

Fig. 17 Logarithm of the two-dimensional normalized fast Fourier transform of 𝐸𝑦 , in 𝑦 and 𝑡 with fixed
𝑧 = 5𝐿𝑧/6. For the case with Δ𝑡𝑖0 = 0.5 𝜇s. The dispersion relation 𝜔 = ±𝑘𝑦𝑐𝑠 is plotted (magenta dashed line)
for 𝑇𝑒 = 4.6 eV.

B. Anomalous electron current

The calculation of ⟨ 𝑗𝑧𝑒⟩ is repeated here, comparing values directly measured in the simulation and the current
inferred from fluctuations. The results in figure 18 show an initial peak in the current, similarly to the periodic case in 11.
However, the formation of an azimuthal wave that survives long simulation times leads to a stationary axial cross-field
transport of electrons, produced by oscillations. This result is of interest for the case of Hall-thruster discharges, where
we expect there is a sustained contribution from azimuthal fluctuations to the axial transport.
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Fig. 18 Azimuthally averaged axial electron current, for the case with Δ𝑡𝑖0 = 0.5 𝜇s.
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VI. Conclusion
In this paper, we present a recently developed 2D electrostatic PIC model that is intended to simulate diverse

plasma discharge scenarios. One of the primary intents of this code is the simulation and study of plasma instabilities
and turbulent transport in the Hall-thruster discharge and other 𝑬0 × 𝑩0 plasmas. To be precise, we have focused
here on axial-azimuthal instabilities. One of the instabilities that have been calling the attention of the electric
propulsion community is the electron cyclotron drift instability that takes place in plasmas with magnetized electrons
and unmagnetized ions that hold a large relative drift, when accounting for kinetic effects on the electrons. The linear the-
ory of the ECDI predicts unstable waves close to the resonances of the electronDoppler shift with the cyclotron harmonics.

For this work, we propose the simulation of a simplified scenario that gets as close as possible to the assumptions
behind the linear ECDI theory, removing many complex effects accounted for in Hall-thurster-like simulations. To do
so, an initially homogeneous plasma is simulated with periodic boundary conditions in every direction and ignoring
collisional effects. In order to comply with the hypotheses of the ECDI dispersion relation, electrons are moved
according to 𝑩0 and 𝑬0 + 𝑬1 fields; while electrons only react to the oscillating part 𝑬1 of the electric field. Using
an electric field that depends on the species leads to the violation of the energy conservation. For these conditions,
the ECDI manifest and a monochromatic wave can be distinguished before saturation, that is effective in producing
an anomalous electron transport. Ions experience wave trapping and seem to play an important role in the instability
formation and saturation. After saturation, there is significant mixing of modes but the Fourier spectrum shows an
ion-acoustic-like dispersion relation. For long simulation times, oscillations tends to get diminished and there is no
axial electron current.

A second set of simulations is proposed, where axial periodic conditions are substituted by injection conditions with
a fixed potential. Moreover, any particle crossing these boundaries is removed from the simulation. Injection conditions
are chosen such that the initial plasma state is an equilibrium equivalent to the previous periodic simulations. Different
behaviors are observed depending on the size of the residence ion time relative to the saturation time. It is found that,
when these two are similar, an stationary monochromatic oscillation forms at some distance from the ion inlet boundary
that produces a sustained axial transport of electrons. These results suggest that ion injection have a strong influence on
the long-term behavior of the ECDI. This matter will be further investigated and is expected to help to the understanding
of more realistic Hall-thruster simulations.
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