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The manuscript presents development updates on a new new two-dimensional, axisym-
metric, hybrid particle-fluid code for simulation of plasma discharges, particularly, in Hall
Effect thrusters. The overall code structure and main design rationale are introduced; par-
ticularities for the particle segment are commented, including the algorithms for particle-
surface interaction and the kinetic Bohm correction. The macroscopic fluid model for
the electron population, based on a bi-Maxwellian, two temperature approximation, and
its resolution are described; an update is provided on the spatial gradient reconstruction
approach used throughout the model. Finally, preliminary results for a well known Hall Ef-
fect Thruster are provided, both for a typical radial magnetic topography and for a version
which includes a singular point within the simulation domain.

I. Introduction

The Electric Propulsion (EP) landscape is rapidly evolving: next generation thrusters belonging to
proven technologies, such as the the Hall-Effect Thruster (HET), are being designed for larger on-board
available power, different control schemes and new mission scenarios, ranging from Planetary Exploration to
traditional station keeping; indeed, HETs are currently the main technological solution for near-earth EP,
with the exception of micro-EP.

Electric propulsion technologies currently enjoy dedicated development efforts as part of an effort to
improve European competitiveness in Space; particularly, as part of the Horizon2020 framework (specifically,
the EPIC project). Included in said framework is the development of simulation tools that will allow for
accurately modeling plasma discharges in a variety of different EP thrusters is an essential step in order to
reduce development time and costs, reveal optimization opportunities and predict operational parameters
throughout the thrusters lifetime.

In this line, the EP2 group is currently developing NOMADS (Non-structured Magnetically Aligned
Discharge Simulator) a HET simulation platform. The code is based on the group’s expertise with previous
simulation codes such as HallMA1 and HPHall2, hybrid codes for HET simulations based on the original
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HPHall by Fife.2 NOMADS is built with much of the heritage of previous codes in mind but with the
intention of expanding their functionality to provide a more flexible and capable environment.

NOMADS is a hybrid Particle In Cell (PIC) and macroscopic fluid code purposed for solving an axisym-
metric description of the plasma in the thruster and near-plume regions. It is able to model low density, low
collisionality plasmas, with strong magnetization of the electron population and negligible self-field produc-
tion and ion magnetization. In principle, while current focus is on HETs, the conditions modeled include
various other electromagnetic-type thrusters, which could be part of the scope of the tool in the future.

This manuscript presents an update on the current development status of NOMADS. Section II provides
an overview of the overall segments, numerical model and methods implemented in the code, with some
particularities and resolution description. Section III provides some preliminary results for simulations of
the SPT-100 HET, including a version of the thruster in which a singular point has been introduced next to
the anode region.

II. Numerical model

A. Overall structure and main simulation loop

The code overall arquitecture and structure is based on modularity making use of Open MP for parallelization
and HDF5 for data management.3 As a hybrid PIC-fluid simulator, two central modules participate in the
main simulation loop: the PIC module, in charge of propagating the heavy species (ions and neutrals macro-
particles) one time step forward using the electric potential and the electron temperature fields, obtaining the
plasma density and particle fluxes. Secondly, the electron-fluid module takes ion currents and plasma density
(assuming quasineutrality), as well as neutral density, and solves an electron fluid model, updating the electric
potential and the electron temperature, thus closing the loop. The fluid model utilizes various Boundary
Conditions (BC); amongst them, a sheath model for the plasma-wall interaction has been implemented (see
Section II.C). Figure 1 shows a summary of the computational loop in NOMADS.

Figure 1. Hybrid particle-fluid computational loop

B. The heavy species PIC module

The main characteristics including most of the PIC module algorithms are already described in detail in
Refs. 3, 4. PIC innovations in the treatment of the heavy species are focused on improving the statistics.
Dedicated computational lists storing all necessary particle related information are considered for the various
ion and neutral macro-particles populations (such as singly and doubly charged ions and injected neutrals).
A dedicated particle-list-wise population control maintains, for each heavy species the number of macro-
particles per cell within a given specified range, thus reducing PIC associated noise in the macroscopic
magnitudes obtained at the PIC mesh nodes through the particle weighting algorithms, while limiting the
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computational time spent in this segment of the algorithm. A PIC mesh cell wise particle collider algorithm
carries out the ionization collisional processes up to second degree using Drawin model5 (for reactions A+e→
A+ + 2e and A+ e→ A++ + 3e) and Bell model6 (for A+ + e→ A++ + 2e) following an approach similar to
that of HPHall.2 The surface interaction and the Kinetic Bohm condition forcing algorithm are described
next.

1. Particle-surface interaction

The structured PIC mesh allows the identification of every PIC mesh surface (segment connecting two PIC
mesh nodes) with a set of 2 indices. Thus, a 2D surface element matrix is defined storing an integer value
indicating the type of each surface element.3 The basic surface element types and their effects on ion and
neutral macro-particles are listed on Table 1. The same PIC mesh containing the axis r = 0 is used in all
the simulations performed in this work, and is depicted in Fig. 2. It is worth to note that the axis r = 0 is
transparent for the particles, which naturally suffer a specular reflection there.

Surface type Effects on ions Effects on neutrals

Transparent None None

Free loss Removal Removal

Injection Stochastic injection Stochastic injection

Material wall Recombination Reflection

Table 1. PIC mesh surface elements types and corresponding effects on macro-particles.
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Figure 2. PIC mesh considered for all the simulations. The purple line and nodes correspond to the axis r = 0.
Green, red and blue nodes refer to injection, material wall and free loss boundaries, respectively.

All macro-particles crossing a boundary surface element (non-transparent) are considered for the surface
interaction algorithm, which updates the macroscopic magnitudes on the surface elements through a surface
weighting algorithm and carries out the corresponding effects depending on both the macro-particle and
the surface type according to Table 1. A zeroth-order extended surface weighting scheme7,8 is implemented
providing more accurate macroscopic magnitudes at boundary nodes. At a given time step k, simple surface
weighted particle density and flux vector are obtained at the central point of every material surface element
as
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n(k)sw =
1

∆t∆S

Nhit∑
p=1

Wp

v⊥,p
(1)

~g (k)
sw =

1

∆t∆S

Nhit∑
p=1

Wp~vp
v⊥,p

(2)

where Nhit is the number of hitting macro-particles on each surface element of area ∆S, being v⊥,p the
macro-particle perpendicular velocity to the surface and Wp and ~vp its corresponding macro-particle weight
and velocity vector. The extended time-averaged associated quantities allow for noise reduction due to the
typical low number of particles crossing a boundary face on simulation time steps. The time-averaged surface
weighted density is computed as

n(k)sw =
(∆kavg − 1)n

(k−1)
sw + n

(k)
sw

∆kavg
(3)

with ∆kavg the averaging number of time steps and k and k − 1 referring to two consecutive time steps;
typical recommended values for the averaging number are between 50−100.8 This scheme is applied similarly
for all surface weighted magnitudes computed, which are finally interpolated from the surface elements to
the corresponding boundary nodes.

After performing the surface weighting process, hitting ion macro-particles on material boundaries are
recombined into neutrals to be re-injected in the domain while every neutral macro-particle suffers either
a diffuse or specular reflection. This last reflection is carried out by simply inverting the particle normal
velocity component to the corresponding surface element. On the other hand, a thermal Maxwellian emission
from the surface is considered for the neutral re-injection due to either ion recombination process or diffuse
reflection. The re-injection probability distribution function is

freinj(~v) ∝ v⊥ exp

(
− m|~v|2

2Treinj

)
(4)

where the re-injection temperature is obtained as 2Treinj = Ereinj with

Ereinj = αW 2TW + (1− αW )Eimp (5)

the mean re-injection energy. The wall accommodation coefficient, αW modulates the two contributions
to this mean energy: a wall contribution through a wall temperature TW (in energy units) and the time-
averaged total impacting energy of the hitting population (per elementary particle) Eimp. In case of ion
macro-particles, the sheath potential fall ∆φsh is taken into account in the impacting energy (per elementary
particle) so that

Eimp = Ek + eZ∆φsh (6)

being Ek the kinetic energy per elementary particle.

2. The Bohm correction

Due to the different mobilities of electrons and ions in a quasineutral plasma, an ion-attracting sheath with
extension of several Debye lengths develops at the boundary between the plasma and a given absorbing
boundary wall.9,10 In typical cases (those considered in the hybrid simulator), the sheath is quasiplanar,
quasisteady, collisionless and unmagnetized. If φS and φW are the electric potential at sheath edge and wall,
respectively, for the stable existance of such sheath with ∆φsh = φS − φW > 0, the ions must satisfy the
kinetic Bohm condition at the sheath edge7,8

L∑
s=1

∫ ∞
0

(
Zs
Te
− Z2

s

msv2⊥

)
fs(v⊥)dv⊥ ≥ 0, (7)
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where L is the total number of ion populations and ms, Zs and fs are the mass, charge number and distri-
bution function at the sheath edge (integrated over parallel velocities) of the sth ion population, respectively.
Using the surface weighting scheme, the equivalent PIC version of that condition is

P ≡ 1

∆t∆S

L∑
s=1

Nhit∑
p=1

(
Zs
Te
− Z2

s

msv2⊥,p

)
Wp

v⊥,p
> 0 (8)

The kinetic Bohm condition forcing algorithm8 evaluates Eq. (8) on every PIC mesh surface element.
Whenever P < 0 an additional potential fall δφ corresponding to a Bohm correction forcing layer is imposed
so that the plasma density is reduced accordingly in order to adapt the electric potential and satisfy Bohm
condition (P ≈ 0) increasing the ion perpendicular velocity to the wall. As shown in Ref. 8, this δφ tends to
zero in stationary conditions.

C. The electron fluid module

NOMADS revieves its name from the electron fluid module which has been implemented; this model responds
to the assumption that the magnetized electron population may be treated as fluid, similarly to how HallMa1

or Hall2De11 approach the subject. In particular, two of the major assumptions in the former code have
been forgone:

• The description of the electron fluid is quasi-1D: magnetic field lines are characterized by constant
temperature and a constant “thermalized” potential solution.

• The Electron Velocity Distribution Function (EVDF) follows a Maxwellian description with isotropic
electron temperature.

The first implies that NOMADS solves a fully 2D-axisymmetric problem, instead of the 1D problem initially
proposed by Fife.2 This does not imply, however, that the “isothermal” property of magnetic field lines,
typical in HETs, is not recovered in the 2D solution, but that, by discretizing to a 2D Magnetic Field Aligned
Mesh (MFAM) it is possible to consider a simulation domain that is not only limited to an assortment of
magnetic flux “tubes” (as in the 1D problem), but that may include more complex magnetic topographies
(e.g. singular points) and boundary descriptions. The use of the MFAM was justified for an anisotropic
medium such as the magnetized electron fluid in Ref. 12, where the added complexity of mesh generation
and Gradient Reconstruction (GR) for this type of mesh was also explored. An update into the subject of
GR, particularly when using the Weighted Least Squares Face Interpolation (WLSQRFI) method proposed
by Sozer13 is given in Section II.D.

The MFAM represents a simulation domain split into toroidal volume elements, where each of the faces
is closely aligned with one the local directions defined by the magnetic field. Figure 3 shows a particular
magnetic topography and associated MFAM: blue faces represent lines of constant magnetic stream function
and follow the local parallel direction to the magnetic field, ~1‖; red faces represent lines of constant magnetic
scalar potential, and are aligned with the local perpendicular-to-the-magnetic-field direction in the Z-R
plane, ~1>. The azimuth direction, ~1θ, perpendicular to the Z-R plane, completes the magnetic reference
system and, alongside ~1> defines the plane in which the “perpendicular” macroscopic characteristics for the
electron fluid are obtained; for example, in the case of fluid temperatures, the relevant variables are defined
as follows:

Te‖ =
me

kB

〈
c2e‖

〉
; Te⊥ =

me

2kB

〈
c2e⊥
〉

=
me

2kB

〈
c2e> + c2eθ

〉
,

Te =
Te‖ + 2Te⊥

3

(9)

where ce is the electron velocity.
The problem is poised to be solved through the Finite Volume Method (FVM), applied to each of the

annular volumes exemplified in Fig. 3, differentiating between equations applicable to either the parallel or
perpendicular directions to the magnetic field.

Regarding the EVDF, a bi-Maxwellian description is employed, with two distinct electron temperatures
related, again, to the magnetic field directions:
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fe =
ne

(2π)3/2

(
me

kBTe‖

)1/2
me

kBTe⊥
exp

(
−

1

2

me

kBTe⊥
c2e,⊥ −

1

2

me

kBTe‖
c2e,‖

)
, (10)

where the electron drift, or bulk, velocity, ~ue, has been neglected versus the particle velocity, ~ce. Barakat
& Schunk14 use this description to take moments of the Boltzmann equation, leading to a 16 moment
approximation of the fluid.

Figure 3. 2D-axisymmetric Magnetic Field Aligned Mesh and Volume elements

The rationale for this change is related with the scope of possible future applications for NOMADS, in
which thrusters that present magnetic nozzles could be simulated. In this type of magnetic topographies
an anisotropic description of the electron population is necessary; it is also reasonable to argue that the
anisotropy imposed by the magnetic field carries over to the population description itself. The model used
is a reduced version of Barakat & Schunk’s model, applying the following assumptions:

• The plasma is quasi-neutral for the scales considered within the simulation domain.

• Electron drift kinetic energy may be neglected with respect to electron thermal energy.

• Neutral population drift velocities are neglected.

• Viscous terms are neglected: the model is reduced to a 12 moment approximation.

• Convective and non-stationary terms in the momentum and heat-flow equations will be neglected with
respect to electron pressure terms; thus, these equations become “state” equations which only depend
on the time evolution of the problem implicitly, through the electron temperature and plasma density.

• The collisional terms for the momentum and energy equations will be modeled using Maxwell-type
molecule interactions.

• The model is closed by using the Fourier type Krook’s relaxation model for the collisional terms in the
heat-flow equations.
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• Azimuthal terms in the equations, which in HETs are suspected to be responsible for non-classical
electron transport, are substituted by the well known “anomalous collisionality”, which enters the
equations as a factor of the electron gyro-frequency:

νanomalous = αanomalousΩce (11)

Other known non-classical terms such as the “wall collisionality” are neglected at the present moment,
following the rationale given by Hofer,15 by which typical values of the anomalous collisionality are, at
least, an order of magnitude larger than other non-classical terms.

NOMADS integrates three equations in the control volumes of the simulation domain: a generalized
Ohm’s law, based on the current continuity and momentum equations, the Thermal Energy Density equation
and the Parallel Internal Energy equation; the latter solve for the total and parallel electron pressure, pe and
pe‖, respectively, and the electron density is obtained from the PIC segment. The generalized Ohm’s law for
the ith control volume in the simulation domain, E, i, derives from the total current continuity equation and
may be solved, in typical FVM fashion, by applying Gauss and approximating integrals over the area of the
jth face, F, j, of an element volume:

∫
VE,i

∇ · (~je +~ji)dV =

∫
VE,i

Id · dV →

→
∮

AF,j(E,i)

(~je +~ji) · ~ndA ≈

(∑
j

(je>~1> + jeθ~1θ + je‖~1‖ +~ji)
∣∣∣
F,j

~nF,jAF,j

)∣∣∣∣∣
E,i

≈ Id,E,i · VE,i
(12)

The term Id,VE,i
represents the possibility of current being externally injected into the domain, simulating,

for example, the presence of a HET hollow cathode; typically this variable is 0 for most of the simulation
domain. For further clarity, typical simulation volumes are shown in next:

The electron currents are obtained from the momentum equation in Ref. 14 and, together with the
previous assumptions may be written as:

~1> : je>|F,j =
1

ηe∗(1 + (βe∗)
2
)

∣∣∣∣∣
F,j

(
−∇>φ+

1

2ene
∇>

(
3pe − pe‖

)
−

3(pe − pe‖)
2eneB

∇>B−

−
2,3,...∑
Z=1

ηeiZ jiZ>

)∣∣∣∣
F,j

~1θ : jeθ|Fj
= βe∗je>|Fj

~1‖ : je‖
∣∣
F,j

=
1

ηe

∣∣∣∣∣
F,j

(
−∇‖φ+

1

ene
∇‖pe‖ +

3(pe‖ − pe)
2eneB

∇‖B −
2,3,...∑
Z=1

ηeiZ jiZ‖

)∣∣∣∣∣
F,j

(13)

Electron pressures and temperatures are related through the gas state law:

pe = nekBTe ; pe‖ = nekBTe‖ (14)

Electron-to-ion resistivities, ηeiZ , depend on the elastic collision frequency between both populations,
νeiZ ; the effective electron resistivity, ηe∗ , depends on all of the collisional frequencies pertaining electrons:
electron-to-heavy-species elastic and inelastic (ionization, excitation and recombination) collisions and the
anomalous collisionality; the hall parameter relates the gyro-frequency and the effective electron collisional
frequency, νe∗ :

βe∗ =
eB
me

νe∗
=

Ωce

νe∗
; ηe∗ =

meνe∗

e2ne
; ηe =

meνe

e2ne

νe = νe = νen +
2,3,...∑
Z=1

νeiZ + (νioniz. − νrecomb.); νe∗ = νe + αanomalousΩce
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Equation 12 leads to a system of equations for the plasma potential at element centers, φEi , when
gradients are numerically discretized for face centers:

{GR} · {φE} = {D}+ {P}+ {B}+ {Id,E} (15)

where {D} represents the drag posed by the ion population (which is obtained from the PIC module), {P}
the effect due to electron pressure gradients, {B} the effects of magnetic field non-uniformity and {Id,e}
the current injection terms; {GR} represents the resulting coefficients matrix associated to Gradient Recon-
struction at faces in each element. This system of equations can be linearized together with appropriate
Boundary Conditions (BC) and solved numerically; in particular, the PARDISO16,17 direct solver for paral-
lelized computation is used.

Figure 4. Examples of internal and boundary control volumes

The Thermal Energy Density and Parallel Internal Energy equations for a particular control volume and
the faces that bound it are, after applying the aforementioned assumptions and the Gauss theorem:∫

VE,i

3

2

∂pe

∂t
dV −

∮
AF,j

3

2ene
pe ·~je · ~ndA−

∫
VE,i

B

(
3pe − pe‖

2er
∇>

(
rje>B

−1n−1e
)

+

+
pe‖

e
∇‖
(
je‖B

−1n−1e
))

dV +

∮
AF,j

~qe · ~ndA =

∫
VE,i

(
Ecoll +

~je

ene
· ~Mcoll +

|~je|2

2e2n2e
Seme

)
dV

∫
Ve,i

∂pe‖

∂t
dV −

∮
AF,j

pe‖

ene
·~je · ~ndA−

∫
Ve,i

B
2pe‖

e
∇‖

(
1

B

je‖

ne

)
dV+

∮
AF,j

~q
‖
e · ~ndA−

∫
Ve,i

2

B

[
q
‖
e>∇>B −

(
qe‖ −

1

2
q
‖
e‖

)
∇‖B

]
dV =

∫
Ve,i

(
Ecoll‖ + 2

je‖

ene
·Mcoll‖ +

j2e‖

e2n2e
Seme

)
dV

(16)

where Ecoll, Mcoll and Se are, respectively, the collisional terms in the energy equation (inelastic and elastic
terms), the collisional terms in the momentum equation (shown in Eq. (13) as the drag term) and the plasma
production term; the heat-flow equations may be reduced from Ref. 14 and are not reproduced here for the
sake of brevity.

Equations (16) are solved using a semi-implicit time-scheme, as in Ref. 11, in which terms that are
explicit with electron pressure are solved implicitly, and terms that are implicit with it are solved explicitly;
the use of this particular scheme was implemented after trials with fully explicit schemes, which required
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time-step values for stability in the electron fluid equations that were too restrictive from the point of view
of computational resources.

In order to exemplify the semi-implicit time-scheme, it may assumed that no anisotropy is present in the
electron population, i.e. Te = Te,‖. In this case, the Thermal Energy Density and heat-flow equations are
equivalent to the ones shown by Bittencourt:18 the results shown in this manuscript also take into account
this simplification. The discretization, approximating area and volume integrals in the same way as Eq. (12),
results in a linear system of equations in the form:

{pe,E}t+1
= ∆t

[(
{A}t + {Ex}t

)
· {pe,E}t+1

+ {Q}t · {GR} · {pe,E}t+1
+ {CS}t

]
+ {pe,E}t

(17)
where {A} represents the electron current terms associated with advection, {Ex} the terms associated with
the gas expansion work, {Q} the terms related with heat-flow (where only the gradient of pressure terms
are treated implicitly) and {CS} the collisional and source terms; note that each of the terms is evaluated
at different times depending on if its treatment falls onto the implicit or explicit category, hence conferring
the scheme its “semi-implicit” nature.

Finally, the electron fluid model is completed with ancillary models and BC:

The collisional rate and yield models for Xenon are as follows: elastic collisions were implemented
based on the model proposed by Hayashi19 for electron-neutral pairs and based on a Coulomb interac-
tion model from Goldston20 for electron-ion pairs. For the inelastic collisions, which suppose an energy
sink in the electron fluid, Section II.B mentions the classic ionization reactions, to which the Hayashi21

model for the excitation reaction Xe0 → Xe∗ is added. Recombination reactions are neglected.

The Plasma sheath model provides the boundary layer response derived from the interaction of the
plasma and physical walls in the thruster; the sheath region resides outside of the simulation domain
and is treated in NOMADS as a BC. The model implemented is based on the one presented by Ahedo
and De Pablo;22 it takes two distinct flavors depending on whether its applied to a non-floating-metallic
or dielectric wall: in the first case (representing the anode wall in HETs), net current may exit the
boundary and thus the sheath model takes the form:

~je · ~nb
∣∣∣
F,j

= fsheath,metallic (∆φsheath, ne, Te) ; ∆φsheath = φF,j − φwall (18)

where ~nb is the vector normal-to-the-wall (Fig. 4); φwall is imposed and, in the case of the anode
in HETs, becomes an operating condition for the thruster. The sheath model is linearized using a
first order Taylor expansion of φF,j , which may be reconstructed from {φE} through the WLSQRFI
method, and comes into Eq. (15) by imposing the extracted electron current at the anode as the one
allowed by the sheath. For a dielectric boundary (the ceramic walls typical in HETs), the BC becomes

(~je +~ji)
∣∣∣
F,j
· ~nb = 0, since it may hold no net charge, and the sheath model takes the form:

∆φsheath|F,j = fsheath,dielectric

(
2,3,...∑
Z=1

~jiZ · ~nb, ne, Te

)
(19)

The heat deposited to the sheath by the plasma also depends on the type of wall and is also determined
by the sheath model, providing a BC for the energy equations.

The exit BC is currently implemented as a non-homogeneous Neumann condition for ∇φ and ∇pe
in the Ohm’s law and energy equations by imposing (~je +~ji)

∣∣∣
F,j
· ~nb = 0 and ~qe · ~nb|F,j = 0

D. Updates on MFAM Gradient Reconstruction

GR is the process where the derivatives that appear in the discretized fluid equations are written in terms of
the function values to be determined solving the fluid equations. These values are defined at the element’s
centers in the case of the MFAM used by NOMADS. In this case it is necessary to evaluate derivatives at

the face’s centers and element’s centers. For a general function ψ(x) its derivative at a certain point dψ
dx

∣∣∣
i

in

terms of the its values at the surrounding element’s centers ψj is:
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dψ

dx

∣∣∣∣
i

=
∑
j

cjψj (20)

Here i could refer to an element or face and x is a generic coordinate. The coefficients cj are those to be
determined via GR.

There is a previous work about GR on MFAMs carried out by our research group.12 Until now the
GR has been done using the WLSQRFI method introduced by Sozer.13 This method is based on Taylor
series expansions developed around the point where the derivatives are to be determined. Each expansion
provides an equation and depending on its order there is a minimum number of ψj values required. Not only
the first derivatives can be obtained but the derivatives of any order could be computed as well. Usually
there are more equations than unknowns and a weighted least square process is conduced to solve the set of
equations. When dealing with a non-structured mesh such as MFAMs this method is quite proper since it
allows flexibility when choosing the order of the scheme and the values ψj to be used.

The GR can be done in different coordinate systems and the option that was implemented is based on
magnetic coordinates, which constitute a orthogonal system defined by the magnetic field as:

∂λ

∂r
= −rBz,

∂λ

∂z
= rBr (21)

∂σ

∂r
= Br,

∂σ

∂z
= Bz (22)

where r is the radial coordinate and z the axial coordinate of the cylindrical system. In the fluid equations
the derivatives parallel and perpendicular to ~B are present and their relation with the magnetic coordinates
are:

∇‖ ≡ B
∂

∂σ
(23)

∇> ≡ rB
∂

∂λ
(24)

One of the main problems of this approach is that there are singularities for the derivatives in magnetic
coordinates near regions where the magnetic field is weak as seen in Eq. (23) and Eq. (24). Moreover, the
derivative with respect to λ is not defined near the axis of symmetry either. As the magnetic coordinates are
determined numerically small errors will be amplified near these singularities. Both regions of low magnetic
field, for example singular points, and the case where the symmetry axis is considered are configurations of
interest.

An alternative is to do the GR in cylindrical coordinates and then project the gradient vector into ~1‖ and
~1>. The gradient in cylindrical coordinates is free of any singularities and it could get much more accurate
results in regions of weak magnetic strength and near the symmetry axis.

In order to evaluate these approaches two tests have been conducted. In one of them the gradient
reconstruction of the an analytic function is conducted and the numerical derivatives are compared with
respect to the exact solution. This test is done for the SPT-100 HET with a magnetic topology given by
Fig. 12. Regarding the second test the following equation is solved for this SPT-100 HET:

∇2ψ = p(r, z) (25)

∂ψ

∂~nb
= h(r, z) (26)

Here an analytic function is also used to obtain p and h. The integration of this problem is done through a
FVM method. Thus, a previous GR is necessary and the results of the first test will be considered. In both
of the tests the same linear function:

ψ(r, z) = r + z (27)

is taken as trial function.
Figure 5 shows the results of the test for GR being (a) for magnetic coordinates and (b) for cylindrical

system. In both of these subfigures there is a colormap illustrating the relative error of the numerical
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derivatives. Furthermore, graphs about the statistics of those errors are represented as well. The WLSQFI
scheme used is of first order and as the trial function is linear in cylindrical coordinates the approach followed
in (b) is exact. However, the result obtained for this simple function in (a) is far from accurate in some
locations. Unacceptable errors are present near the singular point and the symmetry axis. There are also
large errors in other parts due to the low precision in the determination of the magnetic coordinates there.
In the rest of the domain the errors are reasonable but still much worse compared with (b).

(a)

(b)

Figure 5. Gradient reconstruction test on an analytic function for (a) magnetic coordinates and (b) cylindrical
coordinates.

Figure 6 presents the results for the integration test with (a) magnetic coordinates and (b) the cylindrical
system. It is a completely analogous figure to Fig. 5 with colormaps about the relative error of the numerical
solution and graphs regarding the statistics of those errors. Again here the approach in cylindrical coordinates
is quite precise while it is observed in (a) that the errors of the GR have been spread over the domain.
Although those inaccuracies in GR have affected the integration, it can be said that the trial function has
been reconstructed in a reasonable way. This is since in 95% of the elements the relative error is within 7%
and the maximum error is about 35%.

The above tests have been done for other trial functions as well getting similar results. Therefore, the GR
in cylindrical coordinates is more robust than the approach followed up to now and it is to be implemented
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soon. Then the magnetic coordinates gives unacceptable GR errors but they are localized, they do affect the
integration of the equations afterwards but the it seems that the solution obtained is still reasonable.

(a)

(b)

Figure 6. Integration test on an analytic function for (a) magnetic coordinates and (b) cylindrical coordinates.

III. Results

This section presents progress made on NOMADS related to full simulations of plasma thrusters; in par-
ticular, preliminary results for simulations of 500µs of operation are provided: both the SPT-100 HET with
its base configuration for the magnetic topography and also for a configuration which includes a singular
point within the simulation domain, achieved by locating a “trim magnet” behind the anode, have been
simulated. Regarding the thruster walls, the sheath models correspond to BN ceramic walls, with the as-
sociated thermalization, Secondary Electron Emission (SEE) and electron backscatter parameters presented
in Ref. 22; the anode wall presents a metallic conducting sheath with no SEE or backscattering.

The operational parameters for the simulations are:
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PPU control Vd ṁ (Xe) PIC ∆t NOMADS ∆t

Constant voltage 300V 5mgs 10−8s 10−10s

Table 2. SPT-100 simulations operational parameters

Figure 7. Anomalous collisionality factor

For the sake of comparison, the same spatial distribution of the αanomalous parameter has been imposed
in both simulations (Fig. 7); the implication is that the parameter has not been adjusted for the simulations
to reproduce any particular operation point of the thruster. Two cases are analyzed:

A. SPT-100 base magnetic topography

The MFAM used for this simulation and the magnetic field in the simulation domain are shown in Fig. 8. As
is expected, elements in the MFAM that are in regions of low magnetic field intensity, as in the last 50mm
of the plume, are low in quality, with large faces that do not accurately represent the local directions of the
magnetic field; further comment on this issue is made in Section IV. Note, however, that the simulation
domain extends to the axis, r = 0, and up to 80mm downstream from the channel exit; this is a major
difference from HallMa, in which simulation domains were typically smaller and could only be bounded by
ceramic walls or magnetic field lines.

Some statistics for the simulation are presented in the following table:

No. PIC mesh elements 1080

Avg. No. macroparticles ∼ 105 Neutrals,

∼ 9×104 Single Ions,

∼ 9×104 Double Ions

No. MFAM elements 1326

No. cores 20

Computation time 7.17×104s:

4.6×103s in PIC,

6.6×104s in NOMADS

Table 3. Simulation statistics for “base” SPT-100 magnetic topography

The thruster is run in “constant voltage” mode and therefore the transient response of its operation may
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be characterized through the discharge current; Fig. 9 demonstrates the characteristic “breathing mode” of
HETs. Figure 10 presents some characteristic results for the plasma along the thruster channel center line.

Figure 8. MFAM and Magnetic Field intensity in “base” SPT-100 magnetic topography; (A), (B) and (C)
represent, respectively, time-steps of medium, high and low discharge current

Figure 9. Discharge current in “base” SPT-100 magnetic topography

Additionally, time-averaged, 2D profiles of the simulation domain for some plasma variables are presented
in Figure 11.

Note that the influence of the volumetric cathode (in which φ = 0 is forced, according to the rationale
for the constant voltage operation mode) may be seen both in Figs. 10 and 11. The order of magnitude of
the remaining fluid variables is as expected; the instant results shown in Fig. 10 demonstrate the variable
nature of the thruster’s operation and profiles.
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(a) (b) (c)

Figure 10. “Base” SPT-100 magnetic topography thruster channel center-line results for (a) electron pressure,
(b) electric potential and (c) plasma density for (A) medium Id, (B) high Id and (C) low Id conditions (vertical
dashed line represents the channel exit)

Finally, from the performance side, some key average parameters resulting from the simulation are:

Id Pd Thrust Isp ηT Pjet Psheaths Pioniz.+excit. Pcahtode

2.41A 723W 41mN 844s 0.24 168W 165W 57W 16W

Table 4. Performance values for “base” SPT-100 magnetic topography

where the thrust has been obtained based on the “Lorentz force” or “Hall current force” approach described

by Goebel;23 the thrust efficiency is obtained as ηT =
T 2

2ṁPd
and the jet power, Pjet ≈

T 2

2ṁ
, is obtained as

in Ref. 24. The authors are aware that, while the performances are of the same order as expected, they are
not in line with actual performances from this thruster, due to the non-optimized αanomalous profile, and
are only shown for reference. In a similar sense, the plasma profiles present quantities that are in the order
of what is expected, but may not necessarily represent a realistic point of operation.

Figure 11. “Base” SPT-100 magnetic topography 2D time-averaged profiles of (a) electron pressure, (b)
electric potential and (c) plasma density

B. SPT-100 singular magnetic topography

Figure 12 shows the MFAM used in the “singular” magnetic topography simulation, as well as the magnetic
field in the simulation domain, where the null-magnetic-intensity point is clearly apparent. Note that the
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maximum magnetic field intensity along thruster the center line (∼ 250G) was maintained compared to the
“base” configuration, since it is an important design parameter in HETs.

Figure 12. MFAM and Magnetic Field intensity in “singular” SPT-100 magnetic topography; (A), (B) and
(C) represent, respectively, time-steps of medium, high and low discharge current

A detail of the way the MFAM treats the singular point is given in Fig. 13. Since a single node represents
the singularity, faces in the mesh may still be defined in the locality of the singular point: the parallel and
perpendicular directions to the magnetic field only collapse in the singular point itself; hence this region is
not treated differently from the rest of the simulation domain.

Figure 13. Channel detail for MFAM from “singular” SPT-100 magnetic topography

The inclusion of a singular point required a finer mesh than in the “base” topography, and additional lines
were also included in an attempt to reduce the low quality elements next to the axis and in the downstream
region of the domain; the total number of MFAM elements clearly affected the computational time in the
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simulation, as may be seen in Table 5:

No. PIC mesh elements 1080

Avg. No. macroparticles ∼ 105 Neutrals,

∼ 7×104 Single Ions,

∼ 7×104 Double Ions

No. MFAM elements 2453

No. cores 20

Computation time 18.8×104s:

4.0×103s in PIC,

18.4×104s in NOMADS

Table 5. Simulation statistics for “singular” SPT-100 magnetic topography

Finally, simulation results and performance values are shown in Figure 14, 15, 16 in a similar fashion
to Section III.A; the results are comparable since the same anomalous collisionality factor has been used in
both simulations.

Table 6 shows slightly increased performances with respect to the ones for the “base” topography (Ta-
ble 4). This is mirrored by the macroscopic results shown in Figures 15 and 16, where larger electron
pressures and densities are achieved when compared to Figures 10 and 11; the plasma potential also presents
a larger “plateau” in the near anode region.

Id Pd Thrust Isp ηT Pjet Psheaths Pioniz.+excit. Pcahtode

2.94A 881W 48mN 980s 0.26 229W 162W 72W 10W

Table 6. Performance values for “singular” SPT-100 magnetic topography

Figure 14. Discharge current in “singular” SPT-100 magnetic topography

The larger discharge current may be linked to the existence of the singular point in the anode region,
which favors electron mobility; this is undoubtedly related to increased electron pressure, since the main
heating term is a resistive type heating which depends on electron current, and increased electron density.
In turn, these effects may be linked to increased thrust, Isp and operational power, as well as the slight
increase in thrust efficiency.

17
The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA

October 8–12, 2017



Figure 15. “Singular” SPT-100 magnetic topography thruster channel center-line results for (a) electron
pressure, (b) electric potential and (c) plasma density for (A) medium Id, (B) high Id and (C) low Id conditions
(vertical dashed line represents the channel exit)

Figure 16. “Singular” SPT-100 magnetic topography 2D time-averaged profiles of (a) electron pressure, (b)
electric potential and (c) plasma density

IV. Conclusions and future work

A development update on a new plasma discharge simulation platform for Hall Effect Thrusters has been
provided in this manuscript. The numerical fluid model for the electron population has been commented
in detail; the specifics of the heavy species Particle-In-Cell model pertaining to the simulation of thrusters,
have also been provided. A comparison of Gradient Reconstruction in magnetic and cylindrical coordinates
has also been shown revealing that the latter has a higher accuracy. Its implementation in the platform is
ongoing and more future work will be dedicated to understanding its effects over simulation results.

Preliminary simulation results for an SPT-100 based magnetic topography, with and without a singular
point within the simulation domain, have been provided to demonstrate the capabilities of the new platform
in comparison to previous codes developed in the EP2 group. Future efforts will be dedicated to comparing
results with other codes and experimental campaigns; in particular, the anomalous collisionality factor
remains a driving force in the physical response of the plasma and its effects will be studied in detail.
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