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Abstract: A quasi-neutral, steady-state, one-dimensional axial fluid model for the hol-
low cathode insert region is presented in this work. As a consequence of variable separation
and decoupling, wall reactions appear together with collisions as source or sink terms in
the fluid equations. Local balances and global conservations of particle, momentum, and
energy are discussed. Two operational regimes are identified, named the LIO (Low Ion-
ization) and the HIO (High Ionization) regimes. In the HIO regime, intense ionization
draws neutral density maximum towards the inlet. Further downstream, neutral density
drops sharply and it is followed by a region with ion wall loss more than ionization. The
occurrence of such a region distinguishes the HIO regime from the LIO regime. Regardless
of the regimes, plasma density and ionization degree increase with discharge voltage. Nev-
ertheless, electron temperature drops in the LIO regime and increase in the HIO regime.
In the HIO regime, more discharge voltage results in ions to be more backward directed
by collisional forces and the electron pressure at the anode sheath edge drops with respect
to that at the inlet sheath edge. For enhanced thermionic emission from the insert, the
cathode tends to work more in the HIO regime.
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Nomenclature

n = particle density

u = velocity

T = scalar temperature

p = pressure

I = current

q = heat flux

h = enthalpy flux

φ = electric potential

z = axial spatial coordinate

m = mass

ṁ = mass flow rate

S = particle production rate due to collisions and wall reactions, m−3 s−1

R = momentum production rate (or force density) due to collisions and wall reactions,
Nm−3

E = energy production rate due to collisions and wall reactions, Jm−3 s−1

F = combination of above production rates after the substitution of continuity and/or
momentum equations

ξ̂ = independent variable as a result of the change of variable

Î = normalized particle flux (or current)

M̂ = normalized global momentum balance term

Q̂ = normalized global energy balance term

K = thermal conductivity

ν = collisional frequency in s−1

ε = energy

αio = ionization degree, n/nn
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Subscripts

e = electron

i = ion

n = neutral

s = thermionic electron (at insert wall sheath edge)

p = plasma electron (at insert wall sheath edge), or pressure-related term in the local
and global balance

D = the term related to the directed motion only in the local and global balance

h = the term related to enthalpy in the local and global balance

q = the term related to heat flux in the local and global balance

S = insert wall surface

W = insert wall sheath edge

J = inlet back plate

I = inlet sheath edge

A = anode plate

B = anode sheath edge

R = axial-radial coupling term

io = ionization

sw = thermionic electron insert wall reaction

pw = plasma electron insert wall reaction

iw = ion wall reaction

nw = neutral wall reaction

0 = reference value for normalization
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I. Introduction

At the beginning of 70s, together with the development of electron-bombardment ion thrusters, the
Hollow Cathode (HC) first appeared in electric propulsion devices with the cesium autocathode by Speiser
and Bransonm, followed by a smaller neutralizer version by Ernstene et al.1 Nowadays, HCs are widely
used in Hall and ion thrusters as neutralizers and electron bombardment sources.1–4 HC technologies are
also crucial to complete the current loop between electrodynamic tethers and plasma ambient in space.5

They can also be applied as a spacecraft charging mitigation that modifies the spacecraft potential.6, 7 Due
to its broad applications and pivotal roles, the physics of the HC needs to be studied and the important
mechanisms beneath operations demands to be understood, as a prerequisite to design efficient and durable
HCs.

Traditional zero-dimensional (0D) models study the global current and energy balance of a HC device.8–10

Due to their simplicity, these models can be used to provide preliminary estimations for cathode designs.11

Nevertheless, the disadvantages of 0D models can be identified, such as difficulties in calculating emission
length and incapabilities to provide spatial variation of plasma properties.12 To incorporate multiple physical
processes, time-dependent 2D models have been developed based on finite-volume technique.13, 14 These
powerful models can be directly used to study complicated phenomena and address practical problems such
as electrode erosion,15, 16 neutral gas viscosity,17 and ion acoustic turbulence,18 et cetera. However, the
associated complexity and computational cost lead to difficulties in carrying out parametric analysis that
reveals the relevance of physical processes, in isolating causes and effects, in discussing causalities, and thus
in providing profound insights. Time-independent 1D model would serve as a balance between simplification
and computational cost. Nonetheless, few references can be identified in the past19, 20 and certain level of
difficulties in reproducibility is encountered. For this reason, the authors present in this work an 1D axial
model. Taking advantage of the relative simplicities in the 1D model, intricate causes of physical phenomena
can be better isolated, identified, demonstrated, and discussed from the results. The computational power
of modern computers can directly bring about abundant insights of plasma processes to be revealed.

This model was first developed in a recent work21 based on the variable-separation technique to decouple
the axial and radial equations from the general 2D fluid equations. With local wall-reaction frequencies
as main coupling parameters, an approximate 2D model can be developed by solving together the two
sets of ordinary differential differential equations. Such a method has been successfully applied to Hall
thrusters22 and Helicon thrusters.23 However, it is important to study the decoupled models separately
before incorporating the complete equations.24 Since the variable-separation method and the procedure to
apply cross-sectional average on 2D equation were extensively described in,21 in this work, the 1D axial
model is summarised directly in Sec. 2. Plasma response is analysed in Sec. 3 based on spatial profiles of
plasma properties, together with local and global balances of particle, momentum, and energy. Parametric
study is carried out in Sec. 4 to analyse the effect of electric power and thermionic emission on plasma
response and the balances. Conclusions and discussions are presented in Sec. 5.

II. Model formulation

The orifice-less hollow cathode (HC) considered here is a hollow cylinder of radius R and length L (see
Fig. 1 for the half-cross-section schematic). The 1D axial fluid model is developed to solve for the time-
independent problem (∂/∂t ≈ 0) of the quasi-neutral plasma (n = ne ≈ ni). The cathode insert (S) is
negatively biased relative to the anode plate (A) by an external power supply. Such a circuit can drive a net
electron current from the insert to the anode, through the plasma in the cylindrical channel. The dash-dot
line is the axial centreline of the cylinder. The dashed lines correspond to sheath edges and enclose the
simulated quasi-neutral domain. In this article, to be distinguished with sheath - inside which there is a
much stronger electric field - the word plasma will be exclusively used to denote the quasi-neutral simulation
domain. The inlet sheath (JI), the insert-wall sheath (SW ), and the anode sheath (AB) are considered of
negligible width. The back plate J is considered as a dielectric plate and the anode A is a metallic plate
at the downstream exit. Neutrals (n) are injected from the back plate. There are losses of plasma ions (i)
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and bulk plasma electrons (p) at all boundaries. At the insert wall, thermionic electrons (s) are injected and
neutrals also return after ion-wall recombination. In the quasi-neutral plasma, three species are considered,
being ions (i), electrons (e), and neutrals (n).
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Figure 1: Schematic of a hollow cathode. The dash-dot line corresponds to the centreline of the cathode, with
the dashed lines for sheath edges. The symbols p and s stands for plasma and insert electrons, respectively.

A. Assumptions

This model looks for the spatial variation along z of the following plasma properties: plasma potential at the
centreline φ(z); three scalar field properties that are averaged over the circular cross section, being plasma
density n(z), neutral density nn(z), isotropic electron temperature Te(z); the axial components of four vector
field properties, being velocities in directed motion uα(z) (α = e, i, n) and electron heat flux qe(z). Without
taking into account viscosity, electron pressure tensor is thus reduced to isotropic thermodynamic scalar
pressure, i.e., pe = nTe (Te with energy units, say Joules). Ion and neutral temperatures are considered to
be negligible as Te ≫ Tn ≈ Ti ≈ 0. The reference for electric potential (φ = 0) will be chosen at the insert
surface S (an equipotential “grounded” cathode). Particle and momentum conservations are considered for
each species . As the main power consumption, energy equation is only solved for electrons, with heat flux
approximated by Fourier’s law. The time-independent 1D axial equations in the conservative form are

d (nue)

dz
= Se , (1a)

d (nui)

dz
= Si , (1b)

d (nun)

dz
= Sn , (1c)

d
(
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e
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+
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dφ

dz
, (1d)

d
(

minu
2
i

)

dz
= Ri − ene

dφ

dz
, (1e)

d
(

minnu
2
n

)

dz
= Rn , (1f)

d

[(

menu
2
e

2
+

5

2
pe

)

ue + qe

]

dz
= Ee + enue

dφ

dz
, (1g)

qe = −Ke

dTe

dz
. (1h)

As a result of variable-separation and decoupling, the particle, momentum, and energy fluxes at the insert
wall become sources (or sinks) of particle, momentum, and energy. The effects of collisions and wall reactions
on each species are included in Sα as particle production rate in m−3 s−1, Rα as momentum production rate
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or force density in Nm−3, and Ee as energy production rate in Jm−3 s−1:

Se = Se,io + Se,sw + Se,pw , (2a)

Si = Si,io + Si,iw , (2b)

Sn = Sn,io + Sn,iw , (2c)

Re = Re,ei +Re,en +Re,pw , (2d)

Ri = Ri,ei +Ri,in + Ri,io +Ri,iw , (2e)

Rn = Rn,en +Rn,in +Rn,io , (2f)

Ee = Ee,io + Ee,ei + Ee,en + Ee,sw + Ee,pw . (2g)

The subscript after comma denotes the type of collision or wall reaction. The collisions considered in this
model are:

• Ionization (subscript io) is a source of particles for electrons and ions with Se,io = Si,io = nνio (ν stands
for collisional frequency), yet a sink of neutral particles with Sn,io = −Si,io. If ionization creates ions
with the velocity of neutrals, it then appears in ion momentum equation as a source of momentum
with Ri,io = minνioun, with the opposite for neutrals Rn,io = −Ri,io. Ionization mainly consumes
electron energy as Ee,io = −nνioεio, with εio for the first ionization energy.

• The e-i elastic Coulomb collision (subscript ei) and e-n elastic collision (subscript en) can be expressed
as frictional forces on electrons as Re,ei = −menνei(ue − ui) and Re,en = −menνen(ue − un), with the
opposite for ions and neutrals as Ri,ei = −Re,ei and Rn,en = −Re,en. The random motion energy ex-

change due to these two collisions consumes electron energy with Ee,ei+Ee,en = −
3me

mi

n (νei + νen)Te.

Both collisions determine the thermal conductivity in Fourier heat conduction equation as Ke ≈
5

2

nTe

me (νen + νei)
.

• The i-n CEX collision (subscript in) can be written as a frictional force on ions asRi,in = −
1

2
minνin(ui−

un), with the opposite for neutrals as Rn,in = −Ri,in.

The models used for cross-sectional averaged collisional frequencies were described in.21 Wall-reaction terms
are defined through frequencies for thermionic emission from insert (νsw), plasma electron absorption (νpw),
and plasma ion recombination (νiw). Their associated production rates are presented in A. Since wall
reactions are treated mathematically as collisions in the 1D model, “collisional terms” can be used to include
both collisions and wall reactions hereafter.

B. Normalization and isolation of variables

The reference quantities for normalization are

g0 ≡
ṁ

πR2mi

, u0 ≡

√

T0

mi

, zo ≡ R ,

n0 ≡
g0
u0

, q0 ≡ T0g0 ,

with T0 as an arbitrary parameter to normalize energies and ṁ the given mass flow rate. The system of
equations are normalized using the reference quantities for the production rates,

S0 ≡
g0
z0

, R0 ≡
T0n0

z0
, E0 ≡

T0g0
z0

.
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After linear recombinations, the isolated derivatives become

dẑ

dξ̂
=
(

T̂e − û2
i − m̂eû

2
e

)

, (3a)

d (ln n̂)

dξ̂
= F̂3 + F̂4 − F̂7 − F̂2ûi − F̂1m̂eûe , (3b)

dûe

dξ̂
= F̂1

dẑ

dξ̂
−

d (ln n̂)

dξ̂
ûe , (3c)

dûi

dξ̂
= F̂2

dẑ

dξ̂
−

d (ln n̂)

dξ̂
ûi , (3d)

dφ̂

dξ̂
= T̂e

d (ln n̂)

dξ̂
+ m̂eûe

dûe

dξ̂
+
(

F̂7 − F̂3

) dẑ

dξ̂
, (3e)

dûn

dξ̂
=

F̂5

ûn

dẑ

dξ̂
, (3f)

dq̂e

dξ̂
= F̂6

dẑ

dξ̂
−

3

2
n̂ûeF̂7

dẑ

dξ̂
+ n̂ûeT̂e

d (ln n̂)

dξ̂
, (3g)

dT̂e

dξ̂
= F̂7

dẑ

dξ̂
, (3h)

n̂n =
1− n̂ûi

ûn

, (3i)

with the electron-to-ion mass ratio m̂e = me/mi and the upper hat symbol for dimensionless quantity.

The change of variable (from ẑ to ξ̂) was applied to regulate the problem, thus avoiding the numerical
difficulties by cause of the sonic condition T̂e − û2

i − m̂eû
2
e = 0. This sonic condition is singular if the

right-hand side (RHS) of Eq. (3b) is not zero, thus d(ln n̂)/ dξ̂ 6= 0 and d(ln n̂)/ dẑ → ∞. This type of
sonic condition is permitted at the boundaries, where quasi-neutrality breaks down and matching to a non-

neutral sheath solution is required. In this case, the ion sonic velocity ĉs =

√

T̂e − m̂eû2
e corresponds to the

minimum ion speed required by the general Bohm sheath criteria ûi ≥ ĉs. However, inside the quasi-neutral
plasma, a regular sonic point can arise if the RHS of Eq. (3b) is zero, thus d(ln n̂)/ dξ̂ = 0. Consequently,

all derivatives to ξ̂ would vanish at that point, yet without singularities due to finite derivatives to ẑ. In this
work, the latter case is not considered. Ions are thus subsonic in the plasma and singular conditions occur
at the sheath edges.

The F -terms contain all collisions. Electron and ion particle production rates in continuity equations
directly give rise to particle production frequencies F1 and F2 as

nF1,2 = Se,i . (4)

In the momentum equations, substituting the advective term mu d(nu)/ dz with continuity equations leads
to

nF3,4 = Re,i −me,iue,iSe,i, nnF5 = Rn −mnunSn . (5)

In the electron energy equation, the substitution of continuity and momentum equations lead to

F6 = Ee − ueRe +

(

meu
2
e

2
−

5

2
Te

)

Se . (6)

Thermal conductivity is included in the term F7 (equal to temperature gradient). For the purpose of
reproducibility, the mathematical equations of these terms in dimensionless form are listed in B.

In the axial problem, there are eight ODEs and one algebraic equation. They will be solved to-
gether with the boundary conditions (BCs) to find the spatial profiles of the following nine variables:

ẑ, ln n̂, n̂n, ûe, ûi, ûn, φ̂, q̂e, T̂e.
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C. Boundary conditions

1. Inlet sheath edge I

At the inlet sheath edge I, the floating condition n̂(ûi− ûe) = 0 and the singular sonic condition are applied
as

ûe,I = ûi,I = −

√

T̂e,I/ (1 + m̂e) . (7)

Due to a negligible directed motion compared with random thermal motion, electrons can be considered as
near-Maxwellian at I. Only electrons with sufficiently high energy can overcome sheath potential barrier,
thus escaping plasma. Therefore, the inlet sheath drop φ̂JI = φ̂I − φ̂J determines the electron flux,25 giving
the relation

φ̂JI = −T̂e,I ln (|αue,I |) > 0 , (8)

with αue = ûe/

√

T̂e/(2πm̂e). The assumption of an electron-repelling sheath (φ̂JI > 0) requires |αue,I | < 1.

For this reason, the velocity ratio αue is intended to inspect the validity of such an assumption. Given by
Eq. (7), this condition is certainly satisfied at the inlet. The total electron energy flux at I is also determined
by these high-energy Maxwellian electrons as25

Q̂e,I = n̂I ûe,I

(

φ̂JI + 2T̂e,I

)

< 0 . (9)

Considering negligible the kinetic energy flux in directed motion, heat flux is thus obtained by excluding the
enthalpy flux 5n̂I ûe,I T̂e,I/2,

q̂e,I = n̂I ûe,I

(

φ̂JI − T̂e,I/2
)

. (10)

The system of equations, Eqs. (3), can be forwardly integrated from ξ̂ = ẑ = 0 as an inlet-boundary-
condition (IBC) problem. For a chosen value of ûn,I , the sheath models described above can be used to

derive all IBCs from φ̂I , n̂I , and T̂e,I . For this reason, these three IBCs are chosen as shooting unknowns,
which will be found by a shooting method to fulfil three shooting targets given by the BCs downstream (see
below).

2. Anode sheath edge B

The anode sheath is also considered to be conventionally electron-repelling (φ̂AB = φ̂B − φ̂A > 0), with the
singular sonic condition fulfilled at the edge as

ûi,B =
√

T̂e,B − m̂eû2
e,B . (11)

For the sheath drop, the same model is applied as that at the inlet:

φ̂AB = −T̂e,B ln (αue,B) > 0 . (12)

Due to large thermionic emission as electron source (after all, electron current needs to be driven for being
a cathode), a fast electron fluid can result in αue,B > 1. In this case, the assumption of an electron-repelling
anode sheath can be violated and modifications on the model would be required (not included in this work).

If the sonic condition is chosen as the stop criterion for the IBC integration problem, the simulation
length ẑB obtained from Eq. (3a) would change for different shooting unknowns. Therefore, the cathode
tube length becomes a shooting target (denoted by the asterisk superscript) as

ẑ∗B = L/z0 . (13)
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The second shooting target arises from the discharge voltage (anode-to-insert voltage Vd) set by power source,

φ̂∗
A = eVd/T0 . (14)

This needs to match φA = φB − φAB , with φB from integrating Eq. (3e) and φAB from the sheath model
Eq. (12). The last shooting target is given by the heat flux permitted by the sheath potential drop

q̂∗e,B = n̂Bûe,B

(

φ̂AB − T̂e,B/2
)

, (15)

which must agree with q̂e,B obtained from Eq. (3g).

D. The complete mathematical problem

In conclusion, the system of ODEs can be first integrated as an IBC problem using Runge-Kutta method.
Then, as a shooting problem that looks for proper IBCs fulfilling the shooting targets at B, the following
implicit equations

f(x) = 0 , x = [T̂e,I ; n̂I , φ̂I ] , (16)

f = [fz = ẑB − ẑ∗B; fq = q̂e,B − q̂∗e,B; fφ = φ̂A − φ̂∗
A]

need to be solved by an iterative scheme. In this way, for a given gas type, the steady plasma response (axial
profiles of the variables) is found for the following set of dimensionless parameters,

T̂s, Ŝew,s, ûn,I , ẑB, φ̂A . (17)

Since the discharge voltage Vd is chosen as a constraint, the discharge (electron) current Id thus becomes
an output from the simulation, instead of being a parameter. Inside the sheaths, because ionization is
negligible, continuity equation guarantees a constant current as Ie,A = Ie,B and Ii,A = Ii,B . The normalized
discharge current thus becomes

Id = I0Îd, Îd = Îe,B − Îi,B , I0 = eπR2g0 , (18)

with Îe,i = n̂ûe,i the normalized particle flux.

To reduce computational cost and improve convergence, the equation fφ and the unknown φ̂I are removed

from the equation system, left with two unknowns x = [T̂e,I ; n̂I ] and two equations f = [fz; fq]. Then, φ̂I

becomes a parameter, while the discharge voltage φ̂A becomes an output (as the discharge current Îd). In

this way, by varying φ̂I , HC current-voltage (IV) characteristic can be reconstructed with less numerical
difficulties. Nevertheless, this is not the only advantage. By reducing the number of unknowns from three to
two, contour maps (or surfaces) of f(x) can be obtained by integrating the IBC problem. Such visualization
tools can be straightforwardly used to discuss existence and uniqueness of the solutions for f(x) = 0.
Moreover, they can be used to obtain good initial guesses, instead of relying on tedious continuation methods.

In this work, the plasma response will first be analysed from the spatial profiles for one set of parameters.
The influence of discharge voltage and thermionic emission on plasma response will be examined. Insert
material is Lanthanum hexaboride (LaB6) with φwf = 2.66 eV and AG = 2.9× 105Am−2 K−2.26 The
cathode insert has dimensions of R = 0.5mm and L = 1.5mm. The gas is Xenon with m̂e ≈ 4.179× 10−6

and εio = 12.127 eV. Mass flow rate is 3.6 sccm (0.354mg s−1). The reference temperature and neutral
velocity are chosen to be T0 = 4 eV and ûn,I = 0.2. Results will be shown in dimensionless quantities.
To recover important dimensional quantities, some reference values are listed here: n0 ≈ 1.287× 1019 m−3,
u0 ≈ 1.715km s−1, I0 ≈ 0.278A.
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Figure 2: Spatial profiles of plasma parameters for φ̂I = 7 (φ̂A ≈ 5.36, solid, triangle), φ̂I = 5 (φ̂A ≈ 4.12,

dashed, circle), φ̂I = 4 (φ̂A ≈ 3.91, dotted, square).
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Figure 3: Local momentum balance, local energy balance, and collisional frequencies for φ̂I = 7. The legends
are described in correspondent subsections. The normalization of the dimensionless collisional frequencies
are shown in B.
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III. Insight of one specific solution

For Ts = 1650K (T̂s ≈ 0.0356, Ŝe,sw ≈ 3.352) and φ̂I = 7 (φ̂A ≈ 5.36), the solution of f(x) = 0 is found

to be n̂I ≈ 0.49 and T̂e,I ≈ 0.89. Spatial profiles of plasma variables are shown in Fig. 2 by the solid curves.
To understand these profiles, it is necessary to analyse the global and local balances of particle, momentum,
and energy.

First of all, due to small electron mass and thus high thermal conductivity K̂e ∼ 1× 103 (consistent with
ν̂ei, ν̂en ∼ 1× 10−4 in Fig. 3), the temperature gradients are negligible. For this reason, analyses will be
carried out without taking into account the temperature variation. However, although constant temperature
is an adequate assumption, it is still necessary to include energy equation to fulfil energy conservation.
Moreover, it was also found that, without energy equation (T̂e as a parameter), two solutions can normally
be found for fz(n̂z,I) = 0. It seems that energy conservation renders one of these two solutions far-away

from being correct. Then, the solution for f(T̂e,I , n̂I) = 0 was found to be unique (although rigorous proof
was not intended).

A. Local plasma momentum balance

To present local electron momentum balance, the ME panel of Fig. 3 plots each term in the dimensionless
momentum equation

d
(

m̂en̂û
2
e

)

dẑ
+

dp̂e
dẑ

= n̂
dφ̂

dẑ
+ n̂F̂3 + m̂eûen̂F̂1 . (19)

From left to right, these terms are electron inertia (momentum density flux gradient in directed motion,
legend D), pressure gradient (or momentum density flux gradient in random motion, legend p), electric force
density (legend φ), and the collisional terms (legend F3 and F1). In this case, electron inertia and collisional
terms are negligible due to the small electron mass (m̂e ≪ 1). Locally at any z, electron momentum balance
is thus a balance between the electron pressure gradient and the electric force density, which leads to the
familiar Boltzmann relation T̂e d (ln n̂) / dẑ ≈ dφ̂/ dẑ. For this reason, the behaviour of the potential φ̂ is
found to follow closely that of the plasma density n̂ in Fig. 2.

The dimensionless ion momentum equation reads

d
(

n̂û2
i

)

dẑ
= −n̂

dφ̂

dẑ
+ n̂F̂4 + ûin̂F̂2 . (20)

As shown in the MI panel of Fig. 3, ion inertia is certainly not negligible. After cancelling out the advective
term ûi d(n̂ûi)/ dẑ with ûin̂F̂2, the remaining inertia term n̂ûi dûi/ dẑ is shown in the graph by the difference
between the D-curve and the F2-curve. By comparing with other curves, this term is again small, with
exceptions only near the singularities at boundaries. Therefore, local ion momentum balance becomes a
balance between electric field and F̂4, i.e. dφ̂/ dẑ ≈ F̂4. Combining electron and ion momentum equations,
the plasma response can be summarised by

T̂e

d(ln n̂)

dẑ
≈

dφ̂

dẑ
≈ F̂4 ≈ − (ν̂io + ν̂in) (ûi − ûn) , (21)

with ionization and CEX collision being the dominant collisions. Therefore, electric field becomes a bridge
that couples with plasma density through electron response and links to collisions in ion response. Conse-
quently, as shown in Fig. 2, the maxima of plasma density and electric potential thus occur close to ûi = ûn

and F̂4 ≈ 0 (ẑ ≈ 1.2). Prior to his location, plasma density increases for ûi < ûn.

B. Neutral particle and momentum balance

Neutral continuity and momentum equations can be written as

dûn

dẑ
+ ûn

d(ln n̂n)

dẑ
= −αioF̂2 ,

dûn

dẑ
=

F̂5

ûn

, (22)
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with αio = n̂/n̂n the ionization degree. For neutrals, due to Tn ≈ 0, F̂5 governs the velocity gradient and,
then, the density gradient responds according to the continuity equation. Considering dominant collisions,
the combination of both equations leads to

ûn

αio

d(ln n̂n)

dẑ
= −F̂2 −

F̂5

αioûn

≈ −ν̂io − ν̂in

(

ûi

ûn

− 1

)

. (23)

Therefore, a positive neutral density gradient (see Fig. 2) can only arise in the case of ν̂io < ν̂in(1− ûi/ûn),
with sufficient CEX collisions and ûn > ûi. The maximum neutral density occurs at ν̂io ≈ ν̂in(1− ûi/ûn). Its
location (before ûi < 0) is followed by that of maximum plasma density with ûi ≈ ûn and that of minimum
neutral velocity with ν̂iw ≈ ν̂in(ûi/ûn− 1). After the maximum, the effect of ionization to consume neutrals
and decrease neutral density is well pronounced. After ûi = ûn, a region with sharp neutral density drop is
observed owing to both ionization consumption and CEX collision as momentum source. However, since ν̂io
and ν̂in both decrease with n̂n, this region is followed by another region with a moderate slope.

C. Plasma particle conservation

In a time-independent 1D model,the continuity equation depicts how the particle production rate due to
ionization and wall reaction is balanced, locally, with the gradient of particle density flux ( dÎe,i/ dẑ = n̂F̂1,2).

Ionization and ion wall loss would increase and decrease ion flux, respectively. The slope of Îi in Fig. 2 thus
follows the sign of F̂2 = ν̂io − ν̂iw. Electron flux is increased by thermionic emission and ionization, while
decreased by plasma electrons leaving to the insert. However, due to ν̂pw ≪ ν̂sw, ν̂io, electron flux increases
towards anode.

The volumetric integration of Eqs. (1a) and (1b) leads to the global charge conservation, which is a
balance between the fluxes leaving at both ends (Îα,IB = Îα,B − Îα,I) and the volumetric integration of

particle production rates (Îα,k =
∫ ẑB

0
Ŝα,k dẑ for k-type collision):

Îi,IB = Îi,io + Îi,iw , Îe,IB = Îe,io + Îe,sw + Îe,pw . (24)

Because floating condition is applied at the inlet and ionization produces same amount of electrons and ions
Îi,io = Îe,io, the discharge current in Eq. (18) to anode thus balances insert-wall reactions as

Îd = Îe,B − Îi,B = Îe,sw + Îe,pw − Îi,iw . (25)

At the insert wall, (electron) discharge current is constituted by sources from thermionic electron and ion
wall recombination, plus sinks due to plasma electron loss. If there is abundant thermionic emission and
sufficiently large sheath drop to repel back plasma electrons, a net electron current can be secured by
ν̂sw + ν̂iw > ν̂pw.

D. Global plasma momentum conservation

Similar to particle conservation, global momentum conservation for each charged species can be found by the
volumetric integral of Eqs. (19) and (20). Summing both gives the global plasma momentum conservation,

M̂iD,IB + M̂eD,IB + M̂ep,IB = M̂e,R + M̂i,R . (26)

On the RHS, it is the global volumetric momentum production rate due to collisions M̂α,R =
∫ ẑB

0
R̂α dẑ. On

the LHS, those are the momentum fluxes leaving the boundaries, including both directed motion, M̂αD,IB =

m̂α

(

n̂Bû
2
α,B − n̂I û

2
α,I

)

, and random motion, M̂ep,IB = p̂e,B − p̂e,I . Since sonic conditions are applied at

both ends, the directed plasma momentum flux outwards is equal to the pressure difference as M̂iD,IB +

M̂eD,IB = p̂e,B − p̂e,I . Consequently, considering dominant collisions, the global momentum balance can be
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approximated by

2 (p̂e,B − p̂e,I) ≈ M̂i,R

≈

∫ ẑB

0

n̂ [ν̂ioûn − ν̂iwûi − ν̂in (ûi − ûn)] dẑ . (27)

If, globally, collisions introduce to ions more backward momentum than forward momentum, the electron
pressure at B needs to drop below the electron pressure at I. In the current case of study, p̂e,B < p̂e,I (see
n̂ in Fig. 2) signifies that ions are mainly directed backwards by collisions.

E. Plasma velocities

The importance of discussing plasma velocities lies in the fact that plasma needs to self-adjust to fulfil the
constraints at the boundaries. Sonic conditions (Bohm criteria) are applied at both ends as boundary condi-
tions on ion velocities. The variation of electric potential is mainly concentrated inside sheaths. Therefore,
to satisfy the constraint given by discharge voltage, electron velocity becomes crucial because sheath drop
depends on the velocity ratio αue as in Eq. (12). However, owing to the coupling of fluid equations, it is
not a single mechanism that decides the velocities. In this work, the velocity variation is discussed from
the aspect of velocity gradient. Apparently, it is more convenient to discuss the velocity gradient through
continuity equation in the form of Eqs. (3c) and (3d), as governed by the difference between the density
gradients and the particle production terms F̂1,2.

For ions, it is found that the density gradient dominates at the boundaries and the magnitude of ion
velocity is increased (or ions are accelerated) towards the direction of dropping density. Nevertheless, around
the maximum plasma density (ûi ≈ ûn and F̂4 ≈ 0), it is sufficient ionization (F̂2 = ν̂io − ν̂iw > 0) that
guarantees a positive velocity gradient. Since ionization consumes neutrals and thus reduces ν̂io, a sudden
reduction of velocity gradient occurs near ν̂io = ν̂iw (ẑ ≈ 1.7), beyond which ions tend to lose velocity due
to insufficient ionization (F̂2 < 0). However, owing to dropping density downstream, a positive velocity
gradient is sustained.

By the same token, abundant thermionic current from insert (ν̂sw in F̂1) would also result in a fast
electron fluid downstream. As shown in Eq. (12), the assumption of conventional electron-repelling anode
sheath sets an upper limit on electron velocity at B by αue,B < 1. For αue,B = 1, anode sheath “collapses”
and only a flat sheath potential can accept the electron flux coming from plasma. For αue,B > 1, new
sheath model is required. Moreover, the modification of electron velocity on Bohm criteria in Eq. (11) is
only negligible for α2

ue,B ≪ 1. For these reasons, it is important to check αue to examine the validity of
assumptions. In the current case, αue,B ≈ 0.2 (see Fig. 2) justifies the consistency of sheath models.

F. Electron energy conservation

The local balance of total electron energy is between the gradient of total energy flux and energy production
rate due to electric field, collisions, and wall reactions. The dimensionless total energy equation writes

dq̂e
dẑ

+
d
[(

K̂eD + ĥe

)

ûe

]

dẑ
= n̂ûe

dφ̂

dẑ
+ Êe , (28)

with K̂eD = m̂en̂û
2
e/2 the directed kinetic energy and ĥe = 5n̂T̂e/2 the kinetic enthalpy. The electron

mechanical energy balance is obtained by multiplying electron momentum equation with ûe. After combining
with continuity equation, it becomes

n̂ûe

dφ̂

dẑ
−

d
(

K̂eDûe

)

dẑ
= ûeR̂e −

m̂eû
2
e

2
Ŝe + ûe

dp̂e
dẑ

. (29)

Inside plasma, electrons would gain kinetic energy if there is a positive electric work (n̂ûe dφ̂/ dẑ). In other
words, as on the LHS of Eq. (29), the electric work is consumed to balance directed energy flux gradient
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d
(

K̂eDûe

)

/ dẑ. The rest of electric work (on the RHS) will be transferred to change plasma internal energy.

This “transfer” is mathematically shown by substituting Eq. (29) into Eq. (28), giving the internal energy
equation as

d
(

ĥeûe

)

dẑ
+

dq̂e
dẑ

= Êe + ûeR̂e −
m̂eû

2
e

2
Ŝe + ûe

dp̂e
dẑ

. (30)

The three “transferring” terms appear on the RHS, being frictional dissipation, consumption to sustain
particle flux gradient, and pressure push work. From the results, taking into account dominant collisions,
the internal energy balance can be approximated by

d
(

ĥeûe

)

dẑ
+

dq̂e
dẑ

≈ Êe,sw + Êe,pw + Êe,io + n̂ûe

dφ̂

dẑ
. (31)

The contribution of each term in Eq. (31) is shown by the EE panel of Fig. 3. The main heating source
to plasma is from thermionic electrons (sw). After being accelerated by strong electric field inside the insert
sheath, they enter plasma at the sheath edge W , where they are considered immediately thermalized with
plasma electrons. Escaped plasma electrons carry energy out with them (pw), yet small in this case because
of sufficient sheath drop to repel them back. The net consequence of the insert sheath on electron energy is
thus to convert electric work to electron kinetic energy that serves as energy source to the plasma. Electric
work inside plasma (φ) tends to heat up plasma near the inlet and cool it down downstream. Energy is mostly
spent in ionization (io) and changing fluxes of heat and enthalpy (q and h). With negligible temperature
gradient, the enthalpy flux gradient would vary in an opposite manner to ionization spent as (see Fig. 3)

d
(

ĥeûe

)

dẑ
≈

5

2
T̂e

d (n̂ûe)

dẑ
=

5

2
T̂eŜe . (32)

Heat flux gradient is thus adjusted accordingly to fulfil the local balance.
The global energy balance is obtained by the volumetric integration of Eq. (31) as

Q̂eh,IB + Q̂eq,IB ≈ Q̂e,sw + Q̂e,pw + Q̂e,io + Q̂e,φ . (33)

The global energy production rate inside plasma is thus balanced with the energy fluxes that leave both
ends. At the edges, they are considered to be carried by the high-energy tail of Maxwellian electrons, which
must be consistent with the sheath drop that also agrees with the current balance. Using Eq. (9), the sheath
thus regulates the energy flux by

Q̂eh,IB + Q̂eq,IB ≈ Q̂e,IB

= Îe,B

(

φ̂AB + 2T̂e,B

)

− Îe,I

(

φ̂JI + 2T̂e,I

)

, (34)

where the directed energy flux is considered negligible. This physical energy balance between plasma and
sheath is translated, mathematically, to be the constraint fq = 0.

IV. Parametric study

A. Discharge potential

Parametric study is first carried out by changing φ̂I (equivalent to change discharge potential φ̂A). For

comparison, the spatial profiles for φ̂I = 4, 5, 7 and Ts = 1650K are displayed together in Fig. 2. Some other
interesting properties are plotted against φ̂I (parametric plots) and shown by the solid curves in Fig. 4. The
global conservations of particle, momentum, and energy are presented in Fig. 5.

First of all, as shown in Fig. 4 by the solid curve, φ̂A increases with φ̂I monotonically within the range of
parameters chosen in this article. Based on this observation, the authors claim that multiple solutions did
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Figure 4: Parametric plots of φ̂I for different insert temperature: Ts = 1650K (solid), Ts = 1700K (dashed),
Ts = 1750K (dotted). The αQe,io panel presents the ratio Q̂e,io/Q̂e,ews. The ẑmax panel shows the location
of maximum neutral density.
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not yet occur and an unique solution has been observed for the original implicit equations f(T̂e,I , n̂I , φ̂I) = 0.

For this reason, parametric plots are still presented with φ̂I as the abscissa axis, treating φ̂I as a parameter
for the problem f(T̂e,I , n̂I) = 0.

By increasing discharge voltage, more power is available and more ionization can be expected. As shown
by the αio profiles in Fig. 2, the solid curve for φ̂I = 7 has the highest ionization degree. Likewise, among
the parametric plots in Fig. 4, both maximum ionization degree αio,max and inlet plasma density n̂I further

confirm that ionization increases with discharge voltage. However, electron temperature T̂e,I is found to

increase for φ̂I / 5 and decrease for φ̂I ' 5. For this reason, two operational regimes are identified, named
by LIO (Low IOnization) and HIO (High IOnization) regimes. Before exploring the origins and consequences
of two regimes, global conservations are discussed first.

1. Global conservations

Figure 5: Global conservation of current, momentum, and energy for Ts = 1650K. Same legends are used
as those for local balances in Fig. 3.

The discharge current, as shown by Fig. 5 and Eq. (25), is composed by thermionic electron source
(Îe,sw > 0), plasma electron wall loss (Îe,pw < 0), and plasma ion wall loss (yet as electron current source

−Îi,iw > 0). For the same cathode length and insert temperature, thermionic electron current Îe,sw does not
change, being independent on discharge voltage. For plasma electrons, increased discharge voltage results in
a higher insert sheath drop (φW ), which reflects more electrons back to plasma thus reduces electron loss.
For plasma ions, as shown by the curves of −Îi,iw and Îi,io, increased ionization also results in more ion wall

loss. After all, discharge current increases with discharge voltage (see Îd panel in Fig. 4) as a result of less
plasma electrons and more plasma ions escaping from the plasma to the insert. Nevertheless, the discharge
current does not increase much because it is dominated by the constant thermionic current.

17



For the global electron momentum conservation in Fig. 5, electron inertia (directed momentum flux) is

negligible as found before. Thus the volumetric integration of electric force M̂e,φ =
∫ ẑB

0
n̂ dφ̂ roughly balances

with the pressure difference p̂e,IB. Nevertheless, globally, collisional forces are not that marginal as for the
local balance in Fig. 3. This is because that, with ûe > 0 nearly everywhere, electric field accelerates and de-
accelerates electrons at different regions (see φ̂ profiles in Fig. 2). On the other hand, with ûe > ûi,n nearly
everywhere, collisions on electrons mainly serve as friction. Consequently, with some influence of electric
field being cancelled out by volumetric integration, the contribution of collisions in the global conservation
is more pronounced.

For the plasma momentum balance, as proved in Sec. D, sonic conditions at both ends result in M̂iD,IB+

M̂eD,IB = M̂ep,IB = p̂e,IB. This can now be clearly observed from the MI and ME panels in Fig. 5. Also,

according to Eq. (27), the electron pressure difference (M̂ep,IB = p̂e,IB) is balanced with collisions that

govern ion response (2M̂ep,IB ≈ M̂i,R). If collisions globally introduce more backward momentum on ions,
electric field is found to direct ions and electrons forward and backward, respectively. Then, due to electron
pressure gradient roughly balanced with electric force, the electron pressure at B becomes smaller than
that at I. Here, another feature that distinguishes two regimes can be noticed. In the HIO regime, for
increasing discharge voltage, the net effect of electric and collisional forces tends to direct ion momentum
more backward (or less forward), together with a decreasing electron pressure difference p̂e,IB.

For the global energy conservation in Eq. (33), the contribution of each term is shown in the EE panel
of Fig. 5. As discussed in Sec. F, the main energy source for the plasma is the kinetic energy of thermionic
electrons (Q̂e,sw) that are accelerated by electric field inside the sheath. Since the insert sheath drop φ̂W

increases with φ̂ and thus discharge voltage, more electric power is transferred to plasma due to increased
Q̂e,sw. Around half of this energy source leaves plasma at both ends as enthalpy and heat fluxes (Q̂eh,IB

and Q̂eq,IB , respectively). The rest is spent mainly in ionization (Q̂e,io), electric work (Q̂e,φ), and balancing

plasma electron loss at W (Q̂e,pw).

The axial electric work inside plasma is found to be negative (Q̂e,φ < 0) in Fig. 5. That is to say,
inside plasma, internal electron energy is converted to electrical energy. This needs to be explained from the
local balance Eq. (31). Negative electric work Îe dφ̂/ dẑ < 0 mainly occurs at the electron-repelling region

downstream with Îe > 0 and dφ̂/ dẑ < 0 (see Fig. 3). In this region, Îe can be much larger than that of

upstream where electric field is electron-accelerating with Îe > 0 and dφ̂/ dẑ > 0. For this reason, negative
electric work thus occurs in the global energy conservation, as being dominated by the downstream electron-
repelling region. It is important to note that this negative electric work is a result of separating insert-wall
sheath (that accelerates thermionic electrons) and quasi-neutral plasma. Considering both together as the
ionized gas inside cathode, the net electric work on electrons must be positive for being the only energy
source.

The energy spent on ionization (Q̂e,io) is found to increase with discharge voltage, the same as its ratio

to the thermionic electron energy source (see αQe,io
= Q̂e,io/Q̂e,ews in Fig. 4). In the LIO regime, for a

decreasing discharge voltage drop, it can be seen that αQe,io
drops much faster than that in the HIO regime.

Cathode thus spends much less energy on ionization in the LIO regime. It even drops to be less than the
energy taken away by the plasma electrons at the insert sheath edge W , i.e., |Q̂e,pw| > |Q̂e,io|. This is
consistent with the fact that, for a smaller sheath drop φW , there are more plasma electrons escaping to
the insert. Interestingly, for the same reason, ions would arrive at the insert surface with less energy due
to reduced acceleration by sheath. Although insert thermal balance is beyond the scope of this article, the
authors carried out rough calculations to compare the energy fluxes of plasma electrons and ions at insert
surface S. It was found that, in the LIO regime, plasma electron bombardment is the main insert heating
mechanism. Ion bombardment dominates in the HIO regime. However, thorough study on insert thermal
balance will be left for future work.
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2. LIO and HIO regimes

The main characteristics that distinguish the LIO regime from the HIO regime have been found: electron
temperature drops with discharge voltage (see Fig. 4); more discharge voltage results in ion momentum to
be more forward-directed (see Fig. 5), together with an increasing electron pressure difference p̂e,IB.

To understand the differences of two regimes, it is necessary to go back to the implicit equations
f(T̂e,I , n̂I) = 0. How these two unknowns are found to satisfy f(x) = 0 resembles how plasma adjusts
itself to fulfil sonic conditions and global energy conservation. Although electron temperature can not be
determined without energy equation, energy conservation can not explain the non-monotonic T̂e,I behaviour

on φ̂I . It is found out to be a result of the first constraint. That is to say, to increase ion velocity from
ûi,I ≈ −1 at I to ûi,I ≈ 1 at B,a n̂I and T̂e,I need to reach an agreement. For this reason, the authors have

studied how fz = zB − z∗B changes with x = [T̂e,I ; n̂I ].

Mathematically speaking, for a fixed T̂e,I , fz was found to decrease with n̂I in the LIO regime, yet

increase in the HIO regime.b On the other hand, fz was found to decrease with T̂e,I monotonically. It

seems like that, in the LIO regime, increasing n̂I (with constant T̂e,I) would result in ions to be too fast

downstream and the sonic condition is thus achieved before B. To counteract this effect, T̂e,I needs to be
reduced so that ions are slowed down and the sonic condition is achieved at B. The opposite occurs in the
HIO regime. Guided by these mathematical behaviours of fz(T̂e,I , n̂I), we can then come back to the spatial
profiles and parametric plots to discuss the physical implications underneath.

As discussed in Sec. E, ionization frequency ν̂io was found to play an important role in determining ion
velocity gradient. It can be the value of ν̂io that is adjusted by T̂e,I and n̂I to have adequate ion velocity

gradient, thus achieving sonic conditions. The LIO regime is analysed by comparing the dotted (φ̂I = 4) and

the dashed (φ̂I = 5) profiles in Fig. 2. Since higher discharge voltage results in higher plasma density n̂I ,
neutral density at inlet also increases (see Fig. 2) due to ûi,I ≈ −1 and n̂n,I = (1− n̂I ûi,I)/ûn,I . Therefore,

a higher ionization frequency ν̂io could be expected. Surprisingly, in the F̂2 profiles, the φ̂I = 5 curve lies
below the φ̂I = 4 curve near the inlet. Because of ν̂iw = 1 in our simulations, it can only be a lower electron
temperature T̂e,I that reduces ν̂io (and thus F̂2 = ν̂io− ν̂iw). Following the trend of ν̂io, ion velocity gradient

(see ûi in Fig. 2) for the φ̂I = 5 case is smaller upstream and ions are “slower” (with a more negative
velocity). Around the mid-point, the effect of increased neutral density finally takes over to increase ν̂io,

which leads to faster ions downstream for φ̂I = 5. At the end, with increasing discharge voltage and higher
plasma density in the LIO regime, if electron temperature was not reduced to achieve a lower ν̂io, ions would
be too fast to achieve the sonic condition at B.

The specific solution presented in Sec. III for φ̂I = 7 belongs to the HIO regime. Compared to the profiles
for φ̂I = 5, a higher ν̂io (also F̂2) is observed in the region next to the inlet, being consistent with higher n̂I

and n̂n,I . Then, ion velocity increases with ẑ much faster and maximum neutral density occurs much closer
to the inlet (see ûi and n̂n profiles in Fig. 2). After this maximum, ionization consumes neutrals and ν̂io
drops abruptly (see Sec. B). It then occurs the region with ν̂io < ν̂iw and F̂2 < 0, where ionization becomes
less than wall loss. As discussed in Sec. E, this effect suppresses ion velocity gradient. It is the existence of
such a region with F̂2 < 0 that identifies the HIO regime. As shown by the ẑmax plot in Fig. 4, in the HIO
regime, the location of maximum neutral density drops with φ̂I . Therefore, ions travel a longer distance
with F̂2 < 0 that reduces dûi/ dẑ. To counteract this effect and to have sufficient ion speed to reach sonic
condition at B, a higher electron temperature is thus required to increase ν̂io .

In conclusion, in the LIO regime, because ionization is not yet sufficient for the region with F̂2 < 0 to
occur, more discharge voltage leads to higher plasma density, which tends to increase ion velocity and a
reduction in electron temperature is thus necessary to slow down ions and have sonic condition at B. In
the HIO regime, ionization is so high that a region with F̂2 < 0 occurs downstream. If discharge voltage
is increased, ions travel a longer distance with a suppressed velocity gradient and an increase in electron

aFor the purpose of this discussion, the influence of electron temperature and electron velocity on ion sonic velocities in

Eqs. (7) and (11) can be ignored due to
√

T̂e ≈ 1 and αue,B ≪ 1.
bIt is actually this non-monotonic behaviour that results in the existence of two solutions if energy equation is not solved

(see Sec. III).
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temperature is necessary to have fast enough ions and thus reach sonic condition at B. Similarly, also due
to such a region with F̂2 < 0 in the HIO regime, increasing φ̂I results in ions to travel a longer region with
ûi > ûn. For this reason, globally, collisions introduce less forward momentum on ions as shown in Fig. 5.
Eventually, it occurs the situation p̂e,B < p̂e,I and ion momentum is globally directed backwards.

B. Insert temperature

The parametric plots on φ̂I are presented in Fig. 4 for three different insert temperature, Ts = 1650K
(T̂s ≈ 0.0356, Ŝe,sw ≈ 3.352, solid), Ts = 1700K (T̂s ≈ 0.0366, Ŝe,sw ≈ 6.170, dashed), Ts = 1750K

(T̂s ≈ 0.0377, Ŝe,sw ≈ 10.98, dotted). Based on previous discussions, the influence of thermionic emission on
plasma response can be discussed straightforwardly. Insert temperature can influence both flux of thermionic
electrons (Ŝe,sw) and average energy carried by one electron (ε̂sw). With the former increasing exponentially

with T̂s and the latter linearly, the influence of the latter is negligible. Since thermionic electron source
is the dominant term in current balance, discharge current Îd increases with insert temperature T̂s. With
thus increased electric power, more ionization can be expected as shown by higher n̂I and αio,max. It is
interesting to note that, although more energy is spent on ionization, the portion it takes (αQe,io

) is less.
Increased ionization causes the cathode to work more in the HIO regime. For this reason, maximum neutral
density drops, its location occurs closer to the inlet, ion momentum is directed more backward by collisions,
there is more negative pressure difference p̂e,IB, and electron temperature is thus permitted to increase with
available electric power.

At the end, the authors would like to discuss about the electron velocity ratio αue,B . As shown by Fig. 4,

in the HIO regime, αue,B is increased with thermionic electron flux Ŝe,sw. Fast electrons also occur in the

LIO regime of the solid curve with the lowest Ŝe,sw. As that discussed for ion velocity gradient, electron

velocity gradient is also closely related to particle production frequencies F̂1 = ν̂sw + ν̂io − ν̂pw. Since

thermionic emission is the dominant effect, high thermionic electron source Ŝe,sw and low plasma density n̂

can both result in fast electrons, by increasing thermionic emission frequency as ν̂sw = Ŝe,sw/n̂. Therefore,
the assumption of an electron-repelling anode sheath (requiring αue,B ≪ 1) would break down for sufficiently

low discharge voltage. For this reason, simulations were not carried out for φ̂I < 4 in this work. Nevertheless,
there are two more problems for lower discharge voltages. At first, in some cases of the LIO regime where
solution exists for f(x) = 0, numerical difficulties were encountered. For further smaller discharge voltage,
there exists no solutions and the authors suspect a regular sonic transition inside the quasi-neutral plasma.
These effects will be explored in future works.

V. Discussions and conclusions

A quasi-neutral, steady-state, 1D axial fluid model for the hollow cathode insert region has been presented
in this work. As a consequence of variable separation and decoupling, wall reactions appear together with
collisions as source or sink terms. Two operational regimes are identified, named LIO and HIO regimes. For
one set of plasma parameters in the HIO regime, the spatial profiles of plasma variables are used to discuss
the plasma response, together with the local and global balances of particle, momentum, and energy.

Owing to small electron mass and thus high thermal conductivity, the electron temperature is almost
constant along ẑ. Due to negligible electron inertia in the local electron momentum balance, electric field is
locally balanced with pressure gradient. Ion inertia is found to be not negligible. Nevertheless, combining
ion momentum and continuity equations, electric field is locally balanced with collisions that govern ion
response (F̂4, except near the singularities at the boundaries), as shown in Eq. (21). The maxima of density
and potential thus occur near ûi ≈ ûn. For neutrals, as a result of negligible neutral pressure (T̂n ≈ 0)
and sufficient CEX exchange collisions, maximum neutral density occurs near ν̂io ≈ ν̂iw(1 − ûi/ûn). Before
this maximum, neutral density increases because they are slowed down by collisions. After this maximum,
it decreases because ionization consumes neutrals. In the HIO regime, for the reason of strong ionization,
neutral density drops greatly, which reduces ionization frequency and ionization no longer compensates wall
loss. The occurrence of such a region downstream with F̂2 = ν̂io − ν̂iw < 0 identifies the HIO regime.
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For global conservations of particle and momentum, the volumetric integration of the source and sink
terms is balanced with the fluxes that leave the quasi-neutral plasma at the sheath edges. Due to floating
condition at the back plate, the discharge current arriving at the anode is balanced with the current at
the insert wall. Thermionic electron emission and ion recombination are sources of discharge current, with
plasma electron loss as a sink of current. Since sonic conditions are applied at both ends, the electron pressure

difference is related to collisional momentum production rates on ions by 2(p̂e,B − p̂e,I) ≈
∫ ẑB

o
R̂i dẑ. If ion

momentum is globally directed backward, the pressure at B drops below that at I.
For electron energy balance, the main energy source is the kinetic energy of thermionic electrons at W ,

which originates from their electric potential energy inside the sheath. Inside the quasi-neutral plasma,
electric work is indirectly transferred to electric internal energy mainly through pressure push work. Never-
theless, the global electric work inside plasma is found to be negative, which occurs owing to the artificial
separation of sheath and plasma regions. The rest of the energy source, after mainly being spent in ionization,
leaves plasma at the boundaries.

After understanding the spatial profiles, parametric studies were carried out by varying discharge voltage.
By increasing discharge voltage, more electric power results in higher plasma density and ionization degree.
Because discharge current is still dominated by thermionic emission at a constant temperature, discharge
current increases slightly for more ions and less plasma electrons arriving at the insert wall.

The two operational regimes can be easily distinguished from the parametric plots. Electron temperature
drops with discharge voltage in the LIO regime and increases in the HIO regime. The reason for this lies in
the sonic conditions applied for a fixed cathode length (the constraint fz = 0), which is related to ion velocity
gradient and particle production frequency F̂2 = ν̂io − ν̂iw . In the LIO regime, to counteract the effect of
increased plasma density that rises ν̂io and thus leads to faster ions, electron temperature is thus reduced
to bring down ν̂io and slow down ions, thus satisfying sonic condition at B. In the HIO regime, ionization
is so high that a region with F̂2 < 0 occurs downstream, in which ion velocity gradient is suppressed. If
discharge voltage is increased, more plasma density elongates such a region. To speed up ions and achieve
sonic condition at B, an increase in electron temperature is necessary to have sufficient ν̂io. For the same
reason, in the HIO regime, ions travel in a longer distance with ûi > ûn, in which collisions introduce
backward momentum on ions. The pressure difference p̂e,IB thus drops with φ̂I .

The existence of LIO and HIO regimes is also a manifestation of the non-monotonic behaviour of fz =
zB − z∗B on n̂z,I . In the LIO regime, fz reduces with n̂z,I , otherwise in the HIO regime. For this reason,
if electron energy conservation is not taken into account, two solutions are normally found for fz = 0, yet
with one of them far-away from being consistent with energy conservation. Consequently, it is necessary to
include energy equation. However, as shown by the discussion above for two regimes, electron temperature
is not only determined by the energy equation. It must agree with n̂I to have adequate ion velocity gradient
and thus satisfy sonic conditions at the boundaries. The difficulties in discussing the causality of plasma
responses can also be revealed at this point.

Parametric plots were compared for different insert temperature. By increasing insert temperature,
discharge current increases with the flux of thermionic electrons at insert wall. For the same discharge
voltage, electric power is thus increased. Therefore, there are more ionization and cathode works more in
the HIO regime.
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A. Wall reactions

Thermionic electrons emitted by the insert is a source of electrons and the associated particle production
rate follows Richardson-Dushman law as

Se,sw = nνsw = n
2

R

AG

e
T 2
sK exp

(

−
φwf

TsV

)

, (35)

with φwf the insert work function in eV, TsV the insert temperature in eV (TsK in K), and AG the material-
dependent generalized Richardson constant in Am−2 K−2. Compared to the particle flux, the factor 2/R
appears as a result of cross-sectional average. This flux can be increased by Schottky effect, or decreased
by space-charge-limited effect. However, these effects are not considered in this work. Moreover, without
a thermal model for the insert and cathode tube, the temperature of the insert Ts is considered constant.
Before taking into account a variable flux, it is beneficial to first understand the influence of thermionic
emission on the simulation results as being constant everywhere. One thermionic electron is emitted at
insert with zero axial velocity in the directed motion, yet with random energy as the insert temperature
Ts. Because a radial electric field accelerates electrons in the sheath, these electrons do not contribute to
momentum equation due to zero axial velocity. However, in average, one electron gains more kinetic energy
from sheath potential drop as eφW . Consequently, as source of energy, the energy density production rate
from thermionic emission reads

Ee,sw = nνswεsw, εsw ≈ eφW + Ts . (36)

The sheath potential drop is given by φW = φ+φR, with φR being the change of potential from the centreline
to the edge r = R.

With negligible electron directed motion compared to random thermal motion, plasma electrons are near-
Maxwellian at W. Considering a conventional electron-repelling sheath, only electrons with energy larger
than φW can escape plasma. As a sink of particles, the associated particle density production rate is given
by

Se,pw = −nνe,pw, (37)

νe,pw =
2

R
nR

√

TeTeR

2πme

exp

[

−
eφW

TeTeR

]

, (38)

where nR and TeR denote the ratio between the value at R and the cross-sectional average. Escaped plasma
electrons take away momentum with them and manifest as a sink of momentum. The momentum production
rate writes

Re,pw = −menνpwue . (39)

These high-energy electrons carry energies away with them, giving the energy production rate as

Ee,pw = −nνpwεpw, εpw = eφW + 2TeTeR . (40)

Ions arrive at W with Bohm velocity, which gives the particle and momentum production rates as

Si,iw = −nνiw, Ri,iw = −nνiwui, (41)

νiw =
2

R
nR

√

TeTeR

mi

. (42)

After bombarding on the wall, ions return to plasma as neutrals with the same amount of particle flux, thus
Sn,iw = −Si,iw > 0 as source of neutrals. Considering 100% accommodation, neutrals come back with zero
axial velocity, thus Rn,iw = 0.

Above wall reaction frequencies can be evaluated after that the three R-related properties (nR, TeR, φR)
are calculated by solving radial equations. In this work, without including the radial model, approximate
relations are used as

nR = 0.5, eφR/Te = ln(nR) ≈ −0.69, TeR = 1 , (43)
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with constant temperature along r, plasma density at r = R as half of the cross-sectional average, and
plasma potential decay approximated by Boltzmann relation.

B. Dimensionless collisional terms

The particle production terms F̂1,2 are

F̂1 = ν̂io + ν̂sw − ν̂pw, F̂2 = ν̂io − ν̂iw , (44)

ν̂io = νio/ν0, ν̂sw = Se,sw/(n̂S0), ν̂iw =

√

T̂e ,

ν̂pw =

√

T̂e

2πm̂e

exp

(

−
φ̂W

T̂e

)

.

The combination of continuity and momentum equations lead to F̂3,4,5, which are

F̂3 = −ν̂ei (ûe − ûi)− ν̂en (ûe − ûn)

− m̂e (ν̂io + ν̂e,sw) ûe , (45)

F̂4 = ν̂ei(ûe − ûi)− (ν̂io + ν̂in) (ûi − ûn) , (46)

F̂5 =
n̂

n̂n

[ν̂en(ûe − ûn) + ν̂in (ûi − ûn)− ν̂iwûn] , (47)

ν̂en = m̂eνen/ν0, ν̂ei = m̂eνei/ν0 , ν̂in = νin/(2ν0) .

The energy-related term F̂6 writes
F̂6 = Êe + ÊeR + ÊeS , (48)

with the energy production rates in Êe given by

Êe,sw = n̂ν̂seε̂sw, ε̂sw = φ̂W + T̂s ,

Êe,pw = −n̂ν̂pw ε̂pw, ε̂pw = 2T̂e + φ̂W ,

Êe,ei = −3n̂T̂eν̂ei, Êe,en = −3n̂T̂eν̂en ,

Êe,io = −n̂ν̂ioε̂io ,

the friction dissipation term being

ÊeR ≈ n̂ (ν̂en + ν̂ei + m̂eν̂pw) û
2
e ,

and the term from continuity equation as

ÊeS =

(

m̂eû
2
e

2
−

5

2
T̂e

)

n̂F̂1 .

The temperature gradient term is

F̂7 = −
q̂e

K̂e

, K̂e =
5

2

n̂T̂e

ν̂ei + ν̂en
. (49)
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