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The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is

considered. The ion component is modeled as mono-energetic, while electrons are assumed

Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is

restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation

of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar

electric field and the distribution functions of both species are calculated self-consistently, paying

attention to the existence of effective potential barriers associated to magnetic mirroring. The

solution is used to find the total potential drop for a set of upstream conditions, plus the axial

evolution of various moments of interest (density, temperatures, and heat fluxes). The results

illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest,

showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the

generation of collisionless electron heat fluxes. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919627]

I. INTRODUCTION

The dynamics of steady or transient plasma expansions

has long attracted attention due to its fundamental impor-

tance for many applications. Despite its relative simplicity,

the problem involves certain conceptual difficulties, particu-

larly in explaining the mechanism by which electrons can—

against the potential field gradient—follow the accelerated

ions in a vacuum plasma expansion. Despite early feasibility

concerns when Ion Engines were first developed,1,2 expan-

sions of this sort are now routine in many fields. With the

advent of powerful simulation tools, modelers have been

able to show that indeed, a steady collision-free expansion is

possible,3 but by their nature, these simulations do not fully

disclose the mechanisms that are involved. They do, how-

ever, illustrate the importance of a trapped electron popula-

tion that develops during the start-up transient.

Among the basic persistent difficulties, there is the fact

that simple closures of the fluid equation hierarchy have failed

to produce a model for the heat fluxes in the absence of colli-

sions, so that one is forced to adopt ad-hoc electron tempera-

ture models, like isothermal, polytropic, or adiabatic. The

isothermal assumption is attractive because, aside from its sim-

plicity that leads to the Boltzmann relationship between den-

sity and potential, it is justifiable if the distribution remains

close to Maxwellian. However, it is easy to show that an iso-

thermal electron population, being a local inexhaustible source

of thermal energy, leads to unbounded acceleration of the

plasma. For the same reason, an isothermal model fails to pre-

dict a finite total potential drop along the plume, even though

only a finite amount of thermal energy is initially available.

Preliminary analyses of ion and electron thermodynamics

effects on the plasma expansion through a magnetic nozzle

(MN) were investigated by Merino and Ahedo.4 It seems

physically clear that the electron and ion temperatures must

eventually drop to zero or near zero, but a simple adiabatic law

cannot be kinetically justified, and no rigorous alternative has

emerged. Aside from the intrinsic interest of these questions,

knowledge of the electron temperature to be expected far

downstream from the source is technologically important if

this distant plasma is to be in contact with sensitive surfaces.

Liemohn and Khazanov5 provide a review of the extensive

Astrophysics literature related to this problem. These authors

also present a model that is, in some respects, similar to ours,

but does not impose quasi-neutrality. Arefiev and Breizman6

also consider this problem, including quasi-neutrality, via an

effective potential for paraxial electron motion, which is an

equivalent alternative to the approach employed here. They

discuss the existence of a “decoupled” electron population, cut

off by a magnetically induced potential energy barrier. This

appears to be a reference to a trapped electron population,

which is a possibility we also consider; however, the approach

of Ref. 6 to this population is obscure, invoking a downstream

“expansion wave,” apparently unsteady, that somehow con-

nects to the steady near-throat flow, and which is said to add

momentum to the plasma even past its full expansion.

In this paper, we consider what is possibly the simplest

model capable of providing rigorous answers to these ques-

tions. The basic assumptions are: (a) magnetized electrons

and ions; (b) slender geometry, basically that of one mag-

netic streamtube; (c) magnetic field profile starting and end-

ing at zero intensity, with a peak that defines the throat; (d)

Maxwellian electrons at the source, with the steady spatial

distribution being one of the results of the calculation; (e) ex-

istence of a population of trapped electrons in some portion
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of the energy-magnetic moment map; (f) mono-energetic

ions, isotropic at the source; (g) no ionizing or scattering col-

lisions; (h) quasi-neutrality throughout; and (i) zero net cur-

rent, or a prescribed net current.

The neutrality condition is satisfied by a unique self-

consistent plasma potential profile along the nozzle. More

specifically, the magnetic field is found to have a unique rela-

tionship to the plasma potential, so that all other quantities can

be expressed as functions of the local potential, with no refer-

ence to the particular dependence of that potential on axial

distance. The finite total potential drop between the two mag-

netic field end points is one of the important results of the

model; it depends on the initial electron temperature, and it

defines the asymptotic ion velocity, which, in the propulsion

context, gives the specific impulse of the device. Since the elec-

tron and ion distribution functions are computed for each loca-

tion, all moments are directly calculable as well. This includes

the perpendicular and parallel temperatures of both species, and

the electron heat flux, with its two contributions due to random

transport of perpendicular and parallel random energy.

This work is motivated by the current research work in

some space plasma thrusters that use a MN to guide and

accelerate the plasma jet. These electrodeless, current-free

thrusters (in contrast to the mature Ion and Hall thrusters that

use an external cathode to neutralize the ion beam) differ

from each other basically on the plasma production stage.

For instance, the helicon plasma thruster, which has been

broadly developed in different institutions during the last

decade,7–10 uses a helicon source to produce and heat the

plasma, which is then accelerated in a MN.11 The

VASIMR12,13 uses a helicon source to produce the plasma,

an Ion Cyclotron Resonance stage to heat it, and a MN to

finally accelerate the hot plasma beam. A last example is the

ECR (Electron Cyclotron Resonance) plasma thruster,14

which combines the use of an ECR plasma source and a MN.

The paper is organized as follows: Section II is devoted

to the formulation of the kinetic model, leading to an integral

equation for the potential distribution as a function of the

magnetic field distribution. In Sec. III, we explain the itera-

tive method of solution of this equation. The results are pre-

sented in Sec. IV, where the various moments of the electron

and ion distributions are calculated from their distribution

functions, and parametric sweeps are shown for the initial

electron and ion temperatures, the ion-to-electron mass ratio,

and the overall current carried by the jet. In Sec. V, we take

a critical look at the assumptions and discuss the limitations

and potential extensions of the method.

II. FORMULATION

In this section, the formulation of the model is summar-

ized. We split it into Subsections II A–II D, each one describ-

ing ion and electron densities, and the neutrality and current

conditions.

A. The ion density

The general approach, and much of the notation, is simi-

lar to that used in Ref. 15 for the related problem of a mag-

netic cusp. In that work, the electron population was fairly

well confined (by both, the electrostatic and magnetic fields),

and the small fraction absorbed by the wall was neglected,

leading to an isothermal and isotropic Maxwellian electron

distribution. In contrast, the ions, although still magnetically

confined, were accelerated by the pre-sheath potential drop,

and their distribution function was to be found. Two cases

were considered: one with a mono-energetic, isotropic ion

distribution at the source and one with a Maxwellian ion dis-

tribution at the source. It was found that the main results

were quite similar in both cases, with the exception of the

ion heat flux, whose parallel energy part was zero in the

mono-energetic case, but non-zero in the Maxwellian case.

For application to our convergent-divergent geometry, we

notice in addition that, regardless of the distribution at the

source, the ion acceleration implies a gradual approach to a

beam-like distribution, close to a single energy as well. We

therefore adopt for the ions, a simple mono-energetic source

distribution function

fi ¼
min1

4p
mi

2Ei1

� �1=2

d Ei � Ei1ð Þ; (1)

with normalization
Ð Ð Ð

fid
3w ¼ n1 is the plasma density at

the reservoir, mi is the ion mass, d is the Dirac delta and Ei

the ion energy (mono-energetic here, and defined at the res-

ervoir Ei1). The equivalent ion temperature at the source is

T1 ¼ ð2=3ÞðE1=kÞ, with k the Boltzmann constant.

Hereafter, subscripts e, i, will refer to a property evaluated

for electrons and ions respectively, and 1 will refer to a

property given at the upstream reservoir. The magnetic

moment of a given ion is conserved along its trajectory

(li ¼ miw
2
?=2B ¼ const), and so its (conserved) energy can

be written as Ei ¼ miw
2
k=2þ liBþ e/, where wk is the ve-

locity component along B, w? is the velocity component per-

pendicular to B, and / is the electrostatic potential at the

point where the magnetic field is B. In what follows, we will

take the source potential to be zero, so that / is generally

negative. For a fixed Ei, the maximum magnetic moment at a

point is then

lim ¼
Ei � e/

B
: (2)

This quantity has a minimum value at some point, in the con-

vergent portion of the magnetic channel, where / is falling

and B is increasing. We designate this minimum as

liTðEiÞ ¼ minflimðB;EiÞg at B ¼ BiTðEiÞ: (3)

Hereafter, all properties evaluated at that point are labeled

with the T subscript. Downstream of where BiT occurs, only

ions with li < liT exist. Upstream of BiT , there are ions with

liT < li < lim moving with wk > 0, as well as those with

the same magnetic moment that have been bounced back by

the magnetic mirror moving with wk < 0. The full distribu-

tion function is therefore a spherical segment shell in

velocity space, determined by the angle hi, as depicted in

Figure 1.

For these mono-energetic ions, the average or mean

value of any quantity vi is then
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hvii ¼
n1
ni

1

4p
mi

2Ei1

� �1=2 ð1
0

ð hi Eið Þ

0

vid Ei � Ei1ð Þ

� 2pwi sin hidhidEi: (4)

In particular, for vi ¼ 1, we obtain the ion density

ni ¼
n1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e/

Ei

s
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e/þ liTB

Ei

s0
@

1
A

¼ n1
ffiffiffi
B
p

2
ffiffiffiffiffi
Ei

p ffiffiffiffiffiffiffi
lim

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim � liT

p� �
; (5)

where the upper sign applies upstream of where B ¼ BiT , and

vice versa. This analysis is identical to that in Ref. 15, except

that it now extends to the divergent B-field side as well.

B. The electron density

The formulation is, in principle, similar for electrons of

a particular energy Ee, but important new effects occur when

the sign of the charge is reversed. As for ions, there is a max-

imum electron magnetic moment at the location where the

field is B and the potential is /, namely,

lem ¼
Ee þ e/

B
: (6)

But now the numerator is everywhere decreasing in the flow

direction, and so a minimum leTðEeÞ of lem—if it exists—

must happen where B is also decreasing, i.e., in the diverging

field section. In addition, unlike the ion case, the numerator

of Eq. (6) may cross zero before the end of the channel. At a

location where the potential is /, electrons with Ee < �e/
must have been electrostatically bounced back upstream, and

this low energy range must be absent from the distribution,

or, equivalently, lem must be positive.

The behavior of the electron distribution function can be

understood with reference to Figure 2, which advances some

of our numerical results.

For any given energy, no electrons can be present above

the corresponding lem line in Figure 2, as this would imply a

negative parallel kinetic energy. Also, as noted above, lem

crosses through zero where Ee ¼ �e/, or ee ¼ U.

As Figure 2 also shows, the maximum magnetic moment

lem is monotonically decreasing for low enough energies,

roughly ee < e�e ¼ 0:49 in this case. Since all electrons have

constant positive magnetic moments, this means that elec-

trons below this energy will be bounced back, and the distri-

bution will be a complete spherical shell for all these

energies below the line ee ¼ e�e .

For energies between e�e and unity (corresponding to

electrons that are just able to escape the nozzle), we can see

in Figure 2 the existence of a minimum and a maximum of

lem. For these, the minimum, leT , plays a similar role as liT

does for ions: any electron with ee > e�e and le > leT will be

bounced back upstream of the location where this minimum

happens. Electrons with le < leT can pass through this

choke point, but will be bounced back as they reach the loca-

tion where their magnetic moment equals the local lem, past

the maximum of the lem curve. Since the higher magnetic

moments have been excluded, these electrons have a distri-

bution in the shape of two symmetric spherical segments,

one limited by the angle he ¼ sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
leT=lem

p
and the other

by its supplementary angle p� he.

For energies high enough to overcome the total potential

drop (Ee > �e/out, or ee > 1), the lem curve does not have a

FIG. 1. Ion distribution functions for the regions to the left and to the right

of where B ¼ BiT (top figure, bottom figure). Here, hi ¼ sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
liT=lim

p
,

and w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEi � e/Þ=mi

p
. hi ¼ hiT ¼ p=2 for lim ¼ liT at B ¼ BiT .

FIG. 2. The maximum local magnetic moment, l̂em, versus potential drop,

U, for various electron energies, ee. Energy and potential are normalized by

�e/out, magnetic moment by �e/out=Bmax. These results are for ei ¼
Ei=kTe1 ¼ 0:1 and mi=me ¼ 104.

053501-3 Martinez-Sanchez, Navarro-Cavall�e, and Ahedo Phys. Plasmas 22, 053501 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.4.226.47 On: Tue, 05 May 2015 16:53:11



maximum, but diverges to infinity as the exit is approached.

As a consequence, electrons with these energies that clear

the barrier by having le < leT can escape into the far plume

and provide the neutralization for the accelerated ions.

The preceding discussion implies that those electrons

with less than escape energy (ee < 1) and with magnetic

moment between the local maximum lem and its minimum

upstream value leT , i.e., those in the dome under one of the

lem curves in Figure 2, should simply be absent from the

population. This is true if their only source is the upstream

plasma, from which they are isolated by the magnetic mir-

ror barrier. However, these electrons, if present, would be

also isolated (electrostatically) from the downstream envi-

ronment, and this raises the possibility for a trapped popu-

lation. Why this trapping might happen is a complex

question that would require a rigorous analysis of the

unsteady start-up process and of the possible trapping

mechanisms, including collisions. One potential scenario,

supported by the numerical results of Ref. 3, is as follows:

Assuming the B field is pre-established and that plasma is

suddenly introduced upstream and allowed to expand to

vacuum, one would first see electrons, with their higher

random speeds, streaming out. This would produce a

strongly negative potential past the throat, until at a later

time the accelerated ions would arrive and start the neutral-

ization process. As the eventual quasi-neutrality is

approached, the transient local potential increase would

reduce the total energy of electrons and trap those that end

up below the rim of the potential energy trough that is

equivalent to the dome in the diagram of Figure 2 (the

potential energy invoked here is that for the effective axial

motion, namely, U ¼ �e/þ leB).

The implications of the preceding discussion are sum-

marized in the diagrams in the Appendix.

In our work, we have, in fact, made the trapping

assumption. As a consequence, as the Appendix makes clear,

for any non-escaping energy (Ee < �e/out), the angular dis-

tribution is a full spherical shell. These electrons do not con-

tribute to any odd moment of the distribution, like the mean

axial velocity. For escaping energies, the angular distribution

mimics that for ions in Figure 1: a spherical shell missing a

backwards segment for locations past where leT occurs, and

only the forward segment past this point.

Vlasov’s equation states that the distribution function is

conserved along particle trajectories, and so it must be a

function of the constants of the motion. There are two such

constants in our case, Ee and le, and since at the source, the

distribution function is Maxwellian and depends only on Ee,

this same dependence must apply everywhere, provided the

local conditions can be connected to the source by a continu-

ous trajectory. Thus the electrons distribution function is

written as,

g Eeð Þ ¼ n1
me

2pkTe1

� �3=2

exp � Ee

kTe1

� �
: (7)

Te1 is the electron temperature defined at the source. For

electrons, the moment of a generic quantity ve is then

hvei ¼
n1
ne

me

2pkTe1

� �3=2 ð1
0

ð he Eeð Þ

0

ve exp � Ee

kTe1

� �

� 2pwe sin hedhe
dEe

me
: (8)

Taking ve ¼ 1, the local electron density at a location where

the potential is / and the magnetic field is B can now be

written down after performing the angular integration as

ne ¼
n1ffiffiffi

p
p

kTe1ð Þ3=2
2

ð�e/out

�e/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þ e/

p
exp � Ee

kTe1

� �
dEe

"

þ
ð1
�e/out

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þ e/

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þ e/� leTB

p� �

� exp � Ee

kTe1

� �
dEe

	
; (9)

where the factor of two in the first line (energies below

escape) accounts for the two possible signs of the parallel

velocity for each energy. Subscript “out” refers to a property

evaluated far downstream, at the end of the expansion, say

/! /out. In the second line, the positive sign applies

upstream of BeTðEeÞ, and vice-versa. The integration cover-

ing the non-escaping range does not involve leTðEeÞ, and

can therefore be performed analytically, so that (9) can be

rewritten as

ne

n1
¼ exp

e/
kTe1

� �
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e /� /outð Þ

kTe1

s
� 2ffiffiffi

p
p exp

e/out

kTe1

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e /� /outð Þ

kTe1

s
þ 1ffiffiffi

p
p

kTe1ð Þ3=2

�
ð1
�e/out

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þ e/

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þ e/� leTB

p� �

� exp � Ee

kTe1

� �
dEe: (10)

As in the case of a cusp with Maxwellian ions, treated in

Ref. 15, the difficulty that arises in evaluating these integrals

is that the dependence of leT on Ee is not known a-priori but

depends on the global solution of /ðBÞ. We return to this

point in Sec. III.

C. The neutrality equation

Considering Eq. (5) together with Eq. (10), we obtain

the equation that relates / to B. For convenience, we normal-

ize variables as follows:

b ¼ B

Bmax
; U ¼ /

/out

; ei ¼
Ei

kTe1
; ee ¼

Ee

je/outj
;

l̂i ¼
liBmax

je/outj
; l̂e ¼

leBmax

je/outj
; W ¼ je/outj

kTe1
:

(11)

According to this normalization, U ranges from 0 (far upstream)

to 1 (far downstream) and W—the dimensionless total potential

drop—is a parameter to be determined. The neutrality condition

can now be written in non-dimensional form as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW

ei
U

s
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW

ei
U�W

ei
l̂iTb

s
¼ 2 exp �WUð Þ

� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 1� Uð Þ

p
� 4ffiffiffi

p
p exp �Wð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 1� Uð Þ

p

þ 2W3=2ffiffiffi
p
p

ð1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee � U

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ee � U� l̂eTb

p� �
exp �Weeð Þdee:

(12)

Aside from the double-valued function UðbÞ, there are sev-

eral parameters in this equation that need to be determined

for a valid solution:

(a) The parameter l̂iT , which satisfies Eq. (3). This guaran-

tees that the second radicand on the ion side of Eq. (12)

is non-negative. The change of sign is made at the sin-

gle point where this radicand reaches its minimum zero

value, namely, at biT , somewhere along the converging

field side.

(b) The function l̂eTðeeÞ, for electrons with ee > 1. This

must be such as to satisfy the definition l̂eTðeeÞ
¼ minfl̂emðee;UÞg, namely, l̂eTðeeÞ ¼ minfðee � UÞ
=bg. It can be seen from Eq. (12) that this guarantees

for all ee the non-negativity of the radicand inside the

ee-integral. At the location beT (on the diverging field

side), the radicand takes its minimum value of zero at

the energy ee ¼ eeT .

(c) The parameter W, which—in analogy to the potential

drop through a sheath—determines the ratio of total

ion to electron current.

D. The current condition

Since total current is a free parameter, ion and electron

fluxes must be computed separately and combined to yield

the given net current. Dimensionless momenta are defined

and computed in Sec. IV, but ion and electron flux expres-

sions, in particular, are advanced here, since they are

invoked in the discussion of the numerical method in Sec. III

Ĉi ¼
Wffiffiffiffiffiffi
8ei

p bl̂iT ;

Ĉe ¼
mi

2pme

� �1=2

W2b
ð1
1

l̂eT exp �Weeð Þdee:

(13)

The quantity n1cs, with cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe1=mi

p
, has been taken as

the flux reference to normalize both ion and electron fluxes,

Ĉi and Ĉe. The net current is proportional to the difference

Ĉ ¼ Ĉi � Ĉe. Current-free plasma will be assumed hereafter

in this work, Ĉ ¼ 0.

III. METHOD OF SOLUTION

The basic scheme used to solve Eq. (12) is:

(a) Discretize the magnetic field b between 0 and 1.

(b) Guess a value of the overall potential drop W.

(c) Postulate a double-valued potential drop distribution

UðbÞ. Since b has its maximum at some value of U, the

function UðbÞ should start at U ¼ 0 for b! 0 (far

upstream), turn back at b ¼ 1, and then continue rising

to U ¼ 1 when b approaches zero again (far

downstream).

(d) Calculate the function l̂im ¼ ðei=Wþ UÞ=b and find its

minimum value l̂iT .

(e) For each of a number of electron energies within the

range 1 < ee <1, calculate l̂em ¼ ðee � UÞ=b and

find its minimum value l̂eT .

(f) For each discretized value bj, use the Laguerre-Gauss

quadrature method to calculate the integral term in Eq.

(12), and calculate others on the left (ion) side and on

the right (electron) side. Their relative difference,

dðbjÞ ¼ j1� neðbjÞ=niðbjÞj, is a measure of the remain-

ing neutrality error at that location, bj. The relative,

rather than the absolute, error is used because of the

strong decrease in the density along the expansion

(several orders of magnitude).

FIG. 3. Parametric analysis of (a) the minimum of the l̂em curves, l̂eTðeeÞ,
(b) the position of this minimum in terms of the solution beTðUTÞ, and (c)

the relation between the electron energy ant the potential where the mini-

mum is located UTðeeÞ. Results are for the following values of the dimen-

sionless parameters:ei ¼ 0:1 and mi=me¼ 103; 104; 105. Arrows indicate

mass ratio increasing.
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(g) The net flux Ĉ ¼ Ĉi � Ĉe is also computed from the

guessed distribution Uj. The current condition is incor-

porated through the c error parameter: c ¼ Ĉ � Ĉ
�
,

with Ĉ
�

being the prescribed flux difference (zero in

what follows).

(h) To quantify the overall error, compute the modified

sum of squares,

D ¼
X

j

d2ðbjÞ þ mc2; (14)

over the b grid. Here, m is a weighting factor chosen to

balance the neutrality and current errors. A numerical

optimization method is then used to minimize D over

the set of trial functions UjðbjÞ, plus the trial value of

the dimensionless total potential drop W. The numeri-

cal algorithm used is a trust region method based on in-

terior point techniques, as described in Refs. 16 and 17.

This method is very robust for solving the current

problem, although this robustness penalizes somewhat

the convergence rate.

(i) The above process is iterated until D � �, with �� 1

the numerical tolerance desired for the solution.

IV. MOMENTS AND RESULTS

Once the electric potential function UðbÞ and its total

drop W are determined, it is possible to compute moments of

the EDF and IDF (Eqs. 4 and 8) in order to compute macro-

scopic variables: ion and electron densities, fluxes, tempera-

tures, heat fluxes, etc. The standard definitions for ions are

listed in Eqs. (15) through (18):

Ci ¼ niui ¼ nihwiki; (15)

kTik ¼ hmic
2
iki; with cik ¼ wik � ui; (16)

FIG. 4. (a) and (b) Dimensionless magnetic field as a function of normalized

electric potential, for several values of the mass ratio mi=me and the ion

energy ei. In (a), the arrow indicates mi=me increasing 103; 104; 105, at a

constant ei ¼ 0:1. In (b), the arrow indicates ei increasing, (0.01, 0.1, 1, 10)

at a constant mi=me ¼ 104. (c) depicts the total potential drop W ¼
�e/out=kTe1 as a function of ei and mi=me.

FIG. 5. (a) Dimensionless density niðUÞ ¼ neðUÞ at ion energy ei ¼ 0:1 for

mass ratios mi=me¼ 103; 104; 105. Dashed lines show the Boltzmann equi-

librium density for comparison. (b) and (c) Ion Mach number ui ¼ ue (for

zero net current), using the same mass ratios and ion energies as in Figure 3.

Hereafter, asterisks indicate the magnetic throat location Uðb ¼ 1Þ.
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kTi? ¼ hmiw
2
i?=2i ¼ Bhlii; (17)

qik ¼ nihmic
3
ik=2i; qi? ¼ nihmiw

2
i?cik=2i: (18)

The same expressions can be used for electrons by replacing

subscripts i by e. For presentation, ion and electron fluxes

are normalized with n1cs with cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe1=mi

p
, the ion

sound speed. Temperature is normalized with Ti1 or Te1 for

ions and electrons respectively. The reference heat fluxes are

qi1 ¼ n1cskTi1 and qe1 ¼ n1cskTe1.

For zero net current, the dimensionless variables that

control the overall behavior of the plasma flow through the

magnetic channel are the ion to electron mass ratio, mi=me,

and the ion energy to electron temperature ratio,

ei ¼ Ei1=kTe1. Accordingly, we obtain the solution for the

magnetic field distribution bðUÞ as a function of these two

parameters. First, we present in Figure 3 the parametric

behavior of l̂eTðeeÞ, beTðUTÞ, and UTðeeÞ, which have been

necessary for the computation of all moments.

The potential vs. magnetic field results are depicted in

Figure 4 for the usual condition of zero net current. The total

electric potential drop W increases for larger mi=me. Note that

this drop would vary if the net current condition was modified.

The density niðUÞ ¼ neðUÞ (0th moment) and the ion ve-

locity ui ¼ hwiki, or “ion Mach number,” are depicted in

Figure 5. Since we also impose the zero-current condition,

we have ue ¼ hweki ¼ ui. Density is compared with the

Boltzmann equilibrium prediction (dashed lines in Figure

5(a)),

ni=n1 ¼ expðe/=kTe1Þ; (19)

showing that this law is accurate in the subsonic and moder-

ately supersonic part of the flow, but loses its validity as one

moves forward along the expansion.

Figures 6(a) and 6(b) show the total ion temperature

variation Ti ¼ ð2=3ÞTi? þ ð1=3ÞTik along the expansion for

various mass ratios and ion energies. Figure 6(c) displays

the parallel and perpendicular temperatures separately.

From these results, we can conclude that ions become ani-

sotropic through the expansion: the parallel temperature

drops monotonically towards zero downstream, while the

perpendicular temperature follows roughly the magnetic

field variation, mimicking the magnetic moment conserva-

tion, and reaching its maximum close to b ¼ 1. An axial ion

beam of zero temperature is formed downstream (Ti ! 0

when U! 1). However, this is only true for the ion mono-

energetic model considered here, which does not allow any

velocity dispersion at the end of the expansion. The effect

of an energy dispersion is seen below in the electron tem-

perature (Figure 7).

FIG. 6. (a) Ion total temperature Ti ¼ ð2=3ÞTi? þ ð1=3ÞTik as a function of

the electric potential drop U (along the expansion), and the mass ratio

mi=me¼ 103; 104; 105 for ei ¼ 0:1. (b) The same quantity plotted in (a), but

varying the ion energy factor ei ¼ ½0:01; 0:1; 1; 10� for mi=me ¼ 104. (c)

Separate ion perpendicular and parallel temperatures Ti?ðUÞ; TikðUÞ, for

ei ¼ 0:01 and mi=me¼ 103; 104; 105.

FIG. 7. (a) Total electron temperature TeðUÞ, for mi=me ¼ 103; 104; 105 and

ei ¼ 0:1. (b) Electron perpendicular and parallel temperature—solid and

dashed lines, respectively. All of them are for the same parameters in (a).

The abscissa scale in (b) has been modified to emphasize the lower bound of

TekðUÞ when U! 1.
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Figure 7 displays the electron temperature profile and

points out the existence of electron collisionless cooling.

This cooling response, as well as the loss of isotropy,

would not be present if electrons were well confined. The

perpendicular temperature Te? approaches zero as the

magnetic field decreases and the potential approaches its

limit, but the parallel component Tek tends to a finite

downstream limit. In this region, “hot” or energetic elec-

trons control this and other variables, because lower

energy electrons have been bounced back electrostatically.

These “hot” electrons are also the ones that ensure the

current-free condition. The electron cooling that occurs

here is a consequence of the partial depletion of the EDF

due to the electric potential barrier. This is also responsi-

ble for the loss of electron isotropy in the divergent side,

with the perpendicular temperature becoming progres-

sively smaller than the parallel temperature. It appears to

be also responsible for the finite limit of the parallel elec-

tron temperature: the electrons that escape to infinity

(those with Ee > �e/out) preserve the energy dispersion

they had in the upstream reservoir. This lower bound on

the electron temperature is quite dependent on the ion to

electron mass ratio, and decreases as this mass ratio

becomes larger (see Figure 7(b)).

The heat fluxes can be calculated by taking the 3rd

moment of distribution functions, according to Eq. (18). For

mono-energetic ions, the parallel heat flux can be seen analyti-

cally to be zero, qik ¼ 0. This result is shown in Figure 8(a),

and is very useful as a check of the consistency of the solution

UðbÞ. For its part, the random parallel flux of perpendicular

energy qi?ðUÞ is negative everywhere along the expansion

(see Figures 8(b), and 8(c)). Since we have seen that Ti?ðUÞ
decreases in the forward direction beyond the throat, the usual

sign criterion of the Fourier heat transport law, q ¼ �K@xT,

does not apply here, although it would in the convergent seg-

ment, as noted in Ref. 15 (K would be the thermal conductiv-

ity). It is interesting to speculate as to whether this partial heat

flux with the same sign as the corresponding temperature gra-

dient violates the 2nd law of thermodynamics. Presumably,

this is not so because it occurs only for one of the components

of the heat flux and of the temperature of the whole fluid.

Finally, regarding electron heat fluxes, the parallel qek and

perpendicular qe? contributions are presented in Figure 9.

Although the plasma is treated as collision-less, qekðUÞ agrees

with the sign criterion of the Fourier law. Zero heat fluxes are

obtained at both limits, infinitely upstream and infinitely down-

stream, qek ! 0 when U! 1. The sharp maximum of the par-

allel component on the convergent region, and the peak of the

perpendicular one just at the throat position, cannot be satis-

factorily explained by these authors.

V. DISCUSSION

Because of the assumed presence of the trapped elec-

tron population, the influence of free electrons on the

FIG. 8. Ion parallel (a) and perpendicular (b) and (c) heat fluxes. In (b), ei ¼
0:1 and mi=me¼ 103; 104; 105. In (c), ei ¼ 0:01; 0:1; 1; 10 and

mi=me ¼ 104.

FIG. 9. Parallel (a) and perpendicular (b) electron heat fluxes. ei ¼ 0:1 and

mi=me¼ 103; 104; 105.
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obtained results turns out to be marginal only. The excep-

tion, of course, is the odd moments i.e. mean velocity, for

which these free electrons are, in fact, the only contributors.

If the depletion of the trapped population was possible, or,

more generally, if the trapping mechanism imposed a distri-

bution function different from that assumed here, a differ-

ent shape of the solution UðbÞ for the relationship between

electric potential and magnetic field would be obtained and

it is difficult to predict how the results presented here would

be modified. We can, however, anticipate that a reduction

in the trapped population would cause an earlier degrada-

tion of the Maxwell-Boltzmann equilibrium along the mag-

netic channel, because the influence of free-electrons on the

computed electron density would be stronger and their

effects would be manifested before reaching the far field of

the plasma expansion. Similarly, there would be a strong

impact on the electron temperature, presumably resulting in

less isotropy than the results presented here, which are

dominated by the isotropic confined group.

All macroscopic parameters are computed according to

the local distribution function of both ions and electrons.

And, this is determined self-consistently by the solution

UðbÞ. To better illustrate the evolution of the distribution

function along the magnetic channel, Figure 10 depicts g ¼
gðwek;we?Þ at several positions on the convergent side (labeled

by U ¼ 0:004; 0:02; 0:06), magnetic throat (that corresponds to

U ’ 0:1), and on the divergent side (labeled by U ¼ 0:5; 0:9),

for the nominal case mi=me ¼ 104; ei ¼ 0:1. These plots point

out several effects already mentioned: the loss cone or the

beam formation is clearly identified, and this justifies the loss

of isotropy. Also, it is shown that even far downstream

(U ¼ 0:9), a confined (trapped or bounced to the source) elec-

tron population is still there, preserving its isotropy. The deple-

tion of the distribution function, in terms of energies, exerted

by the effective potential leB� e/, is observable by the

shorter peak of the g ¼ gðwek;we?Þ ¼ gðEÞ surfaces.

Our model assumes highly magnetized ions and elec-

trons. It is conjectured that most of the features uncovered

must be common to weakly magnetized or non-magnetized

vacuum expansions, although, except for numerical simula-

tions,3 this has not been explored in detail. One avenue for

extending the work in that direction is the idea of an electro-

static invariant that was broached in our earlier work on cusp

flows.15 In that case, ions were seen to be funneled into the cusp

FIG. 10. Electron distribution function

g ¼ gðw?;wkÞ at different locations:

convergent side (U ¼ 0:004; 0:02;
0:06, that corresponds to b ¼ 0:1; 0:5;
0:9, respectively), throat (or U ¼ 0:1)

and divergent side (U ¼ 0:5; 0:9).

Electron speed is dimensionless

with the electron thermal speed

ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe1=me

p
.
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by the formation of a self-consistent potential well due to the

magnetically guided electrons. For our present purposes, in the

absence of magnetization, electrons are radially confined by the

potential hump forced by the inertial concentration of ions near

the axis, and a similar approach appears to be possible.

We assume here a magnetic field distribution and shape

that is separately determined by coils or magnets. Under high

magnetic Reynolds number conditions, as in astrophysical jets,

the magnetic field is in fact a self-consistent part of the solution.

However, since our results are parameterized with B regardless

of its spatial distribution, they remain valid in any case.

VI. CONCLUSIONS

For magnetized, collisionless ions and electrons, steady

solutions have been found for the expansion to vacuum of a

fully neutralized plasma jet with zero net current. The elec-

tron density over most of the jet is dominated by confined

electrons. On the divergent side, this is controlled mainly by

the subgroup of trapped electrons that are isolated electro-

statically from the downstream environment and magneti-

cally from the upstream chamber. The small fraction that

escapes provides the necessary electron flux to keep a

current-free plasma beam, a mandatory condition for all

electrodeless thrusters mentioned in the introduction. Ion and

electron distributions preserve their isotropy only over re-

stricted angular ranges at each energy; as a consequence,

heat fluxes develop despite the absence of collisions. In addi-

tion, whole electron energy ranges are empty or only par-

tially populated, and this leads to reductions of the various

temperatures towards the exit, causing the electron cooling

phenomenon. The total potential drop between reservoir and

exit conditions is calculated as part of the self-consistent so-

lution, and it scales with the electron/ion mass ratio in a sim-

ilar fashion to the known sheath potential drop. This is a

very important result because this bounded drop (finite accel-

eration of ions) is more reasonable than the unbounded

results predicted by isothermal or Maxwell-Boltzmann

expansion models, or the unjustified adiabatic-polytrophic

models used extensively in the literature. This finite drop is

also responsible of the kinetic electron cooling effect.
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APPENDIX: ANGULAR ELECTRON DISTRIBUTION
FOR VARIOUS ENERGY RANGES

In this Appendix, the electron velocity distribution func-

tion is discussed, in terms of the angle formed by the velocity

vector and the parallel direction. The behavior depends on

the electron energy, defining the following three ranges:

FIG. 11. Angular electron distribution function for e�e < ee < 1.

FIG. 12. Angular electron distribution function for ee > 1.
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(a) For ee < e�e , the distribution is a full spherical shell.

(b) For e�e < ee < 1, the shape of the distribution function

depends also on leðee;UÞ and leTðeeÞ. Figure 11 sche-

matically details this dependence.

(c) For ee > 1, the shape is depicted in Figure 12.
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