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Abstract

This Thesis presents an investigation of the plasma-wave interaction in Helicon Plasma

Thrusters (HPT). The HPT is a new concept of electric space propulsion, which gen-

erates plasmas with RF heating and provides thrust by the electrodeless acceleration

of plasmas in a magnetic nozzle. An in-depth and extensive literature review of the

state of the art of the models and experiments of plasma-wave interaction in helicon

plasma sources and thrusters is carried out. Then, a theoretical and numerical study of

plasma-wave interaction is presented. Models for homogeneous (0D), radially inhomo-

geneous (1D) and axisymmetric (2D) plasma columns are derived and implemented into

numerical codes. A parametric analysis of all the relevant design and operational vari-

ables in the HPT is performed with the 1D code, showing the influence of the plasma

density, magnetic field strength, wave frequency, antenna shape and geometry of the

problem. The 2D analysis focuses on the importance of plasma non-homogeneities and,

in particular, the influence of the plasma plume expanding to the downstream of the

source on the electromagnetic wave propagation and absorption. Results of this Thesis

are expected to help guiding the design of future optimal HPT devices.
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Resumen

Esta Tesis presenta una investigación sobre la interacción onda-plasma en motores de

plasma de tipo helicón (HPT, por sus siglas en inglés). El HPT es un nuevo concepto de

propulsión espacial eléctrica, que genera un plasma por calentamiento RF y proporciona

empuje por acceleración sin electrodos en una tobera magnética. Se desarrolla en primer

lugar un profundo y extenso análisis de la literatura existente con el estado del arte en

modelado y experimentos sobre fuentes y motores helicón. Seguidamente, se presenta

un estudio teórico y numérico de la interación onda-plasma. Se derivan la relación de

dispersión 0D, un modelo radial 1D de ondas, y un modelo 2D de ondas, los cuales han

sido implementados en sendos códigos numéricos. Se desarrolla un análisis paramétrico

en todos las variables relevantes de diseño y operación con el código 1D, mostrando la

influencia de la densidad del plasma, la intensidad del campo magnético, la frecuencia

de la onda, la forma de la antena y la geometŕıa del problema. El análisis 2D se centra

en la importancia de las variaciones en las propiedades del plasma y, en particular, en

el efecto que tiene la presencia de un chorro de plasma aguas abajo de la fuente en la

propagación y absorción de la onda electromagnética. Se espera que los resultados de

esta Tesis ayuden a guiar el diseño de futuros dispositivos HPT óptimos.
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Chapter 1

Introduction

The meaning of propulsion originates from two Latin words: pro meaning before or

forwards and pellere meaning to drive [1], describes driving an object movement by

means of producing force. A space propulsion system is a device that produces thrust

to push and accelerate a spacecraft. Unlike pushing objects on earth, the propulsion in

space is no solid or fluid available and also nearly no friction. Therefore, the thrust can

be produced most possibly by releasing part of mass from the spacecraft at a specific

speed in terms of the Newton’s third law of motion [1, 2]. This process can be described

as a scalar form [3]

F = ṁve (1.1)

where F is the thrust, ṁ is the mass flow of propellant and ve is the effective exhaust

velocity, which already takes into account any pressure contribution. The ratio of the

thrust F to the mass flow rate ṁ is known as the specific impulse Isp, and constitutes

an important figure of merit of the system, which denotes how well the propellant is

used to produce thrust. A high value of Isp allows completing a propulsive mission with

a lower amount of propellant. Customarily, Isp is defined in seconds, after dividing by

the gravity acceleration at sea level g0 [2],

Isp =
F

ṁg0
≡ ve
g0

(1.2)

The propulsive cost of any space mission can be expressed as the required increment of

spacecraft velocity that the propulsion system must provide, ∆v. This cost is related to

the Isp and the propellant mass Mp by the ‘Rocket’ equation [4]

∆v = Ispg0 ln

(
Mp +Mf

Mf

)
(1.3)

1
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where Mf is the spacecraft mass at the completion of the acceleration period. The Eq.

1.3 shows that the increment of velocity ∆v is proportional to the specific impulse and

to the natural logarithm of the mass ratio. It implies that the total mass of spacecraft

can be reduced by increasing the specific impulse Isp for a given mission with a specified

∆v and final delivered mass [4]. It can largely reduce the size and cost of spacecraft.

Hence, the Isp can be seen as the first figure of merit of a space engine [3].

Space propulsion systems can be broadly classified into chemical and electric propulsion

systems. The first type applies a chemical reaction (usually combustion) to produce a

hot, high pressure that expands in a nozzle to transform from the chemical energy to the

kinetic energy [1]. Rocket launchers and hydrazine reaction control systems on board of

spacecraft use this method. The second type employs electric power to accelerate the

propellant by electrical and/or magnetic means. Fig. 1.1 shows the typical chemical

and electric engines.

(a) Chemical engine (BE-4) (b) Electric thruster (PPS-1350E)

Figure 1.1: The chemical engine and electric engine [5, 6].

To compare these two types of propulsion, the advantage of chemical propulsion is

that a very large range of thrust levels from more than 1000 kN to less than 1 N can

be achieved. However, the chemical propulsion systems store all their energy in the

propellant chemical bonds, and has a fixed amount of energy per unit mass, which leads

to the energy limitation for providing higher exhaust velocity or specific impulse [2].

To the contrary, the electric propulsion systems are not limited by the energy in the

propellant but by the power installed in the spacecraft platform, such as solar panels

or nuclear power [7]. Most of the existing electric propulsion technologies work by first

ionizing the propellant into a plasma, and then applying electric and magnetic fields to

accelerate it to much higher exhaust velocities than chemical one. Consequently, the Isp
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in electric propulsion system is typically much larger than chemical engines and much

less propellant is required for a given mission [4].

Notwithstanding this, electric propulsion typically delivers a lower thrust levels in the

order of µN to hundreds of mN. This results in new types of maneuvers known as low

thrust, compared to the impulsive ones produced by chemical propulsion. Tab. 1.1

compares the typical chemical and electric propulsion engines.

Chemical Electric

Small monopropellant Fregat Main Engine
SMART-1 Hall

Effect Thruster

thruster (RCS) (S5.92M) (PPS-1350)

Propellant Hydrazine

Nitrogen tetroxide /

XenonUnsymmetrical

dimethyl hydrazine

Specific Impulse(s) 200 320 1640

Thrust(N) 1 1.96× 104 6.80× 10−2

Thrust time(h) 46 0.24 5000

Propellant
52 5350 80

consumed(kg)

Total Impulse(Ns) 1.1× 105 1.72× 107 1.2× 106

Table 1.1: Comparison of propulsion technologies [8].

1.1. Electric propulsion

Electric propulsion has been developed for nearly one century since the concept was

proposed in the early 20th century [7]. It is now a mature and widely used technology

on spacecraft. Numerous countries and researchers have made large contributions to it

from the concept to the application in space. Many types of thrusters in this family such

as ion thruster, hall effect thruster and resistojet has been applied in space missions [4].

New concepts of electric thruster are however being proposed or tested in the laboratory

in the present, which promise improved performances over the existing ones.

The early history of electric propulsion up to 1950s has been introduced in details by

Choueiri [9]. This concept was first supported to apply in space propulsion by Robert

Goddard [10] in 1906 and the Russian scientist Tsiolkovskiy proposed similar concept

independently in 1911 [9]. The Germany Hermann Oberth in 1929 and British Shepherd

and Cleaver in 1949 also introduced the possibility of application of electric propulsion

in space [4]. In addition, the first systematic introduction of electric propulsion was
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proposed by Stuhlinger in 1950s [11]. After the 1950s, electric propulsion developed

rapidly and several prototypes were tested and applied in space missions due to the

rapid acceleration of space ambitions of the US and the USSR. The first experimental

ion thrusters were launched into orbit in the early 1960s by the U.S [4]. The extensive

applications of Hall effect thrusters were attributed to the efforts of Soviets. The first

Hall effect thruster used in the Meteor satellite for station keeping was launched in 1971

[4]. Since then, more than 200 Hall effect thrusters have been utilized in all kinds of

satellites and missions. The other type of electric thrusters are also widely used. With

the development of technology, it can be predicted that the full electric propulsion in

satellites would be the trends of future.

Due to the acceleration mechanism of thrust, the electric propulsion systems are typically

classified into three categories: electrothermal, electrostatic and electromagnetic. Three

groups are described in the following.

The Electrothermal propulsion is the method that the propellant is electrically heated in

a chamber and then expanded through a suitable nozzle [7]. The typical representatives

are the resistojet and the arcjet. A resistojet provides thrusts by heating non-reactive

propellants via the chamber wall or heater coils. It can achieve the Isp less than 500

s due to the limit of thermal heating of the propellant [4]. The first application of

resistojet thrusters are installed on the military Vela satellites launched by the United

States in 1965. However, the commercial applications were achieved in the INTELSAT-

V program until 1980s [7]. Comparing with resistojets, the arcjet is the thruster which

heats propellants by a high electric current arc. Tens or hundreds of currents are passed

through the gas flow and higher temperatures of propellants are obtained than resistojets

so that higher Isp up to 700 s can be achieved. In 1993, hydrazine arcjets was first

applied in the Telstar-4 series of GEO communication satellites [7]. Its good performance

attracts more attention to become a viable option of propulsion.

The second group of electric propulsion family is the electrostatic propulsion. The most

outstanding members in this group are the ion gridded thruster and its variants. A

beam of ions is accelerated by a suitable electric field via biased grids and subsequently

neutralized by a flux of free electrons [4, 7]. A very large specific impulse Isp from 2000 s

to over 10000 s and very high thruster efficiency from 60% to over 80% can be achieved by

this thruster. Moreover, the lifetime can be up to 30000 hours. The typical disadvantage

of ion thrusters are that it is more cumbersome than other EP devices and the grid

erosion due to the particle impacting limits the performance. The first experimental

tests for ion thrusters are very early in 1960s by the U.S and Soviets. However, it is

rarely used in commercial application until 1990s. In 1995, the first operational use of
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ion thrusters occured on the communications satellite ETS-6 for north–south station

keeping [4].

Electromagnetic propulsion is the third group in the EP family. It generates the ion

beam via the interaction of plasmas and applied or induced electromagnetic fields [7].

A major example in this class is the Hall effect thruster(HET). Unlike ion gridded

thrusters, a cross-field discharge that results in an azimuthal electron current is used.

The ion beam is accelarated under the electrostatic field impressed by the negative

cathode. The electrons emitted by the cathode are used to ionize the neutral gas and

neutralize the ion beam. Generally, the efficiency and specific impulse of Hall effect

thruster are lower than ion thrusters achieved. The thrust efficiency is about 35%−60%

and the Isp is in the range 1500–2000 s [4]. Another archetypal thruster in this group

is the Pulsed plasma thruster (PPT). A pulsed discharge is utilized to ionize a fraction

of solid propellant which generates the plasma arc. With the electromagnetic effects

in the pulse, the plasma is accelerated. The normal efficiency and Isp of PPT are

7% − 13% and 850-1200 s [4]. Due to the simple structure of PPT, in 1964 the first

PPT application is achieved by the Soviets in Zond-2 spacecraft. After four years, four

PPTs for east-west station keeping is used in LES-6 satellite by the United States.

Other thruster concepts in this group are still being studied and tested in Lab and no

practical application in space. The typical types are Magnetoplasmadynamic Thruster

(MPDT), Electron Cyclotron Resonance Thruster (ECRT) and Helicon Plasma Thruster

(HPT). The MPDT generates plasmas with very high electric current arc and plasmas

are accelerated by the Lorenz force in the electromagnetic field [4, 12]. The capability

of MPDT is the Isp in the range of 1500-8000 s with thrust efficiencies exceeding 40%.

The high efficiency (above 30%) requires very high power lever, larger than 100 kW [7].

Therefore, the MPDT tends to be regarded as a high power propulsion option in order

to generate sufficient force for high specific impulse operation.

The ECRT and HPT are new concepts of EP thrusters. They are electrodeless, which

means there is no anode or cathode in the thruster, so the erosion of electrodes is avoided

and this improves lifetime. Because of the self-neutralization, the neutralizer for ECRT

and HPT is not necessary. The Electron cyclotron resonance thruster, as its name

implies, is ionized and heated gas by the electron cyclotron resonance which depends

on the background magnetic field. The RF waves of the frequency in the microwave

range (GHz) are emitted by the antenna and the quasineutral beam is accelerated by

the magnetic nozzle. The Thrust efficiency of ECRT now is still low, less than 20% and

the Isp can reach to 1000 s [13]. Similarly, the HPT utilizes helicon waves in the MHz

range to generate and heat plasmas and accelerate beams by the magnetic nozzle. The

performance of the ECRT and HPT is currently lower than conventional thrusters, as
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Figure 1.2: Approximate map of power and specific impulse available with different
electric thrusters [1].

these systems are still under development. As the object of study of this Thesis, the

HPT is discussed in more detail in next section.

To conclude this section, Fig. 1.2 shows the comparison of some main thrusters.

1.2. Helicon Plasma Thruster

The Helicon Plasma Thruster (HPT) is a new concept of electric propulsion, which gen-

erates thrust by electrodeless acceleration of plasma [14]. A HPT consists of a cylindrical

(helicon) source, where the plasma is generated and heated by helicon waves, and a mag-

netic nozzle, where the plasma beam is accelerated supersonically [15]. Compared with

best known types of thrusters, such as ion thrusters and Hall effect thrusters, this tech-

nology is expected to yield improvements on lifetime, simplicity of design, throttleability,

capability of using different propellants, and compactness [3, 14, 16, 17].

Fig. 1.3 shows the main parts of the HPT. The helicon source system is made up of

a dielectric cylindrical vessel, where the plasma is produced, an external RF antenna

wrapped around the column and a set of external coils to produce the applied magnetic

field [15]. The cylinder chamber is made of a dielectric material, such as quartz. A gas

feed system is set up at one end of the chamber. The antenna emits electromagnetic

radiation of frequency ω, of the order 1-100 MHz [18]. The plasma is confined radially

by the applied axial magnetic field B0, created by the external coils [15, 19]. In addition,

An external divergent magnetic nozzle is formed by the external coils to accelerate the
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Figure 1.3: Sketch of the physical structure of a HPT

plasma beam outside of the source, in a similar fashion to the way a solid nozzle operates

with a neutral gas [20].

Consequently, four physical processes dominate in the HPT. The plasma-wave inter-

action takes place inside the source leading to the deposition of wave energy into the

plasma. Multiple transport phenomena govern the plasma dynamics there. Two other

distinguished processes take place in the magnetic nozzle (MN): the supersonic plasma

acceleration and its magnetic interaction with the thruster, and the detachment from the

magnetic nozzle further downstream [21]. The four processes are coupled and influence

each other. To understand theses four processes and the influence of each other is the

main task to improve the performance of HPT.

Several prototypes of HPT have been developed by different groups in the world in

order to understand the physical processes and improve performance. Here, three of the

most prominent devices are introduced. A detailed review of existing prototypes and

experiments with HPTs can be found in Navarro’s PhD Thesis [22]. The first prototype

is the Helicon Double Layer Thruster (HDLT), which is built by Charles and Boswell

[23] in the Australian National University (ANU). In the test of this thruster, the power

range 200-800 W is applied and the radio frequency is set to 13.56 MHz for double

loop antenna. The magnetic field is in the range of 100-200 G. In these conditions,

the maximum thrust can reach to 6 mN and the Isp is 800 s [24]. However, the thrust

efficiency is quite low, less than 3%. It may be due to the poor vacuum conditions far

from the space condition.

The other HPT prototype named the mini Helicon Thruster Experiment (mHTX) was

established and tested at the Space Propulsion Laboratory of MIT from 2005 to 2009 [25].

The experiments for mHTX use the power range 700–1100 W and the same frequency

with HDLT for the half-turn helical antenna. The magnetic field 1500-1800 G is applied

in the experiment, much higher than in the HDLT. It obtained maximum thrust up to

20 mN. The specific impulse for argon gas can reach to 2000 s and up to 4000 s for
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nitrogen gas. The thrust efficiency is also higher than HDLT, 20% for argon and 18%

for nitrogen [22, 25].

The third device selected as an example is the High Power Helicon Thruster (HPHT)

built by Winglee group in the University of Washington [26]. To the contrary with

HDLT and mHTX, this experiment uses very high powers, up to 20-50 kW, and low

frequency near 0.5-1 MHz. The antenna is half helical and the magnetic field is about

150 G. Due to the high input power, the obtained thrust is quite high in the range of

1-2 N and the Isp can be achieved in the range 2000-5000 s for different gases. The

maximum reported thrust efficiency is about 50%. Notwithstanding this, independent

confirmation of these figures is still needed.

1.3. Objectives and Thesis outline

The goal of this thesis is to further the understanding of the plasma-wave interaction in

helicon plasma thrusters, which constitutes one of the key processes in the operation of

these devices. This is first approached with an in-depth literature review of the start of

the art, and second, with 0D, 1D and 2D models of the plasma-wave propagation in the

frequency domain. The thesis investigates the influence of the relevant parameters on

the wave propagation and power absorption through numerical simulation, integrating

the models with the finite differences method. Several geometries are analyzed, from a

simplified 1D helicon plasma source to a more relevant helicon thruster inside a vacuum

chamber, including the plasma plume region.

Following these objectives, the structure of the rest of the Thesis is organized as follows.

Chapter 2 contains a literature review of the plasma-wave interaction in the HPT

in past decades. The history, progress and current study in this area are critically

discussed. The theoretical, experimental and numerical investigations in this problem are

introduced in detail. This review constitutes a first element of guidance to understand

the difficulties of the HPT plasma-wave interaction in the rest of the Thesis

Chapter 3 describes the general model of plasma-wave interaction in the HPT. From

the general wave equations, the 0D dispersion relation of helicon waves, the 1D and 2D

cylindrical plasma-wave model are derived in terms of appropriate assumptions.

Chapter 4 demonstrates the 1D cylindrical plasma-wave interaction model in detail

and the corresponding computational code is developed. The truncation of azimuthal

and axial modes in terms of Fourier transform is discussed in this part.
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Chapter 5 contains the full parametric investigation of plasma-wave interaction for

uniform plasmas in a HPT based on the 1D model derived in Chapter 4. It studies

the influence of each parameter on the wave propagation and the power deposition

in different frequency regimes. According to the variation of the plasma resistance, a

general scaling law to guide the design of helicon source is proposed.

Chapter 6 describes the 2D plasma-wave interaction model and the numerical scheme

of the 2D wave code in order to deal with the nonuniformity of plasma density and

magnetic field. The wave propagation and power deposition in the near regime of plasma

plume also include in the study. The quantitative analysis of power density and antenna

impedance show the trends of power deposition.

Chapter 7 summarizes the main conclusion of this thesis and proposes the future lines

of reseach.





Chapter 2

Plasma-wave Interaction in

Helicon Sources: Literature

Review

2.1. The early history

Helicon discharges have been known since the last decades to produce nearly fully ionized

plasmas of over 1019 m−3 density with the appropriate power supply [27]. Due to this

remarkable property, they have been used as plasma sources in diverse areas, from

material processing to space propulsion [18]. The high efficiency of helicon sources is

attributed to the distinctive characteristics of helicon waves. The first researcher using

helicon waves to produce and maintain a plasma discharge was Boswell [28]. In 1970,

Boswell made a small helicon discharge with a new type of antenna (named Boswell

antenna) [29]. In the experiment, a very high plasma density up to 3 × 1019 m−3 was

measured, showing a bright blue column in the center of the plasma [30].

Helicon waves are right-hand polarized waves that propagate in the presence of a mag-

netic field for wave frequencies between the ion and electron cyclotron frequencies,

ωci < ω < ωce [18]. This special electromagnetic wave propagating in magnetized

plasmas was first named ‘helicon’ in 1960 by Aigrain, who studied these waves in semi-

conductors [31]. The word describes the spiral nature of their waveforms due to the

circular polarization, which means the the electric field rotates as the wave propagates

along the magnetic field line tracing out a helix [18, 32]. The early theoretical studies on

helicon waves in plasmas were due to Legendy [33, 34], Klozenberg et al [35] and Bleven

[36–38]. The Klozenberg paper had the largest influence in the early stage because it

derived the theory of plasma wave propagation in an insulated cylinder for a uniform

11
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plasma profile [35]. In the experimental area, helicons were first observed in the atomic

energy laboratory at Harwell, UK, by Lehane and Thonemann, who implemented an

experiment to test the theoretical predictions of the Klozenberg paper [39]. The experi-

ment was carried out in a glass tube of 10 cm diameter and 100 cm long. The background

magnetic field B0 was about 500 G, the pressure of xenon gas was 10− 70 mTorr, and a

3-kW RF generator was used, operating at about 15 MHz. This experiment confirmed

the theory in Klozenberg paper and covered all important features of the waves, their

dispersion, attenuation, and field structure [39].

After the 1970s, large number of studies and experiments on helicon waves have been

carried out [18, 27]. The first extensive paper which describes the helicon wave propa-

gation near the lower-hybrid frequency was written by Boswell [29] and the basic theory

of the wave propagation in uniform and non-uniform plasmas was well developed by

Chen [40, 41]. Then, the dispersion relation, antenna types, and the mechanisms of

power absorption have been investigated extensively during the last two decades. Many

researchers and groups in different countries have been engaged in this area to solve the

open problems of helicon sources.

2.2. The dispersion relation

For a typical cylindrical RF discharge, the helicon wave coupling with the plasma needs

to satisfy some conditions. The experimental results obtained by Degeling [42] and

Ellingboe [43] in the large helicon source device WOMBAT show that the helicon plasma

source can operate in three distinct modes: capacitive mode, inductive mode and helicon

mode. The mode transition can be observed with increasing power or magnetic field,

and a density jump occurs from one mode to another [43]. Therefore, it is necessary

to establish the dispersion relation to describe the plasma-wave interaction in helicon

sources.

Helicon waves are low frequency whistler waves confined to a cylinder with a coaxial

magnetic field B0. For the simplest case, the dispersion relation in a uniform bounded

plasma has been derived by Chen [40]. Considering the wave is confined to a long

cylinder of radius rp, the linear relation for a specific mode is [18, 40]

3.83

rp
≈ ωn0eµ0

k‖B0
∝ ωn0

k‖B0
(2.1)

where n0 is the plasma density, k‖ is the parallel wavenumber, and e and µ0 represent

the electron charge and the magnetic permeability in vacuum, respectively. This relation

shows that the magnetic field scales proportionally to the plasma density and frequency
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for a given mode. Considering a finite cylinder, it also involves the length of the cylinder

L in this linear relation because it is related to the parallel wavenumber k‖ [44]. In

addition, a similar dispersion relation was obtained by Boswell using the generalized

Ohm’s law in unbounded plasmas [45]. The right-hand polarized waves propagate in

different regimes in general, giving rise to Compressional Alfven waves (ω < ωci), Helicon

waves (ωci � ω � ωce) and Electron-Cyclotron Waves (ω ∼ ωce) [45].

The linear relation of Eq. 2.1 is obtained in a simple situation, with the non-uniformity

of plasma density, the electron inertia and ion motion not taken into account [40]. How-

ever, this linear relation, especially the magnetic field proportionality to the plasma

density, has been proved correct in more complex arrangements. The linear relationship

between n and B0 at high magnetic fields has been proved in experiments in 1992 [46].

At low magnetic fields, the plasma density scaling does not vary monotonically with

B0. Instead a density peak at low field of the order 50G has been observed. This phe-

nomenon attracted the attention of many researchers. A number of authors investigated

it experimentally and numerically [47–51]. In the recent experiments by Lafleur [51],

it was found that the peak density still follows the linear relationship with magnetic

fields for different conditions of RF power (50 W < P0 < 400 W) and gas pressures

(0.04 Pa < p0 < 0.4 Pa). Also, the linear dependence of plasma density on the magnetic

field is both experimentally and numerically found to be valid when the applied mag-

netic field is near but lower than the magnetic field corresponding to the lower hybrid

frequency [52–54].

In addition, that linear relation is satisfied by the plasma resistance in uniform plasmas

[55]. The contour plots of the plasma resistance versus the magnetic field and plasma

density from numerical simulations show the linear dependence clearly [55–57]. And the

evidence in experiments was also obtained by Lafleur [51]. The measurements within the

matching network/antenna device show local peaks of the plasma resistance, satisfying

the linear relation between n and B0. The local peaks of resistance are well consistent

with the observed density peaks, indicating the high efficiency of power transfer between

the antenna and plasma.

2.2.1. The Trivelpiece-Gould mode

As we mentioned in the previous section, the electron inertia is neglected in the dispersion

relation when ω � ωce. For frequencies as low as 0.1ωce, the electron inertia has to be

taken into account [58] i.e. the electron mass is taken as nonzero. Therefore, a second

branch of waves is excited along with the helicon branch. It is an electrostatic wave

highly damped in a narrow layer near the plasma boundary [18, 59]. Klozenberg [35]
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and Boswell [60] first predicted that this wave would exist in helicon plasmas and it is

now called the Trivelpiece-Gould (TG) mode [61].

The dispersion relation and the characteristics of TG modes have been investigated

theoretically and experimentally [18]. A biquadratic equation for the wavenumber con-

sidering the electron mass has been obtained to describe the dispersion relation of he-

licon plasmas [58, 62, 63]. The two pairs of solutions of this equation represent the

two branches of waves, helicon mode and TG mode [62]. The TG mode has a larger

perpendicular wavenumber k⊥ than the helicon mode and hence shorter wavelength. In

addition, it is stated that the TG mode only can be excited in bounded plasmas, al-

though whistlers can propagate in unbounded plasmas [58]. That is because the helicon

mode and TG mode are considered as eigenmodes of a plasma column caused by the

boundary condition.

The characteristics of TG modes have been treated theoretically in detail by Shamrai

and Taranov [55, 62, 64, 65]. Three wave propagation regimes to waves), the HELICON

LAND (helicon mode and TG mode, coupled together) and the TG-LAND (opaque to

helicon mode) [62]. To analyze a simple energy transfer model, it is concluded that the

TG mode is the main channel of energy absorption [62, 66]. That is because the TG

mode keeps almost all the energy in the electron motion and so it is strongly absorbed

via collisions [66]. In addition, the concepts of resonance and anti-resonance are used

in the wave propagation by Shamrai [64]. It is considered to be an intrinsic property

for a bounded plasma. It explains how the waves influence the power deposition and

lead to the oscillation of the plasma resistance, when varied with the magnetic field or

plasma density [66]. Furthermore, the mode conversion between the helicon mode and

TG mode is found to be an important power absorption mechanism to explain the high

efficiency of the helicon discharge [65].

The study of Borg [58] reveals that the antenna-wave coupling cannot be improved

significantly by the finite electron mass effects when ω/ωce < 0.5 and the cavity resonance

of the TG mode could be difficult to excite in experiments. In the previous part, the

linear relation based on a simple model has been discussed. It is mentioned that the

linear relation is satisfied in practice even if the electron inertia is not taken into account.

Computations by Chen [63] show that the radial profile of the helicon mode is not affected

by the presence of the TG mode since this is highly damped in the bulk region of plasmas

and its rapid radial variations is difficult to detect. Therefore, measurements of the wave

fields away from the surface is expected to reveal the helicon mode. This may explain

why the early theory can predict the helicon wave with small errors [63].

As we said, the experimental investigation of TG mode is difficult. The TG mode has

not been measured directly because this mode tends to be localized in a very narrow
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layer near the plasma boundary. Hence, large efforts have been made to find it in the

laboratory. Blackwell et al. [67] provide evidence of the existence of TG mode via

measuring the current density J(r) in the plasma. Analyzing the wave equations, it is

found that the current density is more sensitive to the TG mode. Hence, the TG mode

can be verified by measuring the variation of current density. The radial profile of J(r) is

measured by the B-dot probe in experiments and the ‘TG wing’ near the boundary has

been detected, thus proving the existence of the TG mode [67]. Another experimental

studies of TG modes were carried out by Shinohara [68]. They give evidence that the

TG waves generated by the mode conversion of helicon waves in a highly collisional

plasma induces a strong plasma current near the plasma edge and the skin effect arises

due to strongly damped TG modes.

2.2.2. Non-uniform plasma density

The non-uniformity of plasma density in helicon discharges is a central aspect that

influences the wave propagation and power deposition [41]. In the early stages, the

first experiment on helicon waves by Lehane and Thonemann [39] recognized that the

non-uniformity may be the reason to cause the difference between the early theory and

experimental results. Blevin and Christiansen [36, 38] treated it briefly theoretically.

The dispersion relation for non-uniform plasmas was discussed [36]. In the 1990s, Chen

and his colleagues [41, 69, 70] investigated this problem in more detail. The numerical

results showed that there is a marked difference between m = +1 and m = −1 azimuthal

modes in a non-uniform plasma due to a difference in sign of the electron drift along the

density gradient [41]. The radial inhomogeneity of the plasma density results in the sup-

pression of the m = −1 mode [71, 72]. The density radial profiles varying from constant

to near-Gaussian were studied to examine the influence on the wave propagation. A

steady progression of increasing and narrowing of the short axial wavelength peak and

reduction of the long wavelength peak was found for different n(r) [70]. Considering

the effect of the TG mode for the high field, non-uniform plasmas show that TG waves

dominate the power absorption [56, 70].

Another exploration of non-uniformity of plasma density in helicon discharges led to a

new type of excited mode. Breizman and Arefiev [73] developed the theoretical analysis

of helicon waves for inhomogeneous plasmas and discovered the radially localized helicon

waves (RLH) propagating in helicon plasmas due to the plasma gradient. In a plasma

column, the potential well formed due to the radial density gradient and allowed radially

localized solutions in low frequency ranges. Hence, it caused the RLH excited mode.

The theoretical and experimental evidences of RLH mode were presented by Guangye

et al [74]. It confirmed that the RLH waves can play a major role in helicon plasma
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sources. The power deposition of RLH modes gives a larger contribution than TG mode

[74]. In addition, Lee [75] and Chang [76] also give the evidence of the existence of RLH

modes. Moreover, they found that the ion-accoustic-instability may be the reason to

explain that only using larger collision frequency in numerical simulations, these agree

well with experimental results [75, 76].

2.2.3. The lower hybrid frequency range

The helicon wave propagating near the lower hybrid frequency in plasmas has been much

studied since the 1970s [77, 78]. It plays an important role in space plasmas and fusion

research due to the close relation to the ion heating and the lower-hybrid drift instability

[79]. In the 1980s, the investigation of the influence of the lower hybrid frequency in

helicon plasmas was studied by Boswell and Zhu [29, 80]. They found that a very dense

plasma can be produced near the lower hybrid frequency with helicon waves. After that,

the extensive studies on the lower hybrid frequency was carried out by many researchers

[52, 81–83].

The lower hybrid frequency ωlh is a resonant frequency between the electron cyclotron

frequency ωce and the ion cyclotron frequency ωci and has the form of [61]

ωlh =

[
1

ωciωce
+

1

ω2
pi + ω2

ci

]−1/2

≈
√
ωciωce (2.2)

where ωpi represents the ion plasma frequency. Near the lower hybrid frequency, the

effect of ion motion cannot be neglected. The general dispersion relation shows that

the wavenumber become infinite when the frequency is near ωlh and the resonance

occurs [53]. It is expected to be beneficial for the power deposition. The experimental

results confirmed this prediction. The experiments by Yun [52, 84] tested the frequency

dependence of helicon plasmas for different magnetic fields and various gases. It is shown

that the optimum frequency yielding the highest plasma density is near the lower hybrid

frequency and it suggested that the lower hybrid resonance heating may be important

in helicon sources [52]. However, the optimum frequency is not exactly equal to ωlh but

slightly lower. It may be explained by the Doppler shift effect [52].

In order to study the role of the lower hybrid frequency in helicon discharges, Cho

investigated the dispersion relation in detail and gave the self-consistent results coupling

the wave equations to the global balance equations [53]. He found that there are many

eigenmodes when the operation frequency is higher than ωlh, but there are a few isolated

eigenmodes for frequencies lower than ωlh. Furthermore, there is always an eigenmode

near the lower hybrid frequency. This behavior leads to the variation of the resistance



Chapter 2. Plasma-wave Interaction in Helicon Source: Literature Review 17

with the frequency. Specifically, the resistance usually has a large peak near the lower

hybrid frequency depending on the plasma density [53]. The self-consistent results show

that the abrupt density jump occurs near the lower hybrid frequency. In addition, it is

confirmed that the linear relation between the density and the magnetic field is valid

when ω > ωlh. This rule is not valid for ω < ωlh probably due to the sharp decrease of

the resistance in this region. These conclusions are also confirmed in the experiments

by Kwak et al [54].

Additional experimental results obtained by Balkey [82] indicate that the maximum

electron density is measured when the rf frequency is near the lower hybrid frequency. It

is consistent with the previous results by others. However, the maximum ion temperature

is measured when ω < 0.7ωlh. It is suggested that the mechanism of power deposition for

ions and electrons in helicon sources is distinct. It is not necessary for helicon sources

to maximize the electron density and the ion temperature simultaneously [82]. And

when studying very light ion mass gases such as hydrogen, Mori found that the optimal

frequency can be away from ωlh in a non-uniform magnetic field as long as the RF power

is large enough [83].

2.3. The power absorption mechanisms

The mechanisms of power deposition has been considered as a huge challenge in un-

derstanding helicon plasmas by all the researchers. They have been discussed for many

years since the high efficient ionization of helicon discharge was discovered and it is

still not clear in the present. The mechanism of wave dissipation mainly has two chan-

nels including the collisional damping (particle-particle interaction) and non-collisional

damping (wave-particle interaction) [66]. Both these two damping ways can be linear

or nonlinear. The collisional damping was expected to mainly heat electrons. However,

the experiments by Boswell [29] in 1984 indicated that the collisional damping was too

weak to explain the overall power deposition in the helicon source. The applied collision

frequency should be 1000 times larger than the Coulomb collision frequency in order to

get the consistency between the calculated wave field and the experimental results [29].

Therefore, the Landau damping as the wave-particle interaction channel was proposed to

explain this phenomenon by Chen [40]. He established the theoretical model to demon-

strate that the Landau damping could play an important role in the power deposition of

helicon plasmas. It was considered to increase the effective collision frequency because

the Landau damping could heat the tail of the electron population where the electron

thermal velocity was close to the phase velocity of the helicon wave. This hypothesis

was accepted by numerous authors [85, 86] and was supported by the experiments of
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Ellingboe et al [87] which measured the fast electrons. However, the phase velocity of

helicon waves varied in a wide range of magnitudes in different size of helicon sources.

Hence, it is difficult for the Landau damping to be an universal mechanism of power

deposition [66]. Then, experiments using a gridded energy analyzer have been carried

out by Chen and Blackwell [88]. They found that Landau-accelerated electrons are too

sparse to explain the high ionization efficiency and they concluded that the hypothesis

of Landau damping as the main mechanism of power deposition was incorrect [88]. In

addition, the antenna loading and plasma ionization was found to be the evidence for

the mechanism of TG mode coupling near the plasma boundary.

Although the hypothesis of Landau damping has now been rejected by Chen, the in-

fluence of wave-particle interaction on the power deposition cannot be fully ruled out.

The nonlinear mechanism called wave-particle trapping was proposed by Ellingboe and

Boswell [87]. The experimental results implied that the electrons would be trapped in

the longitudinal electric field provided that the electrons move in synchronism with an

intense helicon wave [87]. Thus, the wave energy is transferred to the electrons and leads

to the high ionization [66]. A further study on the wave-particle trapping was carried out

by Degeling et al [42]. A simple model was established to estimate the electron thermal

velocity which is most likely to ionize in a Maxwellian distribution. It is found that this

estimated electron velocity is consistent with the helicon wave phase velocity measured

in the experiments [42]. This strong correlation suggests that electrons are trapped by

the helicon wave when the thermal velocity in the Maxwellian distribution are slightly

smaller than the wave phase velocity and then accelerated by the helicon wave to join in

the population with the velocity slightly faster than the wave [42]. However, this simple

model was not complete. The applied magnetic field was not taken into account and

only the longitudinal component of electric field Ez was considered in the model.

Therefore, the above mechanisms of wave damping are still not convincing as the reason

of high efficiency of helicon sources. With the discussion of the second branch of Waves

called the TG mode, the mechanism of mode conversion of helicon mode to the TG mode

was considered as the main mechanism of plasma wave interaction by Shamrai [65, 66].

As it was mentioned in the previous section, the TG wave has very short wavelength.

It was strongly localized near the plasma edge and rapidly damped in the bulk region

[55]. To the contrary, the helicon mode has long wavelength and is weakly damped in

plasmas. Consequently, the conversion of helicon wave power to TG power is thought to

occur [62]. According to the theory by Shamrai, the surface mode conversion is the most

universal mechanism for rf power absorption. It arises near the plasma edge with the

insulating wall and can be valid at any magnetic field [65]. The bulk mode conversion

occurs in the bulk plasma when the wavelengths of helicon and TG waves are close in

magnitude. The absorption due to this conversion is high only at low magnetic field,
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because the required plasma density is too high to obtain it in the high magnetic field

range [65]. Although the theory of mode conversion has been developed completely

by Shamrai, it is difficult to confirm it in the laboratory, because the TG mode is not

easy to detect in the experiments and only can be measured indirectly [67]. Another

proposal such as the radially localized helicon wave (RLH) due to the gradient of plasma

density is given by Breizman and Guangye [73, 74], as already mentioned. They found

that the RLH dominates the contribution of power deposition in their experimental and

numerical results [74].

In summary, the above studies of the mechanisms of power deposition in helicon sources

explain some partial phenomena or situations happening in practice. However, the

general principle of power deposition and plasma-wave interaction is still not confirmed.

It need more developments in theory and in the technology of experiments in the future.

2.4. Antenna types

The antenna which is used to provide the rf power for ionizing and heating plasmas

plays a significant role in helicon discharges [89]. The different antenna types in helicon

discharges have been much discussed theoretically [66, 70, 89] and experimentally [46,

90]. In order to improve the efficiency of the helicon discharge, the principle of plasma-

wave coupling for different antenna types and the optimization of antenna design are

main issues for researchers [89]. The most commonly used antenna types in the helicon

plasma system include the Nagoya III antenna [46, 52], the double saddle coil [29], the

helical antenna [90, 91] and the single loop antenna [92, 93].

(a) Nagoya III (b) Double saddle (c) Half-turn helical (d) m = 0 loop

Figure 2.1: Different types of antennas [70, 89, 94].

The Nagoya III antenna shown in Fig. 2.1(a) is especially effective in the plasma-

wave interaction. It consists of two circular loops on either side connected by straight

wires. Due to this sturcture, it was found to excite large rf fields in the plasma by

Watari [95] in 1978, which studied the rf plugging of mirror machines [18]. The large

field induced by Nagoya III antenna in the plasma- wave coupling has been explained

by Chen [46]. It is due to the amplification of the rf field when creating the electrostatic

fields by Nagoya III antenna [46].
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The double saddle coil antenna in Fig. 2.1(b), also called Boswell antenna, is a

modified Nagoya III antenna [46]. The circle loop in each side is split into two semicircles.

It was first used by Boswell [29] in helicon plasmas to produce dense plasmas. The

advantage of this antenna is that the antenna can be easily split around a cylindrical

discharge tube without breaking the vacuum [18].

The helical antenna shown in Fig. 2.1(c) is another modified Nagoya III antenna and

was first proposed by Shoji [91, 96]. Here the straight wires of the Nagoya III antenna

are twisted into helices. Because of the direction of the helix, the right-hand and left-

hand helical antenna are defined naturally. The helical antenna is attractive because it

is directional. The wave energy propagates mainly in one direction along the magnetic

field [89].

Them = 0 loop antenna in Fig. 2.1(d) is a simple loop structure. It is an azimuthally

symmetric antenna and only them = 0 mode can be excited in practice. On the contrary,

all mentioned antennas above are azimuthally anti-symmetric, and so they excite the

waves with odd azimuthal numbers, primarily the m = ±1 modes [66].

Each type of antenna has been investigated experimentally and numerically. It is con-

cluded that for all anti-symmetric antennas the m = +1 mode is better preferred than

the m = −1 mode [90, 97]. And it suggests that the m = +1 mode has greater con-

tribution to the power absorption in helicon plasmas [98]. This conclusion is confirmed

by numerical studies [70, 89]. The m = +1 mode provides larger resistance than other

modes in most non-uniform density cases. And for helical antennas, the right-hand

helical antenna is more effective than the left-hand one and can obtain higher plasma

densities [90]. The reason is not clear yet [18]. Moreover, the half-wavelength antenna

being better than a full-wavelength antenna in experiments opposes the expectation of

researchers [99]. This is also still not well understood.

In addition, the parametric investigation and comparison has been discussed in detail

[70, 89, 94, 100, 101]. The antenna impedance, especially the real part or resistance,

is considered as the main parameter to evaluate the antenna performance [89]. To

summarize the conclusions, the general agreements for these four antenna types are

that the m = 0 loop antenna has quite different behaviors [66, 101] and much poorer

performances [89, 94] than others. The rest three types are comparable and depend on

specific situations [89] although more evidence is provided to support helical antennas.

In summary, the parametric analysis and the understanding of the operation of helicon

plasma sources is, at present, still incomplete. In order to obtain the precise conclusion,

the fully parametric investigation is necessary to carry out and discuss the relation

among them. This is one of the objectives of the present Thesis.
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2.5. Simulation tools

Simulation tools based on the plasma-wave interaction model in helicon plasmas have

been widely developed by numerous authors [18]. Most efforts approach the problem by

solving Maxwell wave equations with the (linear) plasma dielectric tensor and suitable

boundary conditions. The Fourier transform both in time and space can be applied

to simplify the wave equations. In helicon plasmas, the Fourier transform in time is

commonly used. Hence, all quantities in the plasma are converted to time harmonics

as ∼ exp(iωt) [102]. Application of the Fourier transform in space depends on the

dimensionality of the spatial configuration. Both 1D and 2D plasma-wave models are

used in the studies. In addition, the different forms of Fourier expansion are considered

for finite or infinite cylinder geometry [103].

In the early stage of this field, a simple plasma-wave model was introduced by Klozenberg

[35] using the basic dispersion relation of cylindrically uniform plasmas. It has been

checked to have a good agreement with experimental results in specific situations [39].

Then, Boswell [29] and Chen [40] further developed that theory. The helicon wave

propagating in uniformly bounded plasmas was considered and the wave pattern of a

single mode was described in more detail by Chen [40]. However, these early theories

are incomplete and insufficient to analyze the problem precisely. The electron inertia,

the plasma non-uniformity and the ion motion were not taken into account [40].

The 1D radial plasma-wave model in finite cylindrical helicon sources for uniform plas-

mas was introduced by Fischer et al [104] and Shamrai et al [55]. The ideal conducting

boundary condition was considered and yields the wave eigenmodes [55]. Then, an an-

alytical solution can be obtained for uniform plasma density and magnetic fields. This

model considers the effect of electron mass so the TG mode is included. Furthermore,

the ion motion can be included in the model by adding the ion component in dielectric

tensor. Then, Cho also worked with that model [59] and improved it with a numerical

integration method to deal with the radially non-uniform density profile [71, 105]. A

similar code named HELIC has been implemented by Arnush and Chen [18, 70]. In

early years, this code was used to deal with the infinite cylinder case. Then HELIC was

improved to be more fuctional (and a friendly user interface) [18]. It can be applied

to radially uniform or nonuniform cases for any cylinder length. Besides that, a sim-

ulation code, which was an advanced version of the original ANTENA code [106], was

introduced by Mouzouris and Scharer [94]. They found that the electron heating was

strongly influenced by the density profiles [94]. Melazzi et al [107] developed a new 1D

electromagnetic solver SPIREs using the finite difference method. It has high efficiency

and accuracy, demonstrated through numerous tests.
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All 1D codes we mentioned above are based on a vital assumption, the ‘zero- thickness

antenna approximation’ [107]. It assumes that the antenna wire is very thin and thus

the thickness of antenna wire can be neglected. This assumption, very widely used,

introduces singular lines inside the physical domain, so it is only beneficial in certain

configurations, as we will see in the Thesis. An important issue we will find of the

zero-thickness antenna is that some components of the wave fields are divergent in

the location of the antenna and the antenna reactance cannot be obtained correctly

[66, 108]. In order to solve this problem, some approaches were proposed. A 1D plasma

kinetic code named UFEM, which used the finite element discretization of RF fields,

was developed by Kamenski and Borg [103]. The thickness of antenna is considered in

this code although the radial component of current density is still imposed rather than

computed. It provides a reasonable antenna reactance. Another Code ADAMANT

proposed by Melazzi and Lancellotti [109] introduces a full-wave approach which is

based on a system of coupled surface (SIE) and volume integral equations (VIE) for

the computation of the current distribution on the antenna conductors. Therefore, the

exact current density and reactance of antenna can be obtained [101, 109].

In 1D plasma-wave model, only radial non-uniformities can be taken into account. How-

ever, the axial effects are very important and strongly influence the helicon discharge.

Hence, developing more general models became necessary. The 2D plasma-wave model

has been considered by several researchers. Takechi and Shinohara [110] presented the

results on the study of 2D convergent and divergent magnetic fields in helicon plasmas

with using the Transport Analyzing System for tokamaK/Wave analysis (TASK/WA)

code developed by Fukuyama. The 2D non-uniformity including density and magnetic

fields was taken into account in this code. The computational results were compared

with the experimental data and obtained the consistency. Mouzouris and Scharer [111]

developed a 2D wave code MAXEB which includes not only the collisional damping

but Landau damping to simulate the inhomogeneous plasmas. Both uniform and non-

uniform plasma density and magnetic field can be treated in this code. It is found

that the collisional damping is the dominant heating mechanism for moderate pressures

(p > 2 mTorr) and higher densities (ne > 2 × 1018 m−3) [111]. In comparison, the

Landau damping becomes important at low pressure (p < 2 mTorr) and heats the elec-

trons mainly at the surface where the resonant electrons have velocities near the wave

phase velocity [111]. Kinder and Kushner [112, 113] developed a two-dimensional Hybrid

plasma Equiqment Model (HPEM) to study the power absorption and plasma transport

in helicon sources. The Electromagnetics module in this self-consistent model can deal

with the 2D applied magnetic fields. However, this model mainly focus on the pure heli-

con mode and neglect the influence of TG mode [114]. They involve the influence of TG

mode in a later paper [112]. The electrostatic term is only approximated by a damping
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factor. Similarly, the other self-consistent model which can deal with 2D non-uniform

properties and involve the influence of TG mode are introduced by Bose et al [115]. It is

concluded that the propagation of waves is enhanced in the downstream with increasing

the electromagnet coil current ratio (CCR) and this is accompanied by a increase of

power absorption in the downstream. In addition, Guangye et al [74] have implemented

another 2D plasma-wave code using finite difference discretization. Four staggered grids

from Yee’ s scheme [116] are applied to discretize the EM field. This code has a good

agreement with experimental results and has been used to study the radially localized

helicon wave (RLH) [74–76].

2.6. Typical experimental devices

Helicon discharges have been developed for several decades and a number of helicon

sources were established by numerous groups and researchers. An in-depth review of

helicon source and helicon thruster experiments was recently presented in Navarro’s PhD

Thesis [22]. Next, some relevant experimental devices for helicon plasmas are introduced

briefly.

As the earliest group of studying helicon discharges, the Plasma Research Laboratory of

the Australia National University, led by Boswell, has established some typical helicon

plasma devices. The BASIL machine is the one built in the early stage [117]. It is 4.5

cm in diameter and 160 cm long. The external magnetic field can be up to 1600 G and

RF power up to 5 kW at 7 MHz [18]. Then, the vacuum chamber called WOMBAT

was built to study the helicon plasma [29]. This large chamber is 90 cm in diameter and

200 cm long. It can be used to test not only helicon sources but also space thrusters.

The third machine MAGPIE shown in Fig. 2.2 is a linear plasma-material interaction

machine, which was designed for studying basic plasma phenomena [76].

In UCLA (University of California, Los Angeles), Chen and his colleagues developed

different sizes of helicon sources. A linear device with 5cm diameter and 170cm length

was the first helicon device in UCLA [18]. The early experiments of Chen’s group were

carried out in this machine [119]. Then, a larger device with 10 cm diameter and 108

cm long was built by Blackwell [120]. The evidence of the existence of the TG mode

was obtained in this large device [67].

In West Virginia University, the interesting results are mostly obtained in a machine

called HELIX. It consists of a Pyrex tube as a helicon source with 157 cm long and

10 cm diameter, a small metal chamber with 15 cm diameter and a large chamber as

expansion region, with 450 cm length and 200 cm as inner diameter. In the experiments



Chapter 2. Plasma-wave Interaction in Helicon Source: Literature Review 24

Figure 2.2: The schematic of MAGPIE [118].

Figure 2.3: The schematic of HE-L [123]

by Balkey et al [82], the perpendicular ion temperature was measured by a laser induced

fluorescence (LIF) system in this device. It was found that the mechanisms of power

absorption for ions and electrons are distinct [82]. Another helicon device called Mad-

HeX was built by Scharer’s group in Wisconsin University–Madison [121]. It is 10 cm

diameter and about 220 cm long. To compare the experimental results from this device

with the numerical results, the properties of helicon plasmas in non-uniform magnetic

fields were investigated [121]. In the University of Texas-Austin, a helicon source was

built to study the plasma- wave interaction [122]. It consists of a Pyrex tube, with 6 cm

in diameter and 30 cm in length, and a cylindrical stainless vacuum chamber with an

internal diameter of 9.5 cm and a total length of 90 cm [74]. The results on the study

of RLH waves were obtained in this machine. It is shown that the RLH wave plays an

significant role in the power absorption of helicon plasmas [74, 75].

In Germany, a typical helicon device HE-L shown in Fig. 2.3 was built by Kraemer’s

group [98] in Ruhr University Bochum. The helicon section consists of a quartz tube

with 14.6 cm diameter and 110 cm long surrounded by a set of magnetic field coils. The
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Figure 2.4: The schematic of VINETA [126]

plasma produced by the source is ejected into an aluminum cylinder chamber with a

diameter of 24 cm and a length of 100 cm. The experiments on power absorption and

parametric instability of helicon waves are carried out in this machine [98, 124]. It is

concluded that the positive azimuthal modesm = +1,+2 have predominant contribution

to the power absorption of rf power [98]. And they first evidenced the close relationship

between the electrostatic fluctuations excited by parametric instability and the helicon

wave absorption [124]. In addition, another large helicon machine called VINETA in

Fig. 2.4 was built in the Max Planck Institute for Plasma Physics at Greifswald [125].

It consists of four modules, and each module has a length of about 100 cm. It allows to

create a linear plasma column with overall length of 400 cm and a diameter larger than

20 cm.

Lastly, two large helicon machines were developed in Japan. The first one called LDD

is built at Kyushu University [127]. It is 40 cm diameter and more than 126 cm long.

The second machine LHPD is located at the Institute of Space and Astronautical

Science (ISAS) [128]. The inner vessel diameter and axial length are 74 cm and 486

cm, respectively. The comparable experiments in these two devices are carried out by

Shinohara et al [127]. They found that the standing wave-like patterns of the excited

EM field would be manifested by reducing the ratio of the diameter to the axial length

of helicon source [127]. In South Korea, a device was built at Korea Advanced Institute

of Science and Technology (KAIST). The discharge tube is 25 cm in diameter, 60 cm

in length and the stainless steel chamber is 30 cm in diameter, 40 cm in length. The

study of the influence of lower hybrid frequency on the helicon discharge was carried

out by Yun et al [52, 84]. It was found that the optimal frequency which can produce

the highest plasma density is near the lower hybrid frequency and proportional to the

external magnetic field and inversely proportional to the gas mass [52].





Chapter 3

General Plasma-wave Interaction

Model

In the present Chapter, a general wave model in cold magnetized plasmas introduced

by many researchers [102, 129] is described to give a general framework to analyze the

Helicon and companion waves [102, 130], discussing the different parametric regimes

for wave propagation and characterization. Based on this discussion, the two- dimen-

sional(2D) wave model and one-dimensional(1D) wave model suitable for practical HPT

configurations are derived with reasonable assumptions and boundary conditions.

We begin in section 3.1 giving the general Maxwell equations for linear waves. Then, the

0D dispersion relation in uniform plasmas and wave propagation regimes are discussed

in section 3.2. The 2D and 1D plasma-wave interaction model are established in section

3.3 and 3.4, respectively. In addition, the power deposition and antenna impedance is

investigated in section 3.5.

3.1. Maxwell equations and dielectric tensor

To understand the wave properties, we limit the study to linear waves, of single frequency

ω propagating into a plasma where a stationary magnetic field B0 is applied. The time-

varying electric field E and magnetic field B satisfy the Maxwell equations

∇×E = −∂B
∂t

(3.1)

∇×B = µ0

(
ε0
∂E

∂t
+ j + ja

)
(3.2)

27
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where µ0 and ε0 represent the permeability and permittivity in the vacuum, respectively,

ja is the external current density and j is the current density of the plasma,

j =
∑
k=i,e

nkqkuk (3.3)

where the sum is over each plasma species k. We will assume that the plasma is consti-

tuted of electrons and single-charged ions. The density, velocity and charge of species

are represented by nk, uk and qk, respectively.

Then, the linearized momentum equation for cold ions and electrons at rest, under the

assumption of small oscillations, is given by [102]

mk
∂uk
∂t

= qk (E + uk ×B0)− νkmkuk, (3.4)

where B0 is the static magnetic field, νk is an effective collision frequency and mk is the

species mass.

Next, plasma magnitudes are assumed to vary with time as exp(−iωt). Hence, the

Fourier temporal transformation can be written as

∂

∂t
→ −iω

Using this relation, Eq. 3.4 can be expanded in each component of Cartesian coordinates

− iωuxk =
qk
mk

Ex + ωckuyk − νkuxk (3.5)

− iωuyk =
qk
mk

Ey − ωckuxk − νkuyk (3.6)

− iωuzk =
qk
mk

Ez − νkuzk (3.7)

Therefore, the velocity is Related algebraically to the electric field. Substituting into

3.3, the tensorial Ohm’s law relating the plasma current to electric field is established

as [129],

j = ¯̄σE (3.8)

where ¯̄σ is the conductivity tensor and has the form

=
σ =


σ1 σ2 0

−σ2 σ1 0

0 0 σ3

 (3.9)
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and each component of ¯̄σ can be given as

σ1 =
∑
k=i,e

q2
knk
mk

νk − iω[
(νk − iω)2 + ω2

ck

] , (3.10)

σ2 =
∑
k=i,e

q2
knk
mk

ωck[
(νk − iω)2 + ω2

ck

] , (3.11)

σ3 =
∑
k=i,e

q2
knk
mk

1

νk − iω
(3.12)

Then, Maxwell equations become

∇×E = iωB (3.13)

∇×B = µ0(−iωD + ja) (3.14)

where the electric displacement field D satisfies

D = ε0E + i
j

ω
≡ ¯̄εE (3.15)

and the permittivity tensor, bearing all plasma properties, satisfies [131]

¯̄ε ≡ ε0 ¯̄κ, ¯̄κ = ¯̄I + i
¯̄σ

ε0ω
(3.16)

where ¯̄κ is the dielectric tensor and the identity matrix ¯̄I is the contribution of the

displacement current; the plasma response to the waves is described by the conductivity

tensor ¯̄σ.

Assuming provisionally that B0 is parallel to 1z everywhere, the normalized dielectric

tensor takes the form [102, 129]

=
κ =


κ1 iκ2 0

−iκ2 κ1 0

0 0 κ3

 (3.17)
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where each component can be written as

κ1 = 1−
∑
k=i,e

ω2
pk (ω + iνk)

ω
[
(ω + iνk)

2 − ω2
ck

] , (3.18)

κ2 = −
∑
k=i,e

skωckω
2
pk

ω
[
(ω + iνk)

2 − ω2
ck

] , (3.19)

κ3 = 1−
∑
k=i,e

ω2
pk

ω (ω + iνk)
(3.20)

where sk is the sign of the electric charge and

ωck =
qkB0

mk
, ωpk =

√
q2
knk
ε0mk

(3.21)

are the cyclotron and electrostatic frequencies (of species k = i, e), respectively, which

depend on the applied magnetic field and the plasma density.

3.2. The (0D) dispersion relation for a uniform plasma

After deriving Maxwell equations and dielectric tensor, the dispersion relation is dis-

cussed here. The dispersion relation is the equation relating the wavenumber k (or

alternatively the wavelength λ) and the frequency ω. In a magnetized plasma the gen-

eral dispersion relation can be very complicated. Hence, we consider first a simple case

that the RF wave propagates in a uniform plasma with an applied steady magnetic field.

These assumptions cause the dielectric tensor
=
κ to be constant.

Considering the Fourier spatial transformation, all quantities are expressed varying as

exp[i(k · r − ωt)]. The differential operator can be expressed as

∇ → ik

where k is the wavenumber. Hence, Maxwell equations reduce to the homogeneous wave

equation

k × (k ×E) + k2
0

=
κ ·E = 0 (3.22)

where k0 = ω/c is the vacuum wavenumber and c = (µ0ε0)−1/2 is the speed of light in

vacuum. Here, the condition that the external forcing current (antenna) is outside the

plasma has been applied. We now choose the wavenumber k to lie in the x-z plane, so
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that Eq. 3.22 can be written in the matrix form
N2 cos2 θ − κ1 −iκ2 −N2 cos θ sin θ

iκ2 N2 − κ1 0

−N2 cos θ sin θ 0 N2 sin2 θ − κ3



Ex

Ey

Ez

 = 0 (3.23)

where θ is the angle between the wavenumber k and the magnetic field B0 and N = kc/ω.

Thus, non-trivial solutions of the wave equation exist only for those pairs (ω,k) that

make the matrix singular,

det


N2 cos2 θ − κ1 −iκ2 −N2 cos θ sin θ

iκ2 N2 − κ1 0

−N2 cos θ sin θ 0 N2 sin2 θ − κ3

 = 0 (3.24)

This determinant is a 2nd-order polynomial for N2 [102, 129]

a4N
4 + a2N

2 + a0 = 0 (3.25)

where

a4 = κ1 sin2 θ + κ3 cos2 θ,

a2 =
(
κ2

2 − κ2
1

)
sin2 θ − κ1κ3(1 + cos2 θ),

a0 =
(
κ2

1 − κ2
2

)
κ3,

(3.26)

For each wavenumber angle, there are two different solutions for N2, corresponding to

two pairs of waves and two different polarizations (left- and right-handed) [102, 129].

The helicon wave belongs to the right-hand polarized waves [18].

In order to discuss the parametric regime easily, an alternative equivalent way of ex-

pressing the dispersion relation is taken into account [108]

â4N̂
4 + â2N̂

2 + â0 = 0 (3.27)

where N̂ = kde and de = c/ωpe is the skin depth of electrons. Here, the coefficients are

â4 = κ̂1 sin2 θ + κ̂3 cos2 θ,

â2 =
(
κ̂2

2 − κ̂2
1

)
sin2 θ − κ̂1κ̂3(1 + cos2 θ),

â0 =
(
κ̂2

1 − κ̂2
2

)
κ̂3,

(3.28)

Also, we have the relation

κ̂j = κj
ω2

ω2
pe
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Next, we will discuss the parametric regime of wave propagations based on the dispersion

relation.

3.2.1. The helicon conventional frequency regime

The most conventional parametric regime for helicon wave propagation corresponds to

[40, 45]

νe, ωlh � ω < ωce � ωpe, (3.29)

where ωlh = eB0

/√
memi is the lower-hybrid frequency. In this regime, the components

of the dielectric tensor reduce to

κ̂1 = − ω(ω + iνe)

(ω + iνe)
2 − ω2

ce

, κ̂2 =
ωceω

(ω + iνe)
2 − ω2

ce

, κ̂3 = − ω

ω + iνe
(3.30)

which point out that the wave frequency ω is too low to take into account the displace-

ment current and too high to include the effects of the ion oscillations. Then the solution

of Eq. 3.27 is [45, 132]

N̂ ≡ k2d2
e =

ω

±ωce |cos θ| − (ω + iνe)
(3.31)

Hence, waves propagate only for the + sign in the denominator, for the θ angles where

the refractive index is dominantly real. It is customary to denote the low-θ waves (long

wavelength) as helicon mode and the high θ waves (short wavelength) as Trievelpiece-

Gould (TG) modes [27, 63].

We can decompose k into the parallel and perpendicular wavenumbers k‖ = k cos θ and

k⊥ = k| sin θ|. When plotting this relation in the form of k⊥
(
k‖
)
, Fig. 3.1 shows the

variation of the perpendicular wavenumber k⊥de with changing the parallel wavenumber

k‖de for different ωce/ω. The two solution of k⊥de for a specific value of k‖de means

the propagation of two branch of waves, TG mode and helicon mode. With a larger

value of ωce/ω, the regime which can propagate two waves become wider. Therefore, it

is necessary to show the full picture of wave propagation for different frequency ratios.

With finding the boundary of solution of perpendicular wavenumber, three regimes are

distinguished[44] in Fig. 3.2(a), for a wider frequency range than that expressed by

Eq. (3.29):

1. Inductive regime(ICR), when ωce/ω < 1 for all k‖de, 1 ≤ ωce/ω ≤ 2 for k‖de <√
1/ (ωce/ω − 1) or ωce/ω > 2 for k‖de < 2ωce/ω. There is no real solution for k⊥,

which means that no wave propagates. RF emission is evanescent in the plasma,

penetrates only into a skin depth of the plasma column and/or is reflected.
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Figure 3.1: The relation between perpendicular wavenumber and parallel wavenumber
for different frequency ratio.

2. Surface wave regime(SWR), when k‖de >
√

1/ (ωce/ω − 1) . Only the TG wave

propagates. This is quickly damped for νe 6= 0.

3. Double wave regime(DWR), when 2ω/ωce < k‖de <
√

1/ (ωce/ω − 1) . Both heli-

con and TG waves propagate. The helicon wave is weakly damped and propagates

the whole radius of the plasma column [62].

3.2.2. The helicon extended frequency regime

As the wave frequency decreases, ion oscillations are more likely to influence the plasma

response. Taking into account that

ωpi =

√
me

mi
ωpe, ωlh =

√
me

mi
ωce, ωci =

me

mi
ωce, (3.32)

a straightforward comparison of the electron and ion contributions to the dielectric

components in Eq. 3.18-3.20 shows that the ion contribution becomes significant: when

ω ∼ ωlh for κ̂1, when ω ∼ ωci for κ̂2, and never for κ̂3. Therefore, for ω � ωci, the ion

contribution needs to be included only in κ̂1. The generalized expression is

κ̂1 = −ω
[

ω + iνe
(ω + iνe)2 − ω2

ce

+
me

mi

ω + iνi
(ω + iνi)2 − ω2

ci

]
, (3.33)

Solving now dispersion relation Eq. 3.27 in the collisionless limit, the wave propagation

regimes for argon are plotted in Fig. 3.2(b). The solid straight line is the separatrix

corresponding to the lower hybrid frequency. The electromagnetic waves show different
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Figure 3.2: Wave propagation regimes for high frequencies

behaviours in the different regimes. The three regimes below the straight line have been

presented in previous section. Here, we focus on the regimes above the line. Two regimes

are distinguished:

1. Inductive regime(ICR). There is no real solution for k⊥. Thus, no wave propagates,

RF emission penetrates only into a skin depth of the plasma column.

2. Low frequency helicon wave regime(LHR). Only helicon waves propagates.

In order to have a general view of wave propagations with variation of frequency, the

relation between ωce/ω and k⊥ is plotted in Fig. 3.3. It shows the perpendicular

wavenumber as a function of the ratio ωce/ω at a fixed plasma density. Two differ-

ent parallel wavenumbers are selected to compare, k‖ = 17.1 and 34.2 m−1. Therefore,

the corresponding dimensionless parameter k‖de are 0.0384 and 0.0768, respectively. The

Collisional and collisionless cases are also compared. Only two axial modes are shown

in order to illustrate the wave propagation in the different regimes. In the collisionless

case, there are two roots for k⊥, representing the helicon wave and the TG wave [27]. At

low values of ωce/ω, in the ICR, there is no real solution for k⊥. With ωce/ω increasing,

two kinds of waves propagate in the DWR. As the ratio ωce/ω increases, the perpen-

dicular wavenumber for the slow wave (TG wave) tend to infinite when ω = ωlh. The

perpendicular wavenumber of the fast wave (HE wave) becomes very small. In k‖ = 17.1

case, it will not go through the TG regime, therefore the k⊥ of HE wave are not zero

near the lower hybrid frequency. In comparison, the k⊥ of HE wave when k‖ = 34.2 is

zero in this regime. When ω < ωlh, the real part of k⊥ of TG wave tends to be zero and

become purely imaginary. For HE waves, k‖ = 17.1 will be in the LHR, the real and

imaginary part of HE wave both become small. And it goes to zero when entering the

ICR. k‖ = 34.2 enters in the ICR directly, so the blue lines are still zero.
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(a) k‖de = 0.0384 (νe = 0)
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(b) k‖de = 0.0384 (νe 6= 0)
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(c) k‖de = 0.0768 (νe = 0)
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Figure 3.3: The perpendicular wavenumber k⊥ is given as functions of the ratio ωce/ω.
The plasma density is 5.6× 1018 m−3; the parallel wavenumbers k‖, are 17.1 m−1 and
34.2 m−1. The corresponding dimensionless parameter k‖de are 0.0384 and 0.0768,
respectively. In the collisional case, the electron collision frequency is 3.26MHz. The
blue lines represent the helicon wave and the red lines is the TG wave. The solid and
the dashed line represent the real and imaginary parts, respectively. The magnitude
of TG wavenumber is too large to display in the figure with the given scale near the
region where ω ∼ ωlh.

For the collisional case, there are some changes caused by νe. The sign of imaginary

part is changed. In addition, there is a knee in the profile of TG mode near the lower

hybrid frequency, and there is no big difference between the LHR and the ICR. The

purely imaginary part of TG mode is quite large and the real part of HE and TG waves

are very small. The evanescent behaviour dominates the wave propagation.

3.3. The axisymmetric 2D model

The discussion of the dispersion relation for an infinite, uniform plasma has shown us

the general features and regimes for the propagation of the helicon-type waves and their

companions, the short-wavelength TG waves. With this general frame in mind we begin
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to study the helicon wave propagation in a real helicon source immersed in a vacuum

chamber.

Figure 3.4: Geometric structure of 2D model.

The helicon source system is made up of a dielectric cylindrical vessel, where the plasma

is produced, an external RF antenna wrapped around the chamber and a set of external

coils to produce the applied magnetic field [15]. The cylinder chamber is made of a

dielectric material, such as quartz. A gas feed system is set up at one end of the

chamber. The antenna emits electromagnetic radiation of frequency ω in the range 1–

100 MHz [18]. The plasma is confined radially by the applied axial magnetic field B0,

created by the external coils (which are assumed to have no effects on the plasma-wave

interaction) [15, 19].

Figure 3.4 sketches the typical arrangement we will model and analyze. Cylindrical

coordinates are used. There is a conducting cavity (simulating the walls of a vacuum

chamber) of length L and radius rw where the helicon source is immersed. This source

is made of a cylindrically dielectric tube that confines the plasma, which is then emitted

as a divergent beam. The thickness of the dielectric tube is rd. Therefore, the plasma

will be considered as a column of varying radius rp(z) whose density n(r, z) is assumed

to be known for present purposes. A set of coils creates the stationary axisymmetric

magnetic field

B0(r, z) = B0(r, z)(1r sinα+ 1z cosα) (3.34)

where α(r, z) is the local magnetic angle with the axial direction 1z. The rf antenna

is constituted by a thin conducting wire wrapped, at a distance ra, with different 3D

geometric forms (Nagoya type, helical type, etc.) around the helicon source.

Except for very few cases (like a single loop), the 3D geometric form of the antenna

makes the problem 3D in space. Using cylindrical coordinates and time-transformed

Maxwell equations, Eq. 3.13-3.14 can be expanded to the set of six scalar equations for
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EM fields

1

r

∂Ez
∂θ
− ∂Eθ

∂z
− iωBr = 0, (3.35)

∂Er
∂z
− ∂Ez

∂r
− iωBθ = 0, (3.36)

1

r

∂

∂r
(rEθ)−

1

r

∂Er
∂θ
− iωBz = 0, (3.37)

1

r

∂Bz
∂θ
− ∂Bθ

∂z
+ iωµ0Dr = µ0jra, (3.38)

∂Br
∂z
− ∂Bz

∂r
+ iωµ0Dθ = µ0jθa, (3.39)

1

r

∂

∂r
(rBθ)−

1

r

∂Br
∂θ

+ iωµ0Dz = µ0jza (3.40)

where ja = (jra, jθa, jza) is the 3D contribution of the antenna, and the dielectric tensor

must be written in the cylindrical coordinate system, i.e. satisfying

(Dr, Dθ, Dz)
T = ε0 ¯̄κ(r, z) · (Er, Eθ, Ez)T , (3.41)

Making the appropriate rotation of the system of reference, from the B0-aligned one to

the cylindrical one, the normalized dielectric tensor takes the form [130, 133]

=
κ(r, z) =


κ1(cosα)2 + κ3(sinα)2 iκ2 cosα κ3−κ1

2 sin 2α

−iκ2 cosα κ1 iκ2 sinα
κ3−κ1

2 sin 2α −iκ2 sinα κ3(cosα)2 + κ1(sinα)2

 (3.42)

Since
=
κ(r, z) and the domain is axysimmetric, the three-dimensionality comes only from

the antenna wire geometry. If the antenna and near-field around it need to be analyzed,

it could be modelled similarly to the plasma, as a metallic material with conductivity
=
σa(r, θ, z), and Ohm’s law

ja =
=
σaE, (3.43)

and this equation must be implemented in the RHS of Eq. 3.14. This approach is not

going to be followed here because the influence of the antenna conductivity on the power

absorption in the bulk of the plasma is expected to be small. Taking into account that

the typical rf wavelength is much larger than the antenna length, the antenna wire is

being assumed to be very thin and that the current concentrates on the surface [134].

Additionally, the antenna wire is seen as a perfect conductor so that the power loss

inside antenna is generally assumed to be negligible. Hence, the variation of current

density inside the antenna in the r direction is not taken into account and the radial

component of this current is jra = 0. Considering the magnitude of current Ia which
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oscillates with frequency ω, we can write [134, 135]

ja (r, t) = Ia exp (−iωt) [1zsz (r, θ, z) + 1θsθ (r, θ, z)] (3.44)

where sz and sθ are functions defining the geometry of antenna. This expression of ja

admits a Fourier transform in the azimuthal direction,

∂

∂θ
→ im, m ∈ Z (3.45)

yielding

sz(r, θ, z) =
∑
∀m∈Z

s(m)
z (r, z) exp(imθ), (3.46)

and similarly for sθ(r, θ, z). Performing now the Fourier θ-transform in the above 3D

Maxwell equations we obtain for for each m-mode of the electromagnetic field [74, 76]

im

r
Ez −

∂

∂z
Eθ − iωBr = 0, (3.47)

∂

∂z
Er −

∂

∂r
Ez − iωBθ = 0, (3.48)

1

r

∂

∂r
(rEθ)−

im

r
Er − iωBz = 0, (3.49)

im

r
Bz −

∂

∂z
Bθ + iωµ0Dr = 0, (3.50)

∂

∂z
Br −

∂

∂r
Bz + iωµ0Dθ = µ0jθa, (3.51)

1

r

∂

∂r
(rBθ)−

im

r
Br + iωµ0Dz = µ0jza (3.52)

where superscript (m) has been omitted for E, B, D and ja. This 2D model of partial

differential equations can be solved with numerical method, such as Finite Difference

Method(FDM) or Finite Element Method(FEM) [74]. The former approach will be

carried out in Chapter 6 in detail.
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3.4. The radial 1D model

Figure 3.5: Geometric structure of 1D model.

Although the 2D model is the most valuable one to analyze practical configurations of

the helicon source, its numerical implementation and solving are still too cumbersome

for carrying out parametric studies. This explains that a simpler 1D radial model with

limited axial variations has been the most popular choice in research studies of the

helicon wave propagation [55, 59, 70]. This model would correspond to the simplified

configuration depicted in Fig. 3.5 where B0 is purely axial (α = 0) and both B0 and

plasma properties change only in the r-direction [41, 71], thus leading to the dielectric

tensor ¯̄κ = ¯̄κ(r).

The plasma is here limited to the purely axially-uniform finite cylinder structure, and

the plasma plume is not taken into account. This allows applying the additional Fourier

z-transform
∂

∂z
→ ikz, kz ∈ R (3.53)

to the above 2D model equations. Nonetheless, before performing the axial Fourier

transformation, the boundary conditions at the axial end of the domain z = 0 and

z = L are considered. There, since the cavity walls are assumed to be metallic, reflection

conditions are applied [55, 59]

Er(0) = Eθ(0) = 0, Er(L) = Eθ(L) = 0, (3.54)

As a consequence, the Fourier transform of these two fields can be written in the form

of sin series

Er, Eθ ∝ sin kzz, kz =
lπ

L
l ∈ N
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Then, considering the set of six Maxwell equations, it is found that the most suitable

Fourier-transformation is [55, 59],
Er (r, θ, z, t)

Eθ (r, θ, z, t)

Bz (r, θ, z, t)

 =
∑
l,m


E

(l,m)
r (r)

E
(l,m)
θ (r)

B
(l,m)
z (r)

 sin

(
lπ

L
z

)
exp [i (mθ − ωt)] (3.55)


Br (r, θ, z, t)

Bθ (r, θ, z, t)

Ez (r, θ, z, t)

 =
∑
l,m


B

(l,m)
r (r)

B
(l,m)
θ (r)

E
(l,m)
z (r)

 cos

(
lπ

L
z

)
exp [i (mθ − ωt)] (3.56)

provided that the current densities of the antenna are transformed as

jθ(r, θ, z, t) =
∑
l,m

j
(l,m)
θ (r) sin

(
lπ

L
z

)
exp i(mθ − ωt) (3.57)

jz(r, θ, z, t) =
∑
l,m

j(l,m)
z (r) cos

(
lπ

L
z

)
exp i(mθ − ωt) (3.58)

Therefore, the 1D model for each (l,m) mode is [55, 59, 70, 105]

im

r
Ez − kzEθ − iωBr = 0, (3.59)

kzEr −
∂

∂r
Ez − iωBθ = 0, (3.60)

1

r

∂

∂r
(rEθ)−

im

r
Er − iωBz = 0, (3.61)

im

r
Bz + kzBθ + iωµ0(κ1Er + iκ2Eθ) = 0, (3.62)

kzBr −
∂

∂r
Bz + iωµ0(κ1Eθ − iκ2Er) = µ0jθa, (3.63)

1

r

∂

∂r
(rBθ)−

im

r
Br + iωµ0κ3Ez = µ0jza (3.64)

and superscripts (l,m) have been again dropped for simplicity. Notice that the first

and fourth of the equations above are now algebraic, while the other four have become

ordinary differential equations, making the integration much simpler. The solution of

this 1D model will be extensively studied in the following Chapters.

3.5. Power deposition and antenna Impedance

From the viewpoint of time-averaged energy flow, the helicon plasma thruster can be

regarded as a two-terminal antenna, fed by an electrical circuit, that is radiating into

the plasma volume and into space. The (resistive) input power at the antenna terminals,
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Pin, is then divided into resistive losses in the antenna material Pcopper, power absorbed

by the plasma Pabs, and power lost as radiation into empty space Pspace,

Pin = Pcopper + Pabs + Pspace (3.65)

This last contribution is non-existent when modeling the plasma discharge in a closed

perfect conductor cavity such as a laboratory vacuum chamber, since any escaping ra-

diation is reflected back by this boundary condition. Moreover, if we consider an ideal

conductor antenna, Pcopper is also zero. Under these assumptions, we can equate the

time-averaged power at the input with the time-averaged power absorbed by the plasma,

Pin = Pabs. (3.66)

In order to obtain a model for Pabs, the instantaneous power dPinst delivered to a

differential plasma volume dΩ by the electromagnetic field is considered, which is given

by Joule’s dissipation,

dPinst = ̃ · ẼdΩ.⇒ dPabs =
1

T

∫ T

0
(dPinst)dt (3.67)

For harmonic fields that vary as exp(−iωt), the instantaneous power is the sum of a

time-varying contribution at frequency 2ω plus an average value. It is customary to

define the resistive or true power dP and the reactive power dQ at each differential

volume in the plasma. Writing ̃ and Ẽ using the complex vector amplitudes,

̃ =
1

2
(j exp(−iωt) + j∗ exp(iωt)) , (3.68)

Ẽ =
1

2
(E exp(−iωt) +E∗ exp(iωt)) , (3.69)

we define these powers through the following expression:

dP + idQ =
∗ ·E

2
dΩ. (3.70)

Note that this does not represent the full product of Eq. (3.67), but only one of the

four terms that come out of it1. It is stressed that the instantaneous power dPinst is

not equal to dP + idQ; however, dP and dQ contain all the necessary information to

reconstruct dPinst (except for the phase of the 2ω signal). Moreover, it can be proven

that dPabs ≡ dP in the plasma, the only remaining term after time-averaging.

Considering Maxwell’s equations Eq. (3.13)–(3.14), the integral of this last expression

over the plasma domain Ωp (which includes any vaccum parts but excludes the antenna)

1Observe that the 2ω power term is non-zero even in a purely resistive case
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can be written as

1

2

∫
Ωp

j∗ ·EdΩ =
1

2

∫
Ωp

(
1

µ0
∇×B∗ − iωε0E

∗
)
·EdΩ

=
1

2

∫
Ωp

[
1

µ0
B∗ · ∇ ×E − 1

µ0
∇ · (E ×B∗)−E · iωε0E

∗
]
dΩ

=
1

2

∫
Ωp

[
− 1

µ0
∇ · (E ×B∗) + iω

(
1

µ0
B ·B∗ − ε0E ·E∗

)]
dΩ

(3.71)

where Poynting’s vector is defined as [136]

S =
1

2µ0
(E ×B∗) , (3.72)

and the electric and magnetic energy densities in vacuum are:

we =
1

4
ε0 (E ·E∗) , wm =

1

4µ0
(B ·B∗) . (3.73)

With these definitions, and applying Gauss integral theorem, the following law of con-

servation of energy is readily obtained in the plasma volume

1

2

∫
Ωp

j∗ ·EdΩ = 2iω

∫
Ωp

(wm − we) dΩ−
∫
∂Ωp

S · νdσ. (3.74)

where the last term is the surface integral describing the radiation power flowing through

the boundary of Ωp, whose normal unit vector pointing outwards is ν. It is zero at the

outer boundary of Ωp as the metallic chamber walls reflect all incoming radiation; the

integral of Poynting’s vector is only non-zero at the interface with the radiating antenna,

through which all power is flowing into the plasma.

Analogously, the conservation of energy can be applied to the antenna volume Ωa. In

this case, the Poynting term includes the power radiated to the plasma through the

boundary ∂Ωp plus the resistive and reactive power at the antenna terminals,

1

2

∫
Ωa

j∗a ·EdΩ = 2iω

∫
Ωa

(wm − we) dΩ +

∫
∂Ωp

S · νdσ +
VaI

∗
a

2
. (3.75)

Combining Eqs. (3.74) and (3.75) finally leads to

1

2

∫
Ωp

j∗ ·EdΩ +
1

2

∫
Ωa

j∗a ·EdΩ + 2iω

∫
Ωp+Ωa

(we − wm) dΩ =
VaI

∗
a

2
. (3.76)

As we have neglected the resistive losses in the antenna, the second term is purely

imaginary, and the real part of this equation gives the absorbed power, Pabs, which then
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coincides with the resistive or true power P at the antenna terminals:

Pabs = <

[
1

2

∫
Ωp

j∗ ·EdΩ

]
= <

[
VaI

∗
a

2

]
. (3.77)

On the other hand, the reactive power Q at the antenna terminals is given by the

imaginary part of this equation,

Q = =

[
1

2

∫
Ωp

j∗ ·EdΩ

]
+

1

2

∫
Ωa

j∗a ·EdΩ + 2iω

∫
Ωp+Ωa

(we − wm) dΩ (3.78)

= =
[
VaI

∗
a

2

]
. (3.79)

Observe that the reactive power has contributions due to the plasma, the antenna, and

the electromagnetic power stored in the fields.

Lastly, the apparent power S at the antenna terminals is defined as S =
√
P 2 +Q2. The

powers P , Q, S are directly related to the input impedance at the antenna terminals2,

Z = R− iX.

i.e.,

P =
|I|2

2
R, (3.80)

Q =
|I|2

2
X, (3.81)

S =
|I|2

2
Z, (3.82)

and the angle α = arctan(X/R) in the power triangle coincides with the argument of

the impedance. The cosine of this angle, cosα, is generally known as the power factor

of the antenna-plasma system.

To conclude, observe that for a given ja the computation of P and Q can be carried

out, besides using the integral definitions above, by computing the potential difference

Va between the antenna terminals. For a thin antenna, this is given by the surface

integral over the area supported on the antenna of the time derivative of the magnetic

flux. Equivalently, it can be computed as the line integral of the electric field along the

antenna line:

Va =

∫
Γa

E · d`. (3.83)

2Note that this definition of impedance takes the opposite sign for the reactance to that conventionally
used in circuit theory





Chapter 4

The 1D Plasma-wave interaction

Model

The Fourier-transformed 1D finite-cylinder model has been presented in Chapter 3. This

system has been introduced by numerous authors and widely used in the study of he-

licon sources [18, 55, 59, 100, 104, 107]. This chapter will focus on the mathematical

treatment of the model, particular in boundary conditions, antenna source terms, nu-

merical integration and the convergence of Fourier series. Next Chapter will afford a

systematically parametric investigation of the parameters characterizing the source with

the aim of addressing a source preliminary design.

Figure 4.1: Geometric structure of 1D model.

45
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4.1. 1D plasma-wave model

In order to describe 1D finite-cylinder model clearly, we show the structure of 1D finite-

cylinder model in a different way from Fig. 3.5. Fig. 4.1 presents the geometry of the

finite-cylinder model with Nagoya antenna (although any antenna type can be applied).

A vessel of length L (placed between z = 0 and z = L) and radius rw contains a plasma

column of radius rp, surrounded by an antenna located around r = ra and with an axial

extension La. At the conducting wall of vessel, the tangential electric field is zero due

to applying reflection boundary conditions.

An important assumption on the antenna was already made in Chapter. 3. The antenna

is represented by a perfectly-conducting wire carrying a current Ia along its surface,

which is constant spatially and oscillates in time with frequency ω. A second important

assumption is proposed that the antenna wire is assumed to be infinitely thin [55, 59]

and located at the position r = ra. Hence, Eq. 3.44 for the current density is expressed

as

ja(r, t) = Iaδ(r − ra) [1zsz (θ, z) + 1θsθ (θ, z)] exp (−iωt) (4.1)

where δ presents the Dirac delta function. This ‘zero-thickness antenna limit’ is ex-

tensively used in 1D model [55, 59, 70, 104]. This assumption is beneficial to simplify

equations and obtain a reasonable solution within the plasma. The weakness of this

approach is that some wave fields are divergent in the position of antenna because of the

singularity, and the antenna reactance cannot be obtained correctly [66, 108]. Mean-

while, some papers consider the thickness of antenna wires [89, 109] using different

method and obtain a reasonable reactance.

In the zero-thickness limit, the physical domain is naturally divided in three subregions:

the plasma region 0 < r < rp, the inner vacuum region rp < r < ra and the outer

vacuum region ra < r < rw.

Then, the governed wave equations are normalized in order to simply the equation

system. Introducing the dimensionless variables

k̂l =
kzc

ω
=
lπc

Lω
, r̂ =

rω

c
, B̂ =

Bra
µ0Ia

, Ê =
Era
µ0Iac

, ĵa =
jarac

Iaω

and phase modified fields

Eφ = −iEθ, Bφ = iBθ
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Eq. 3.59-3.64 can be rearranged into the four differential equations, for each (l,m) mode

dÊφ
dr̂

=

(
κ2m

κ1r̂
− 1

r̂

)
Êφ +

k̂lm

κ1r̂
B̂φ +

(
1− m2

r̂2κ1

)
B̂z, (4.2)

dÊz
dr̂

=
κ2k̂l
κ1

Êφ +

(
k̂2
l

κ1
− 1

)
B̂φ −

k̂lm

κ1r̂
B̂z, (4.3)

dB̂φ
dr̂

=
mk̂l
r̂
Êφ +

(
κ3 −

m2

r2

)
Êz −

1

r̂
B̂φ, (4.4)

dB̂z
dr̂

=

(
κ2

2

κ1
+ k̂2

l − κ1

)
Êφ −

mk̂l
r̂
Êz +

κ2k̂l
κ1

B̂φ −
κ2m

κ1r̂
B̂z (4.5)

and the two algebraic equations:

Êr =
κ2

κ1
Êφ +

k̂l
κ1
B̂φ −

m

r̂κ1
B̂z, (4.6)

B̂r =
m

r̂
Êz − k̂lÊφ (4.7)

These equations are completed with the jump conditions across the antenna surface

r = ra, continuity conditions at r = rp, and the previously mentioned conditions at

conducting walls.

4.1.1. Analytical solution for uniform plasma density

In the general case of the plasma density n0 (or the applied field B0) varying radially,

the differential equation system must be treated numerically. Here and in next chapter

we focus on the case of a uniform plasma column with a uniform magnetic field, when

the dielectric functions in Eq. 4.2-4.7 are constant. Then, these equations admit also

the analytical solution within the plasma in terms of Bessel functions [55, 59].

In order to obtain the analytical solution, the EM fields Êφ and B̂φ have been expressed

in terms of (Êz, B̂z) and their derivatives (Ê′z, B̂
′
z) from Eq. 4.2-4.7 as follows

Êφ =

(
δ2 − αβ

κ3

)−1 [
δÊ′z +

β

κ3
B̂′z +

ηβ

κ3
Êz +

(
δη

κ1
+
ζβ

κ3

)
B̂z

]
, (4.8)

B̂φ =

(
δ2 − αβ

κ3

)−1 [
αÊ′z + δB̂′z + ηδÊz +

(
αη

κ1
+ δζ

)
B̂z

]
(4.9)

where

α = κ1 −
κ2

2

κ1
− k̂2

l , β = κ3

(
1−

k̂2
l

κ1

)
, δ =

k̂lκ2

κ1

and

η =
k̂lm

r̂
, ζ =

κ2m

κ1r̂
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Substituting now Êφ and B̂φ into Maxwell equations one has

Ê′′z +
1

r̂
Ê′z +

(
β − m2

r̂2

)
Êz = δB̂z (4.10)

B̂′′z +
1

r̂
B̂′z +

(
α− m2

r̂2

)
B̂z = κ3δÊz (4.11)

Defining the Bessel operator [55]

L̂ =
1

r̂

∂

∂r̂

(
r̂
∂

∂r̂

)
− m2

r̂2

Eq. (4.10-4.11) can be combined into[(
L̂+ α

)(
L̂+ β

)
− κ3δ

2
]
B̂z ≡

(
L̂+N2

1

)(
L̂+N2

2

)
B̂z = 0 (4.12)

The same 4th order equation is also satisfied by Êz and N1,2 here are the roots of the

biquadratic equation

N4 − (α+ β)N2 + αβ − κ3δ
2 = 0 (4.13)

and also N1,2 = k̂±⊥ is the perpendicular wavenumber of two different kinds [55]. Thus,

the solution of Eq. 4.12 is

B̂z = a1Jm (N1r̂) + a2Jm (N2r̂) (4.14)

where Jm is the mth order Bessel function of first kind, a1 and a2 are constants deter-

mined by boundary conditions. As we know, the general solution for Eq. 4.12 should

be the combination of Jm and Ym functions [137]. Here, we only use the Jm function

due to the boundary condition for r = 0. When r = 0, EM fields should be finite in the

axis. However, Ym function tends to be infinite at r = 0. Therefore, the Ym functions

are ruled out. Then, we rewrite the Eq. 4.12 in the form of(
L̂+ α− α+N2

1

)(
L̂+ α− α+N2

2

)
B̂z = 0 (4.15)

and we consider the solution separately(
L̂+ α

)
B̂z =

(
α−N2

1

)
B̂z (4.16)(

L̂+ α
)
B̂z =

(
α−N2

2

)
B̂z (4.17)
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Using Eq. 4.11, we obtain

κ3δÊz =
(
α−N2

1,2

)
B̂z (4.18)

Hence, the expression of Êz can be obtained

Êz = a1

(
α−N2

1

)
κ3δ

Jm (N1r̂) + a2

(
α−N2

2

)
κ3δ

Jm (N2r̂) . (4.19)

In addition, the other components of field can be solved from Eq. 4.6-4.7 and 4.8-4.9

once B̂z and Êz are calculated.

4.1.2. Analytical solution in vacuum

In this part, the analytical solution in vacuum is considered. In two vacuum regions the

dielectric tensor reduces to ¯̄ε = εo
¯̄I, i.e. κ1 = κ3 = 1 and κ2 = 0, and Maxwell equations

are simplified to the well-known wave form [55, 59]

Ê′′z +
1

r̂
Ê′z +

(
κ2 − m2

r̂2

)
Êz = 0 (4.20)

B̂′′z +
1

r̂
B̂′z +

(
κ2 − m2

r̂2

)
B̂z = 0 (4.21)

where κ2 = k̂2
l − 1. The general solution is of the form

B̂z = a3Im (κr̂) + a4Km (κr̂) (4.22)

Êz = a5Im (κr̂) + a6Km (κr̂) (4.23)

where aj are constants depending on the boundary condition. Im and Km are the

modified Bessel functions of mth order.

4.1.3. Boundary and matching conditions

From previous analysis, the general solutions we have obtained for three spatial regions

involve 10 coefficients (a1-a10). In order to determine them, the boundary conditions

are imposed. First, at r = rw, the electric field parallel to the conducting wall is zero:

Êz (r̂w) = 0 (4.24)

Êφ (r̂w) = 0 (4.25)
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Second, there is continuity of the EM fields across the plasma boundary,

Êz
(
r̂+
p

)
− Êz

(
r̂−p
)

= 0 (4.26)

Êφ
(
r̂+
p

)
− Êφ

(
r̂−p
)

= 0 (4.27)

B̂z
(
r̂+
p

)
− B̂z

(
r̂−p
)

= 0 (4.28)

B̂φ
(
r̂+
p

)
− B̂φ

(
r̂−p
)

= 0 (4.29)

Finally, at r = ra, there is a current sheet generated by the antenna. Integrating directly

Maxwell equations across the sheet, the jump in the parallel and azimuthal magnetic

fields are [59]

Êz
(
r̂+
a

)
− Êz

(
r̂−a
)

= 0 (4.30)

Êφ
(
r̂+
a

)
− Êφ

(
r̂−a
)

= 0 (4.31)

B̂z
(
r̂+
a

)
− B̂z

(
r̂−a
)

= −ĵθa (4.32)

B̂φ
(
r̂+
a

)
− B̂φ

(
r̂−a
)

= iĵza (4.33)

For each (l,m) mode, these ten boundary conditions constitute a set of 10 linear algebraic

equations involving ten aj ’s in terms of two antenna coefficients ĵθa and ĵza. Solving that

system, the (l,m) mode of the EM field in the whole domain 0 < r < rw is the linear

combination of two fundamental modes, proportional to ĵθa and ĵza. Furthermore, since

the current density along the antenna wire must satisfy the continuity equation [94]

∇ · ja = 0. (4.34)

Taking into consideration the respective Fourier expansions for the azimuthal and axial

components, the above equation yields a simple relation between the azimuthal and axial

components of each (l,m) mode,

−m
ra
j

(l,m)
θa = i

lπ

L
j(l,m)
za , i.e. − m

ra
s

(l,m)
θ = i

lπ

L
s(l,m)
z (4.35)

With respect to parameters used for non-dimensionalization, the choice of Ia is quite

obvious, while lengths c/ω and ra have been chosen with the aim of reducing the num-

ber of parameters in the dimensionless equations, including the boundary conditions.

However, it must be pointed out that there are rather different lengths in the problem.

Typical ranges of variation would be

rp, ra ∼ 1− 5cm, rw ∼ 0.5− 2m c/ω ∼ 2− 50m. (4.36)
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As a consequence, with the choice we made, we have

1. r̂p, r̂a � 1, which must be taken into account for tolerances and accuracy, when

integrating Maxwell equations numerically in the plasma region.

2. r̂w < 1, which implies that the oscillatory EM wave pattern does not develop fully

inside the container, and the solution is going to be sensitive to the vessel size.

4.2. The Fourier transform of the antenna current

The geometry of the antenna current is central in deciding the main modes that are

going to be excited inside plasmas. Two antenna families are going to be considered

here: the double-saddle family and the helical family. The Nagoya III antenna, widely

used in industrial applications, with two circle loops on either side connected by straight

wires, is the common antenna shape of previous two families, thus providing a useful

connection for a parametric study. Fig. 4.2 shows some of antennas of those families.

The last two are helical antennas with half and one turns cases, n = 0.5 and n = 1.

Because of their geometry, wave energy vectors for helcial antennas propagate mainly

along the magnetic field [89].

(a) Nagoya III (b) Double saddle (c) Half-turn helical (d) 1-turn helical

Figure 4.2: Different types of antennas[70, 89, 94].

Due to the Eq. 3.57 and 3.57, three different Fourier expansions are going to be used

for covering all the needed azimuthal and axial modes. These are:

f(θ) =

∞∑
m=−∞

f (m)e−imθ, f (m) =
1

2π

∫ 2π

0
dθeimθf(θ) (4.37)

f(z) =

∞∑
l=1

f (l) sin klz, f (l) =
2

L

∫ L

0
dz sin klzf(z) (4.38)

f(z) =
1

L

∫ L

0
dzf(z) +

∞∑
l=1

f (l) cos klz, f (l) =
2

L

∫ L

0
dz cos klzf(z), (4.39)
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We next apply these expansions to several functions. For the Dirac function, we have

δ(θ − θ0) =
∞∑

m=−∞

eimθ0

2π
e−imθ (4.40)

δ(z − z0) =
∞∑
l=1

2

L
sin klz0 sin klz (4.41)

δ(z − z0) =
1

L
+
∞∑
l=1

2

L
cos klz0 cos klz (4.42)

For the Heaviside function H(z − a), we have

H(θ − θ0) =

∞∑
m=−∞

eimθ0 − 1

2πm
e−imθ (4.43)

H(z − z0) = 2
∞∑
l=1

cos klz0 + (−1)l+1

πl
sin klz (4.44)

H(z − z0) =
L− z0

L
− 2

∞∑
l=1

sin klz0

πl
cos klz (4.45)

The water-bag function

g(z; z1, z2) = H(z − z1)−H(z − z2) =

1, z1 ≤ z ≤ z2

0, otherwise
(4.46)

is going to be used for all antennas. Its cosine expansion is

g(z; z1, z2) =
z2 − z1

L
+ 2

∞∑
l=1

sin klz2 − sin klz1

πl
cos klz (4.47)

while the azimuthal expansion is

g(θ; θ1, θ2) =
∞∑

m=−∞

eimθ2 − eimθ1
2πm

e−imθ (4.48)

Next, based on the different geometry, the expression of current density for each type of

antennas is discussed.
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4.2.1. Nagoya III antenna

For the Nagoya III antenna shown in Fig. 4.2(a), the current shape functions can be

written as

sz(θ, z) = g(z; z1, z2)
δ (θ)− δ (θ − π)

ra
(4.49)

sθ(θ, z) = [δ(z − z1)− δ(z − z2)][g(θ;π, 2π)− g(θ; 0, π)] (4.50)

where z1 and z2 represent the positions of two ends of antenna, respectively. It has the

relation z1,2 = za ∓ La/2, with the antenna length La and the center of antennas za.

The two shape functions are expanded as Fourier double series

sz(θ, z) =
∞∑

m=−∞

∞∑
l=1

s(l,m)
z e−imθ cos klz, (4.51)

sθ(θ, z) =

∞∑
m=−∞

∞∑
l=1

s
(l,m)
θ e−imθ sin klz, (4.52)

and the expression for each modes are obtained

s(l,m)
z =

4

π2lra
cos kl

z1 + z2

2
sin kl

z1 − z2

2
, l > 0 (4.53)

s(0,m)
z =

2 (z2 − z1)

πLra
(4.54)

Here, the m modes yield to be odd and the even m modes are zero. This also satisfies

the double-saddle and helical antennas. Moreover, the component of azimuthal shape

function sθ satisfies Eq. 4.35 and can be easily obtained. Hence, For the cases below

only the expression of sz is given.

4.2.2. Double saddle antenna family

For a double saddle antenna with an azimuthal aperture θt ≤ π shown in Fig. 4.2(b),

which is first introduced by Boswell [29], the current shape functions are

sz(θ, z) =
g(z; z1, z2)

2ra
[δ

(
θ − π − θt

2

)
− δ

(
θ − π + θt

2

)
+ δ

(
θ +

π − θt
2

)
− δ

(
θ +

π + θt
2

)
]

(4.55)
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The corresponding Fourier expansion for m = odd is

s(l,m)
z =

4

π2lra
cos kl

z1 + z2

2
sin kl

z1 − z2

2
sin
(mπ

2

)
sin

(
mθt

2

)
(4.56)

s(0,m)
z =

2 (z2 − z1)

πLra
sin
(mπ

2

)
sin

(
mθt

2

)
(4.57)

The advantage of this antenna is that the antenna can be easily splitted around a

cylindrical discharge tube without breaking the vacuum [18].

4.2.3. Helical antenna family

For an helical antenna with n turns shown in Fig. 4.2(c) and 4.2(d), the axial shape

function is

sz (θ, z) =
g(z; z1, z2)

ra
[δ (θ − θw(z))− δ (θ − θw(z)− π)] . (4.58)

where:

θw(z) = 2πn
z − z1

z2 − z1

is the azimuthal angle along one of the helix wires. Also we define the helical angle as

β = arctan 2πn
ra

z2 − z1

Hence, the Fourier transform is

s(l,m)
z =

2 cosβ

πL
(
m2 sin2 β − (klra)2 cos2 β

)×
[im sinβ(e−2imnπ cos klz2 − cos klz1)− klra cosβ(e−2imnπ sin klz2 − sin klz1)]

(4.59)

This can be expressed as

s(l,m)
z =

2

πL

im tanβ(e−2imnπ cos klz2 − cos klz1)− klra(e−2imnπ sin klz2 − sin klz1)

m2 tan2 β − (klra)2

(4.60)

s(0,m)
z =

i (z2 − z1)

π2Lmnra

[
e−2imnπ − 1

]
(4.61)

which recovers the Nagoya III antenna expression for n = 0. For all antennas, only odd

m modes (m = ±1,±3,±5 . . .) are excited in terms of Fourier transform.
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4.3. Nominal simulation case

In order to discuss the truncation of Fourier series, a particular design of 15kW HPT

[133], which is also applied in the parametric investigation with the purpose of optimising

the thruster, are used as the input data. The gas is argon, the radially uniform plasma

and axial static magnetic field are considered. The main parameters are summarized

in Tab. 4.1. These parameters are used in all the calculations of modes discussion and

parametric investigations, except for the one whose variation is being studied.

Parameter Value

rp Plasma radius 0.0735m

L Plasma and cage axial length 5rp
rw External cage radius 2rp
B0 Applied magnetic field 450G

Te Plasma temperature 20eV

n0 Plasma density 5.6× 1018m−3

νe Electron collision frequency 3.26MHz

fRF Frequency of the RF emission 13.56MHz

ra Antenna loop radius 1.05rp
La = 2a Antenna axial length L/2

za Antenna symmetry plane L/2

Table 4.1: Summary of input data for the plasma-wave interaction simulations.

4.4. The truncation of the Fourier double series

The 1D radial model is based on the Fourier expansion in axial and azimuthal directions.

A specific number of (l,m) modes are used in the calculations and the simulation time

increases with the number of (l,m) modes. Thus, in this part, for each type of antenna,

the influence of different numbers of (l,m) modes on the resistance is discussed in order

to choose the appropriate number of modes which yields to a good accuracy of results

with a reasonable simulation time.

For the nominal case of Tab. 4.1, a large number of (l,m) modes with m = [−151, 151]

and l = [0, 200] are taken into account as a standard in calculating the total resistance.

For all the antennas, the modes which make the current density zero are ruled out. In

addition, in order to evaluate both the azimuthal and axial component, it is convenient

to define the ‘norm’ of the current density as

j(l,m)
n =

√∣∣∣j(l,m)
z

∣∣∣2 +
∣∣∣j(l,m)
θ

∣∣∣2 (4.62)

This expression is used to evaluate the contribution of each mode to the total current.
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4.4.1. Nagoya III antenna

The contribution of each (l,m) mode to the resistance and current density for the Nagoya

III antenna is shown in Fig. 4.3. As we see, with the increase of (l,m) modes, the contri-

bution to the resistance decreases gradually. And the maximum individual contribution

to the resistance is for l = 2 and m = −1. This is consistent with the result of current

density. It makes sense because from Eq. 4.53 and Eq. 4.35, the azimuthal current

density jθ is proportional to 1/m and the axial current density jz is proportional to

1/l for Nagoya III antennas. Therefore, for a fixed current Ia, a larger current density

can be obtained when l and m are small and it leads to a large contribution to the

total resistance. In addition, the behaviour of the l = 2 profile illustrates that the wave

propagation for m modes is not symmetric.
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Figure 4.3: The contribution of each (l,m) mode to the resistance and current density
in Nagoya III type of antennas.

In Fig. 4.4, the plasma resistance R = Re(Z), obtained from truncation of the different

ranges of (l,m) modes is investigated. The results show that the resistance reaches

convergence at 3.515 ohm when (ln,mn) are up to (30, 35); the influence of number of

(l,m) modes on Re(Z) can be neglected if the number is beyond it. Hence, for Nagoya

III antennas, the ranges l = [0, 30] and m = [−35, 35] are selected for the calculations.
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Figure 4.4: The resistance Re(Z) for different number of (l,m) modes in Nagoya III
case. Figure in left side is Re(Z) varying with ln for different mn, the right side is
opposite. ln and mn mean the number of (l,m) modes, respectively. For example,ln =
200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is selected.

4.4.2. Double saddle family

In the case of the double saddle coil antenna, the case θt = π/2 is selected. The results for

the contribution of each (l,m) mode are shown in Fig. 4.5. The variation is similar with

Nagoya III type of antenna because of the similar geometry. The maximum contribution

to the resistance is achieved when l = 2 and m = −1.
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Figure 4.5: The contribution of each (l,m) mode to the resistance and current density
in double saddle coil antennas. The extended angle θt = π/2.
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Figure 4.6: The resistance Re(Z) for different number of (l,m) modes in double
saddle coil antenna case. Figure in left side is Re(Z) varying with ln for different mn,
the right side is opposite. ln and mn mean the number of (l,m) modes, respectively.
For example, ln = 200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is
selected.

The convergence profiles of (l,m) modes are shown in Fig. 4.6. The range for truncating

the series is (ln,mn) = (30, 35). Notice that the resistance is 1.76 ohm, which is twice

lower than the Nagoya III antenna case. Tab. 4.2 shows the contribution of jθ and jz to

the resistance, respectively. As we see, the contribution of jθ is higher than jz in both

cases and the percentage for double saddle coil antenna and Nagoya III is the same.

That means the azimuthal component of current density is the main part and the arc

angle influences not only the azimuthal component jθ, but also the axial component jz.

It also can be checked from Eq. 4.56.

Antenna type
Contribution of jθ Contribution of jz Total Re(Z)

Re(Z)[Ω] Percentage Re(Z)[Ω] Percentage [Ω]

Double saddle 1.05 60% 0.71 40% 1.760

Nagoya III 2.106 60% 1.409 40% 3.515

Table 4.2: The contribution of each component of current density to the resistance
for double saddle coil and Nagoya III antennas.

4.4.3. Helical antenna family

In the discussion of helical antennas, different helix turns are taken into account. In Fig.

4.7, the contribution of each mode for the half-turn helical antenna is described. The

maximum contribution comes from (l,m) = (3,−1). Compared with the Nagoya III and

double saddle coil antennas, the contributions to resistance concentrate in the range of

m = (−9, 9). The convergence profiles in Fig. 4.8 illustrate this conclusion. Thus, the
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number of modes to be used in the calculation for the half-turn helical antenna is up to

(ln,mn) = (30, 13).

The plasma resistance for the half-turn helical antenna is 7.4 ohm, which doubles the

resistance of the Nagoya III antenna.
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Figure 4.7: The contribution of each (l,m) mode to the resistance and the norm of
current density for half-turn helical antennas.

0 20 40 60 80 100
7.1

7.2

7.3

7.4

7.5

ln

R
e
(Z

)

 

 

m
n
=9

m
n
=19

m
n
=29

m
n
=39

m
n
=49

(a) Resistance with (ln,mn)

0 20 40 60 80 100
6.5

6.7

6.9

7.1

7.3

7.5

mn

R
e
(Z

)

 

 

l
n
=10

l
n
=20

l
n
=30

l
n
=50

l
n
=70

l
n
=100

(b) Resistance with (mn, ln)

Figure 4.8: The resistance Re(Z) for different number of (l,m) modes in half turn
helical antenna case. Figure in left side is Re(Z) varying with ln for different mn, the
right side is opposite. ln and mn mean the number of (l,m) modes, respectively. For
example, ln = 200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is selected.
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Figure 4.9: The contribution of each (l,m) mode to the resistance and the norm of
current density for 1-turn helical antennas.

For the one-turn helical antenna, the maximum contribution to the resistance comes

from (l,m) = (5, 1), as shown in Fig. 4.9, which differs slightly with the maximum

contribution to the current density at (l,m) = (6,±1). The similar phenomenon comes

out in the case of the two-turn helical antenna in Fig. 4.11, the current density at (l,m) =

(6,±1) is higher than (l,m) = (5,±1), however, the contribution to the resistance at

(l,m) = (6,±1) is almost equal to (l,m) = (5,±1). Because of the different parallel

wavenumber they have for l = 5 and l = 6, the condition of wave propagation should

be taken into account as the reason for the difference. We will discuss this in detail in

next chapter.
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Figure 4.10: The resistance Re(Z) for different number of (l,m) modes in 1-turn
helical antenna case. Figure in left side is Re(Z) varying with ln for different mn, the
right side is opposite. ln and mn mean the number of (l,m) modes, respectively. For
example, ln = 200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is selected.
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From Fig. 4.10 and Fig. 4.12, the series for resistance reaches convergence fast in the

range of m modes. Comparing this two Figures with half-turn helical antenna case

and Nagoya III antenna case, fewer m modes need to be considered as the number of

antenna turns increases. And this conclusion can be extended to helical antennas with

more turns. Hence, (ln,mn) = (30, 11) and (40, 9) can be chosen for the one-turn and

two-turn helical antenna cases, respectively. Fig. 4.13 and Fig. 4.14 shows the results

of the three-turn helical antenna case, in which up to (ln,mn) = (40, 9) modes are used.
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Figure 4.11: The contribution of each (l,m) mode to the resistance and the norm of
current density for 2-turn helical antennas.
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Figure 4.12: The resistance Re(Z) for different number of (l,m) modes in 2-turn
helical antenna case. Figure in left side is Re(Z) varying with ln for different mn, the
right side is opposite. ln and mn mean the number of (l,m) modes, respectively. For
example, ln = 200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is selected.



Chapter 4. The 1D Plasma-wave interaction Model 62

−21 −17 −13 −9 −5 −1 1 5 9 13 17 21
10

−12

10
−9

10
−6

10
−3

10
0

m

R
e
(Z

)

 

 

l=1
l=2
l=3
l=5
l=6

(a) Resistance

−21 −17 −13 −9 −5 −1 1 5 9 13 17 21
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

m

j n

 

 

l=1
l=2
l=3
l=5
l=6

(b) Current density

Figure 4.13: The contribution of each (l,m) mode to the resistance and the norm of
current density for 3-turn helical antennas.

Comparing the resistance for the different helical antennas, the one-turn case, with 16.53

ohm, has the maximum resistance of the cases studied here. Plasma resistance lowers to

10.43 ohm for the two-turn antenna and to 5.3 ohm for the three-turn antenna. We will

see later that this is not intrinsic to these high-turn antennas but caused by the axial

length of antenna we have used.
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Figure 4.14: The resistance Re(Z) for different number of (l,m) modes in 3-turn
helical antenna case. Figure in left side is Re(Z) varying with ln for different mn, the
right side is opposite. ln and mn mean the number of (l,m) modes, respectively. For
example, ln = 200 means l = [0, 200] is selected, mn = 9 means m = [−9, 9] is selected.

4.4.4. Summary for the modes truncation

The influence of number of (l,m) modes on the resistance with different types of antennas

was analysed in order to compute accurately the plasma resistance. The contribution

of each mode is strongly related with the corresponding current density mode. For all
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the antennas, the resistance series reach convergence with varying numbers of (l,m)

modes. With the turns of helical antennas increasing, the number of m modes required

is smaller. The suggested ranges of modes are summarized in Tab. 4.3.

For a fixed antenna geometry with an axial length half of the plasma column length

and placed symmetrically at the mid-plane, Tab. 4.3 also shows that within the double

saddle family, the resistance increases with the arcs of the antenna loops and thus the

largest resistance is achieved when this topology converges to the Nagoya III antenna

geometry (arc angle = π). Then, for the helical family, it is found that the resistance

increases with the number of turns n, until n = 2 and then the resistance decreases.

The reason of decrease will be explained in next chapter, it is related to the length of

plasma column.

Antenna type (ln,mn) Re(Z)[Ω]

Double saddle (30, 35) 1.76

Nagoya III (30, 35) 3.52

Half-turn helical (30, 13) 7.40

1 turn helical (30, 11) 16.53

2 turn helical (40, 9) 10.44

3 turn helical (40, 9) 5.30

Table 4.3: The number of computed (l,m) modes and the resulting plasma resistance
in nominal case. The ln and mn mean the number of (l,m) modes, respectively. For
example, ln = 40 means l = [0, 40] is selected, mn = 9 means m = [−9, 9] is selected.





Chapter 5

Parametric Investigation of

Helicon Sources

In order to optimize the overall efficiency of the helicon source, a complete parametric

investigation is carried out in this chapter. The studies of mode truncation for different

kinds of antennas have been done in Chapter 4 to find out the appropriate number of

modes to keep in the analysis. Here, the influence of antenna type and antenna geometric

parameters on the wave propagations are studied in the conventional frequency regime

the and extended frequency regime mentioned in Chapter 3.

5.1. Influence of antenna geometrical parameters

Based on the previous discussion, the effect of the geometrical parameters for each

antenna type, including double saddle family and helical family, are studied in this

section. The geometrical parameters of antennas influence the plasma resistance with

the variation of antenna current density.

5.1.1. Double saddle family

Considering the similarities, Nagoya III antenna is discussed in this section as a special

double saddle coil antenna, which has an arc angle θt = π. Fig. 5.1(a) describes the

variation of resistance when the arc angle increases. It shows that a larger angle generally

yields a larger resistance, so that Nagoya III antenna is the best case within the family

of double saddle coil antennas.

65
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In order to rule out the influence of θt on the other parameters, two cases when θt = π/2

and θt = π (Nagoya III antenna) are discussed for the main geometrical parameters

(za, La and ra). From the expression of the current density in Eq. 4.56 and Eq. 4.62,

the axial component jz is inversely proportional to the radius ra, and also the norm

jn increases when ra decreases. Therefore, with the radius of antenna increasing, the

resistance is reduced. The numerical results prove this prediction in Fig. 5.1(b), the

resistance goes down varying with ra for two antennas. It is demonstrated that the

antenna-plasma coupling improves as the antenna approaches the plasma. In addition,

when the antenna is near to the conducting wall (ra ≈ 2rp), the resistance is almost

zero. This is because the conducting wall produces an image current to cancel out the

influence of the antenna when the antenna approaching it [100]. Thus, it is concluded

that the radius of the antenna should be close to the plasma radius and away from the

conducting chamber.
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Figure 5.1: Resistance varying with the extend angle θt and antenna radius ra for
double saddle antenna family.

With the variation of za and La, the current density follows a sinusoidal function. It leads

to a symmetric oscillation of resistance in Fig. 5.2. For both antennas, the maximum

resistance takes place when za = 0.41L or 0.59L for the fixed antenna axial length

La = L/2. Similarly, with a fixed location za = L/2, maximum resistance is achieved

when the antenna axial length is 0.26L or 0.74L. Very interestingly, these results show

that the optimum location and length of double-saddle antennas are independent of the

arc angle θt.

The 2D colour maps considering both the variation of za and La are shown in Fig. 5.3.

According to the model, the antenna axial length is restricted to the length of plasma

column. With the variation of za and La, the current density follows the sine and cosine

function. It leads to a symmetric oscillation of resistance. As we see, the maximum
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resistance is 5.285Ω takes place when La = 0.22L and za = 0.22L or 0.78L, and amounts

to 5.29Ω for the Nagoya III antenna and half that value for the case θt = π/2. It is

further confirmed that the optimum location and length of double saddle antennas are

independent of the arc angle θt.
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Figure 5.2: Plasma resistance versus the antenna center location za with a fixed
antenna length La = L/2 (left) and versus the antenna axial length La with a fixed
antenna location za = L/2 (right), for θt = π/2 and θt = π.
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Figure 5.3: Resistance versus both the antenna location and the antenna length for
θt = π/2 and θt = π.

5.1.2. Helical antenna family

In this section, the analysis of geometrical parameters for helical antenna series is dis-

cussed. The variations of the resistance with the antenna location and axial length for

different number of turns are described in Fig. 5.4 and 5.5. As we see, resistance values

oscillate with the antenna parameters. We observe that the influence of the symmetry

plane za is weakened as the number of turns increase for fixed antenna length.

Observing the resistance profiles varying with the antenna axial length, the value of

resistance is strongly related to La. For the half-turn helical antenna case, there are two

peak values for the resistance and only one appears in one-turn and two-turn cases. With

the number of turns increasing, the maximum resistance increases but requires a larger

antenna axial length. This explains why for fixed antenna length, high-turn antennas

do not yield large resistances: the antenna length is not optimized. The maximum

resistance in the two-turn case is 41.1 ohm for La = 0.88L.

Similarly, the 2D contour map with both the variation of La and za are given in Fig.

5.6. It further illustrates that a higher resistance can be obtained with increasing the

number of turns of helical antennas if the antenna length is increased.

The variation of the resistance with the relative antenna loop radius, for different helical

antennas, is shown in Fig. 5.7. As before, with the double saddle antenna, plasma

resistance is higher when the antenna is closer to the plasma boundary. The resistance

is approximately proportional to 1/ra , and resistance becomes zero when ra = rw since

the conducting cage would short-circuit the antenna fields.
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Figure 5.4: Plasma resistance versus the antenna center location za and La = L/2
(left) and versus the antenna axial length La and za = L/2 (right), for half-turn and
1-turn helical antennas.
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Figure 5.5: Plasma resistance versus the antenna center location za and La = L/2
(left) and versus the antenna axial length La and za = L/2 (right), for 2-turn and
3-turn helical antennas.
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Figure 5.6: Resistance versus both the antenna location and the antenna length for
different number of turns.
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5.2. Analysis of the high frequency regime

In this section, the analysis is restricted to frequencies much higher than the lower hybrid

frequency. The wave propagation and parametric investigation are discussed in detail.

Furthermore, the half-turn helical antenna, which has been widely used in practice, is

applied in simulations. The selected antenna parameters are the optimal combination

from previous results:

La = 0.4L, za = L/3 ra = 1.05rp. (5.1)

5.2.1. Wave field and power deposition

Fig. 5.8, Fig. 5.9 and Fig. 5.10 illustrate the radial profiles of electromagnetic field in

the three different regimes. Based on the nominal case, only the axial mode l = 3 is

taken into account in order to illustrate the behaviour of the three regimes clearly; for

m the range [−13, 13] was considered. Changing the plasma density, the EM fields in

different regimes are obtained.

At low plasma density n0 = 5.6×1017m−3, the parameters are in the surface wave regime,

and only TG waves propagate. These are highly oscillating near the plasma boundary

and damped out toward the center. It is clear that power deposition of TG mode

concentrates in a narrow layer near the boundary region. At n0 = 5.6 × 1018m−3, the

mode l=3 is in the DWR. Two kinds of waves are observed clearly in Fig. 5.9, the long-

wavelength helicon wave and the short-wavelength TG wave. Near the boundary, the

TG wave dominates the behaviour. Observing the profile of Er, the amplitude becomes

much higher near the boundary. It shows that the plasma flow will be influenced largely

by the induced electric field in the region near the boundary.

When the plasma density is n0 = 5.6× 1019m−3, the waves are in the ICR, and no wave

propagates. Fig. 5.10 shows this phenomenon, the wave is damped out in most regions

and the amplitude is very small. The radial distribution of power absorption for these

three cases, which are shown in Fig. 5.11, also illustrates the features of these three

regimes. The power absorption is very small in the ICR because no wave propagates.

In the double wave regime, energy deposition occurs everywhere although it reaches a

higher value near the boundary where the TG wave dominates. In Fig. 5.11(a), the

profile proves that the energy deposition of TG wave concentrates near the boundary.

Comparing the resistance of these three cases in Tab. 5.1, the resistance in the DWR case

is larger than in the other cases. That means that operating in the DWR is beneficial

for power deposition.
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Figure 5.8: Radial profiles of electromagnetic fields at θ = 0, z = L/4, n0 = 5.6 ×
1017m−3 and I0 = 15A.
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Figure 5.9: Radial profiles of electromagnetic fields at θ = 0, z = L/4, n0 = 5.6 ×
1018m−3 and I0 = 15A.

n0(m−3) 5.6× 1017 5.6× 1018 5.6× 1019

Re(Z)[Ω] 0.394 0.682 0.005

Table 5.1: Plasma resistance in different regimes
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Figure 5.10: Radial profiles of electromagnetic fields at θ = 0, z = L/4, n0 =
5.6× 1019m−3 and I0 = 15A.

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

r/rp

P
a
bs
[W

/
m

2
]

(a) n0 = 5.6× 1017m−3

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

r/rp

P
a
bs
[W

/
m

2
]

(b) n0 = 5.6× 1018m−3

0 0.2 0.4 0.6 0.8 1
10

−40

10
−30

10
−20

10
−10

10
0

10
6

r/rp

P
a
bs
[W

/
m

2
]

(c) n0 = 5.6× 1019m−3

Figure 5.11: Power absorption distribution in the radial direction for the case of Fig.
5.8, Fig. 5.9 and Fig. 5.10.

5.2.2. Magnetic field and plasma density

Here, we first introduce the influence of magnetic field and plasma density.

Fig. 5.12 shows the resistance of different modes with variation of the applied magnetic

field. The red dashed lines separate the different wave propagation regimes. It illustrates

that in the condition of ωlh � ω , the plasma resistance has numerous local peaks

because of the existence of multiple eigenmodes in a bounded plasma. Moreover, all the

local peak values are in the double wave regime (DWR). For the different modes, the

double wave regime becomes narrow if the axial mode increases. It can be explained

with the Fig. 3.2. With the l mode increasing, the value 1/k‖de goes up and the DWR

becomes narrower. In the ICR, the resistance is very small since no wave propagates in

this regime. Fig. 5.12(d) shows the results considering all the l modes. The maximum

resistance is 9.44 ohms at B0 = 450G.
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Figure 5.12: Resistance versus the magnetic field for different l modes. The red
dashed lines separate the wave propagation regimes.

The resistance variation with the plasma density is shown in Fig. 5.13. For the different

l modes, the resistance increases gradually in the SWR and reaches the local maximum

in the double wave regime. In addition, a number of local peaks lie in the DWR. Maps

considering both magnetic fields and plasma density variations are shown in Fig. 5.14.

The results prove the previous conclusion that the main local peaks of resistance are

within the double wave regimes. Furthermore, the relation between the magnetic field

and plasma density is almost linear when a family of local peaks is followed. Therefore,

higher magnetic field must be applied as the plasma becomes denser. On the other hand,

low magnetic field and plasma density should be avoided.
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Figure 5.13: Resistance versus the plasma density for different l modes. The red
dashed lines separate the wave propagation regimes.
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Figure 5.14: 2D Resistance map as functions of magnetic field and plasma density for
different l modes. Red dashed lines are the boundaries of the wave propagation regimes
for individual l modes.

5.2.3. Emission frequency and chamber length

The emission frequency ω and the chamber length L are also involved in the wave

dispersion relation and therefore influence the development of the waves propagating in

one of the three propagation regimes.

The nominal operation frequency is f0 = 13.56MHz (ω = 2πf0), which is widely used

in industry. It is necessary to check whether other frequencies are more appropriate for

a helicon source applied in a thruster.

Fig. 5.15 and Fig. 5.16 illustrate the dependence of the plasma resistance with ωce/ω

and ω, which is of the form

R ∝ ω × function (ωce/ω) (5.2)
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as can be derived from Maxwell equations and the expressions of the dielectric tensor

components[62, 66]. R/ω presents several local maxima in the DWR.
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Figure 5.15: Plasma resistance versus the ratio ωce/ω for different frequencies. The
applied magnetic field is varied proportionally to the frequency. Subplots a to d corre-
spond to different l mode.

0.1 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

ωf/f0

R
e(
Z
)[
Ω
]

 

 

ωce/ω = 25

ωce/ω = 50

ωce/ω = 100

Figure 5.16: Plasma resistance varying with the operation frequency for different
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Therefore, it concluded that taking the highest maximum there, the source design would

follow

R ∝ ω ∝ B0 (5.3)

The larger frequency is applied, the larger resistance can be obtained and requires

stronger magnetic fields.

Fig. 5.17 shows the resistance as a function of plasma density for different chamber

lengths. With the length increasing, the maximum resistance increases, requiring to

decrease the plasma density. Fig. 5.18 shows the relation between the chamber length

and plasma density for the maximum resistance of Fig. 5.17. In l = 8 case, the resistance

profile does not reach the maximum when the chamber length is L = 0.5L0. Hence, only

other four cases are shown in Fig. 5.18(c). From the results, the plasma density for

maximum resistance can be seen nearly inversely proportional to the chamber length.

This can be used to estimate the plasma density for a specific chamber length.
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Figure 5.17: Plasma resistance versus plasma density for different chamber length.
Subplots a to d correspond to different l mode.
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Figure 5.18: Relation between the chamber length and the plasma density for the
maximum resistance peak of Fig. 5.17.

5.2.4. Radial parameters

Finally, we analyze the influence of radial magnitudes on the helicon source for the

plasma-wave interaction. In Chapter 4, the antenna radius ra has been investigated to

discuss the influence on resistance. Here, the influence of ra on resistance related to

magnetic fields and plasma densities is taken into account. In addition, the radii of the

conducting container rw will also be discussed in detail. The plasma column radius is

fixed at rp = 73.5 mm and all l and m modes discussed above are taken into account.

The influence of different values ra on plasma resistance with changing magnetic fields

and plasma density are given in Fig. 5.19. As we see, for the different antenna radius

the shape of resistance profiles are not changed (the same wave modes are involved in

computation of R). Fig. 5.20 shows that the resistance decreases with the antenna radius

increasing. The relation between them is almost inversely proportional because of the

expression of the current density in Chapter 5.
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Figure 5.19: Resistance profiles of different ra varying with the magnetic field and
plasma density.
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Figure 5.20: Plasma resistance versus the antenna radius ra for different magnetic
fields.

Similarly, Fig. 5.21 shows the influence of the radius of cylindrical conducting cage. In

this case, the plasma-wave coupling is favoured when the cage is large, and the antenna

is not close to it. Fig. 5.22 gives the relation between the resistance and cage radius.

The resistance increases with the cage radius until reaching an asymptotic value for

rw > 1.5ra approximately. The reason is that for the cage too close to the antenna, it

tends to produce a short-circuit in it.
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Figure 5.21: Resistance profiles of different rw varying with the magnetic field and
plasma density.
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Figure 5.22: Plasma resistance versus the wall radius rw for different magnetic fields.

5.3. Investigation in the extended frequency regime

Up to here the parametric analysis was carried out when the operating frequency ω was

much larger than the lower hybrid frequency ωlh, so ion oscillations could be ignored.

An estimated scaling law for the optimum parameter combination of helicon source

was achieved. While the more conventional operating frequency of helicon plasmas is

between the lower hybrid frequency ωlh and the electron cyclotron frequency ωce, several

experimental and theoretical studies suggest that an optimal frequency could be close

to the lower hybrid frequency [53]. In this part, the wave propagation and the power

deposition is analysed in depth when ω is near ωlh.
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Figure 5.23: Radial profiles of electromagnetic fields at θ = 0,z = L/4 and B0 =
2000G,n0 = 5.6× 1017m−3.

5.3.1. Wave field and power deposition

Fig. 5.23-5.25 give the wave fields in different two regimes with changing the plasma

density. At low plasma density n0 = 5.6 × 1017m−3, the waves are in the inductive

regime(ICR) and no wave propagates in this regimes. The radial distribution of wave

fields in Fig. 5.23 shows that the wave in the bulk region of the plasma is small and only

has a large amplitude near the boundary. That is the difference between low magnetic

fields and high magnetic fields for ICR. The radial power absorption distribution also

gives the evidence.

Fig. 5.24 shows the wave in the ICR too, but near the boundary between ICR and

HWR at n0 = 5.6× 1018m−3. The wave behaviour is similar with n0 = 5.6× 1017m−3.

However, it has a very high value near the boundary so that it provides larger power

than low density case shown in Fig. 5.26. Continuing to increase plasma density to

n0 = 5.6 × 1019m−3. The waves go to helicon wave regime (HWR). Only helicon wave

propagates shown in Fig. 5.25 and 5.26(c).
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Figure 5.24: Radial profiles of electromagnetic fields at θ = 0,z = L/4 and B0 =
2000G,n0 = 5.6× 1018m−3.
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Figure 5.25: Radial profiles of electromagnetic fields at θ = 0,z = L/4 and B0 =
2000G,n0 = 5.6× 1019m−3.
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Figure 5.26: Power absorption distribution in the radial direction for the case of Fig.
5.23, Fig. 5.24 and Fig. 5.25.
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5.3.2. Influence of frequency, magnetic field and plasma density

Fig. 5.27 shows the plasma resistance versus the magnetic field for different l modes

and plasma densities, and the RF frequency is fixed. As we see, the resistance when

ω < ωlh has numerous local peaks in the double wave regime. Then, when the lower

hybrid frequency is near the wave frequency, the plasma resistance presents few sharp

peaks. For l = 2 the resistance is up to 15.08Ω. However, for different l modes, the peak

location changes with the magnetic field and the plasma density.

Fig. 5.28 represents the 2D colour maps of resistance varying with the magnetic field and

plasma density. The different wave propagation regimes are separated by the dashed line

and the solid lines is the separatrix of the lower hybrid frequency. Below the red solid

line, we can see numerous local peaks in the double wave regime. The linear relation

between the magnetic field and plasma density for the plasma resistance is achieved.
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Figure 5.27: Resistance profiles varying with the ratio ωlh/ω. The RF frequency is
fixed and equal to 13.56 MHz. The magnetic field is varied. Figure a shows the case
for different l modes, the plasma density is 5.6 × 1018m−3. Figure b gives the results
of different plasma density for l = 4.

Near the lower hybrid resonance, the peaks in the double wave regime become larger.

In the regimes above this line, several isolated peaks of resistance emerge and the linear

relation between the magnetic field and plasma density for the local peaks still holds.

There is a transition near the lower hybrid frequency. The linear slope for the peaks

is changed and the values of these peaks are much higher than the peaks in double

wave regimes. It is because the change of wave propagation. Near the lower hybrid

frequency, the perpendicular wavenumber of TG wave goes to infinite. The inductive

mode dominates the behaviour of wave propagation. Hence, the plasma becomes more

inductive. In Fig. 5.28(d), all l modes are taken into account. More local peaks lie in

the regime above the red line because of the contribution of all modes.
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(a) l = 2 (b) l = 4

(c) l = 8 (d) l = (1, 30)

Figure 5.28: The 2D colour map of resistance varying with both the magnetic field
and plasma density for different l mode. The red dashed line represents the different
wave propagation regimes and the red solid line is the separatrix of the lower hybrid
frequency.

Fig. 5.29(a) gives the resistance for different RF frequency as a function of magnetic

fields. All l modes are taken into account. The large peaks appear in the case of ω < ωlh.

The higher the applied frequency the higher the resistance is, provided that the magnetic

field increases proportionally.

Fig. 5.29(b) which shows the resistance for different magnetic fields as a function of

RF frequency proves this point. And near the lower hybrid resonance, there is a local

peak of the resistance. With the frequency increasing, several modes go through the

double wave regime, and several local peaks appear. Additionally, We can observe the

proportional dependence of the resistance with the antenna frequency in terms of Eq.

3.75. At a fixed ωlh/ω, the power absorption is proportional to the emission frequency.
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Figure 5.29: Plasma resistance versus magnetic field and wave frequency. Figure
a shows the resistance as a function of magnetic field with different frequency. The
nominal frequency f0 is 13.56MHz. Figure b shows the resistance as a function of
frequency with different magnetic fields.

5.3.3. Influence of collision frequency

The influence of electron collision frequency νe on the resistance is discussed in this

part. Fig. 5.30 shows the dependency of electron collision frequency and magnetic fields

on the resistance for different modes. In a very low magnetic field (ICR, which means

no wave propagates), the resistance increases but still very small when the νe becomes

larger. Because no propagation occurs in this regime, the power absorption only depends

on collisions. In resonance regimes(DWR,SWR and LHR), the resistance has a local

maximum for each magnetic field with changing the electron collision frequency, and

then the resistance goes down if νe increases. When νe reaches up to a specific value,

the resistance tends to be a constant. This illustrates that in a specific range, the

collision frequency influences the power absorption largely. Furthermore, a very large νe

is not beneficial for the power deposition.

Observing the variation of different magnetic fields in the range of ω > ωlh, the value

of νe which can make the resistance maximum become smaller. This means that only

a very small range of electron collision frequency can effect the resistance in a high

magnetic field. For a relatively large νe, the resistance becomes near constant. However,

a different behavior appears when ω < ωlh. In a wide range of νe, the resistance keeps

a very high value if the magnetic field makes it reach a local peak.
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(a) l = 2 (b) l = 4

(c) l = 8 (d) l = (1, 30)

Figure 5.30: The 2D colour map of resistance varying with both the magnetic field
and electron collision frequency for different l mode.

5.4. Summary

The plasma-wave coupling has been studied for different parameters including the ap-

plied magnetic field, plasma density, RF frequency and antenna geometry. In the study

of antenna parameters, it is found that the plasma resistance is largest when the antenna

is close to the plasma column. Second, the optimum combination of antenna length La

and antenna position za has been calculated for different types of antennas. For the

double-saddle antenna family, the behavior is identical for the whole family, with the

Nagoya III yielding the maximum resistance at some intermediate antenna axial lengths

and locations. The helical family behaves differently. Higher turn-number antennas can

yield larger resistances but require larger plasma column lengths, which eventually limits

the number of turns to 2. For the geometry of the plasma column selected in our case,

the optimal antenna is the helical with 1 or 2 turns.
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For magnetic field and plasma density, in order to obtain the maximum resistance of

helicon source, the larger the plasma density is, the larger the magnetic field should

be. The optimal combination for plasma density and magnetic field is inside the DWR

and follows an almost linear trend. Then, the maximum resistance can be reached with

higher RF frequencies.

The parametric investigation yields a fitting scaling law for the optimal parameter com-

bination. The parameter combination is always within the double wave regime and

the optimal magnetic field is proportional to the plasma density, RF frequency and

the plasma density is nearly inversely proportional to the chamber length. Hence, the

estimated scaling law can be written as

B0 ∝ ωn0L (5.4)

The relation can be used to estimate the parameter and performance when designing a

helicon source. It was found that the radius of the external conducting cage must be

large enough (more than 1.5ra) in order to avoid short-circuit effects with the antenna

RF fields.

The characteristics of helicon plasmas near the lower hybrid resonance were investigated

numerically. A large local peak of resistance is achieved near the lower hybrid resonance.

The positions of these peaks are different for each axial l mode, and depend on plasma

density. The linear relation between magnetic fields and plasma density is still valid.

The transition in the lower hybrid frequency changes the linear slope.

In addition, a higher frequency gives a higher resistance but requires larger magnetic

fields. The resistance is essentially proportional to the applied frequency. For a fixed

frequency, the magnetic field near the lower hybrid resonance provides larger resistance.

This could be beneficial for wave power deposition. The influence of electron collision

frequency on the resistance depends on the wave resonance and the resistance tends to

be a constant for large collision frequencies.





Chapter 6

The 2D Plasma-wave Interaction

Model

The 2D cylindrical plasma-wave interaction model presented in Chapter 3 is used in

this chapter to explore the 2D aspects of the plasma-wave interaction problem. The

finite-differences computational code HELWAVE2D is developed to investigate the wave

propagation, antenna coupling and power absorption in the HPT. Non-uniform plasma

density and magnetic field profiles are considered in both radial and axial directions.

The wave propagation and power absorption are studied not only in the helicon source

but also in the near region of plasma plume.

6.1. Introduction

A general understanding of wave behaviors and power deposition in cylindrically uniform

plasmas have been obtained in previous chapters using the 1D plasma-wave model.

However, the plasma density and magnetic field are not purely uniform in the HPT.

Additionally, the plasma is not confined to the plasma source, but expands downstream

forming a plasma plume, with which the wave can interact too.

The inhomogeneous properties of helicon plasmas in HPT are important and can strongly

influence the wave propagation and power absorption [71, 111]. Therefore, the 2D cylin-

drical plasma-wave model is considered to deal with the non-uniformity. In order to

investigate this issue in helicon plasmas, Takechi and Shinohara [110] used the Trans-

port Analyzing System for tokamaK/Wave analysis (TASK/WA) code which was devel-

oped by Fukuyama to study the 2D convergent and divergent magnetic fields in helicon

plasmas and compared the numerical results with experimental data. Mouzouris and

91
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Scharer [111] developed a 2D wave code MAXEB which includes not only the collisional

damping but Landau damping to investigate the power absorptions. It is found that

the collisional damping is the dominant heating mechanism for moderate pressures and

higher density ranges [111]. In comparison, the Landau damping becomes important at

low pressure and heats the electrons mainly at the surface where the resonant electrons

have velocities near the wave phase velocity [111]. Kinder and Kushner [112, 113] devel-

oped a two-dimensional Hybrid plasma Equiqment Model (HPEM) to study the power

absorption and plasma transport in helicon sources. The Electromagnetics module in

this self-consistent model can deal with the 2D applied magnetic fields. However, this

model mainly focus on the pure helicon mode and neglect the influence of TG mode [114].

They involved the influence of TG mode in a later paper [112]. The electrostatic term

was only approximated by a damping factor. Similarly, the other self-consistent model

which can deal with 2D non-uniform properties and involve the influence of TG mode

are introduced by Bose et al [115]. The results show that the propagation of waves is

enhanced in the downstream with increasing the electromagnet coil current ratio (CCR)

and this is accompanied by a increase of power absorption in the downstream. Addition-

ally, another 2D plasma-wave code using finite difference method was implemented by

Guangye et al [74]. The staggered grids of Yee’ s scheme [116] were applied to discretize

the EM field. In this approach it is easier to deal with the boundary condition and it is

naturally suited for Maxwell equations [116]. The radially localized helicon mode (RLH)

has been studied by using this code [74, 75]. The approach of staggered grids is also

applied in our code because of these advantages.

However, these codes and previous studies have been rather limited, and only treated

the cylindrical plasma inside the source. The wave propagation into the plasma plume is

not taken into account. In the HPT, this problem is significant in order to improve the

performance. In the plasma plume, the non- uniformity becomes stronger especially for

the applied magnetic field, considering the divergence in the magnetic nozzle. Therefore,

the influence of the plasma plume on the wave propagation and power deposition must

be taken into account. Based on this purpose, the 2D plasma-wave interaction code

HELWAVE2D is developed here and the investigation of plasma plume effects on wave

propagation and absorption is carried out.
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6.2. Numerical scheme of the 2D code

6.2.1. The governing equations

Based on the typical geometry structure of HPT and appropriate assumptions, the cold

plasma dielectric tensor and governed by Maxwell equations was derived in Chapter 3.

Similar to the 1D model, the normalization of the variables is implemented as follows:

r̂ =
rω

c
, Ê =

Era
µ0Iac

, ĵa =
jarac

Iaω
,

ẑ =
zω

c
, B̂ =

Bra
µ0Ia

, D̂ =
Drac

Iaω
.

Applying these relations, Maxwell equations can be written in the form of Eq. 3.47-3.52,

repeated here for convenience:

im

r̂
Êz −

∂

∂ẑ
Êθ − iB̂r = 0, (6.1)

∂

∂ẑ
Êr −

∂

∂r̂
Êz − iB̂θ = 0, (6.2)

1

r̂

∂

∂r̂

(
r̂Êθ

)
− im

r̂
Êr − iB̂z = 0, (6.3)

im

r̂
Bz −

∂

∂ẑ
B̂θ + iD̂r = ĵra, (6.4)

∂

∂ẑ
B̂r −

∂

∂r̂
B̂z + iD̂θ = ĵθa, (6.5)

1

r̂

∂

∂r̂

(
r̂B̂θ

)
− im

r̂
B̂r + iD̂z = ĵza (6.6)

Hence, a set of first-order differential equations which can be solved numerically is ob-

tained. Here, the finite difference method is applied to get the solution. The physical

domain shown in Fig. 3.4 is discretized and Yee’s scheme is applied, resulting in 4

staggered grids [74, 116].

The staggered grids are shown in Fig. 6.1. Each grid defines different components of

the electric and magnetic field, and fractional indexing of the nodes is used to refer to

each grid, according to [74]

r̂g =
r̂g+1/2 + r̂g−1/2

2
, ẑh =

ẑh+1/2 + ẑh−1/2

2
(6.7)

The physical domain is discretized from r̂ ∈ [0, r̂w] and ẑ ∈
[
0, L̂

]
. The origin point,

(0, 0), corresponds with node
(
r̂1/2, ẑ1/2

)
and the bounding point (r̂w, L̂) is

(
r̂Nr+1/2, ẑNz+1/2

)
,

where Nr and Nz are integers. Therefore, the integer indexes g ∈ [0, Nr] and h ∈ [0, Nz]

are defined in radial and axial directions, respectively. Lastly, each rectangular grid (A,

B, C and D) saves the following wavefield variables:
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(a) Full grids (b) Staggered grids

Figure 6.1: Computational grid structure

Grid A:
(
rg+1/2, zh+1/2

)
, where g ∈ [0, Nr] and h ∈ [0, Nz]. The quantities in grid A

are D̂θ, Êθ and ĵθa.

Grid B:
(
rg+1/2, zh

)
, where g ∈ [0, Nr] and h ∈ [1, Nz]. The quantities in grid B are

D̂z, Êz, B̂r and ĵza.

Grid C: (rg, zh), where g ∈ [1, Nr] and h ∈ [1, Nz]. The quantity in grid C is B̂θ.

Grid D:
(
rg, zh+1/2

)
, where g ∈ [1, Nr] and h ∈ [0, Nz]. The quantities in grid D are

D̂r, Êr, B̂z and ĵra.

The resulting finite difference equations are presented in Eqs. 6.9-6.14. In addition, it is

necessary to give the range of indexes for each equations because each of them involve

different quantities. This information is summarized in Tab. 6.1.

Equation Parameter Index range for r Index range for z

Eq. 6.9 Êθ, Êz, B̂r g ∈ [1, Nr − 1] h ∈ [1, Nz]

Eq. 6.10 Êr, Êz, B̂θ g ∈ [1, Nr] h ∈ [1, Nz]

Eq. 6.11 Êr, Êθ, B̂z g ∈ [1, Nr] h ∈ [1, Nz − 1]

Eq. 6.12 B̂θ, B̂z, D̂r, ĵr g ∈ [1, Nr] h ∈ [1, Nz − 1]

Eq. 6.13 B̂r, B̂z, D̂θ, ĵθ g ∈ [1, Nr − 1] h ∈ [1, Nz − 1]

Eq. 6.14 B̂r, B̂θ, D̂z, ĵz g ∈ [1, Nr − 1] h ∈ [1, Nz]

Table 6.1: The index range for each differential equations.

After the linear equation system for the whole grid structure has been established, it

can be written as

Ax = b (6.8)
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where A is the matrix of coefficients, x expresses the unknown EM field and b stores

the electric current densities in the antenna.

im

r̂g+1/2
Êz
(
r̂g+1/2, ẑh

)
−
Êθ
(
r̂g+1/2, ẑh+1/2

)
− Êθ

(
r̂g+1/2, ẑh−1/2

)
ẑh+1/2 − ẑh−1/2

− iB̂r
(
r̂g+1/2, ẑh

)
= 0, (6.9)

Êr
(
r̂g, ẑh+1/2

)
− Êr

(
r̂g, ẑh−1/2

)
ẑh+1/2 − ẑh−1/2

−
Êz
(
r̂g+1/2, ẑh

)
− Êz

(
r̂g−1/2, ẑh

)
r̂g+1/2 − r̂g−1/2

− iB̂θ (r̂g, ẑh) = 0, (6.10)

r̂g+1/2Êθ
(
r̂g+1/2, ẑh+1/2

)
− r̂g−1/2Êθ

(
r̂g−1/2, ẑh+1/2

)
rg
(
r̂g+1/2 − r̂g−1/2

)
− im

r̂g
Êr
(
r̂g, ẑh+1/2

)
− iB̂z

(
r̂g, ẑh+1/2

)
= 0, (6.11)

im

r̂g
B̂z
(
r̂g, ẑh+1/2

)
− B̂θ (r̂g, ẑh+1)− B̂θ (r̂g, ẑh)

ẑh+1 − ẑh
+ iD̂r

(
r̂g, ẑh+1/2

)
= ĵra

(
r̂k, ẑh+1/2

)
, (6.12)

B̂r
(
r̂g+1/2, ẑh+1

)
− B̂r

(
r̂g+1/2, ẑh

)
ẑh+1 − ẑh

−
B̂z
(
r̂g+1, ẑh+1/2

)
− B̂z

(
r̂g, ẑh+1/2

)
r̂g+1 − r̂g

+ iD̂θ

(
r̂g+1/2, ẑh+1/2

)
= ĵθa

(
r̂k+1/2, ẑh+1/2

)
, (6.13)

r̂g+1B̂θ (r̂g+1, ẑh)− r̂gB̂θ (r̂g, ẑh)

rg+1/2 (r̂g+1 − r̂g)
− im

r̂g+1/2
B̂r
(
r̂g+1/2, ẑh

)
+ iD̂z

(
r̂g+1/2, ẑh

)
= ĵza

(
r̂g+1/2, ẑh

)
(6.14)

6.2.2. Interpolation methods

Due to the way the different field quantities are defined in each grids, the component

of the displacement field D involving electric fields need an interpolation procedure to

be computed inside the plasma. The main principle of the interpolation is to satisfy the

condition∇·D = 0 [94]. The discretization error due to the interpolation procedure leads

to a virtually external charge which has to be minimized. This interpolation approach

has been introduced by Guangye [74]. However, in the case of a non-uniform, non-axial
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magnetic field, this procedure has to be adapted and must include all components of the

electric displacement field. The expression is as follows:

D̂r

(
r̂g, ẑh+1/2

)
= κ11

(
r̂g, ẑh+1/2

)
Êr
(
r̂g, ẑh+1/2

)
+

1

2r̂g
[r̂g+1/2κ12

(
r̂g+1/2, ẑh+1/2

)
Êθ
(
r̂g+1/2, ẑh+1/2

)
+ r̂g−1/2κ12

(
r̂g−1/2, ẑh+1/2

)
Êθ
(
r̂g−1/2, ẑh+1/2

)
]

+
1

4
[κ13

(
r̂g−1/2, ẑh

)
Êz
(
r̂g−1/2, ẑh

)
+ κ13

(
r̂g−1/2, ẑh+1

)
Êz
(
r̂g−1/2, ẑh+1

)
+ κ13

(
r̂g+1/2, ẑh

)
Êz
(
r̂g+1/2, ẑh

)
+ κ13

(
r̂g+1/2, ẑh+1

)
Êz
(
r̂g+1/2, ẑh+1

)
]

(6.15)

D̂θ

(
r̂g+1/2, ẑh+1/2

)
= κ22

(
r̂g+1/2, ẑh+1/2

)
Êθ
(
r̂g+1/2, ẑh+1/2

)
+

1

2
[κ21

(
r̂g, ẑh+1/2

)
Êr
(
r̂g, ẑh+1/2

)
+ κ21

(
r̂g+1, ẑh+1/2

)
Êr
(
r̂g+1, ẑh+1/2

)
]

+
1

2
[κ23

(
r̂g+1/2, ẑh

)
Êz
(
r̂g+1/2, ẑh

)
+ κ23

(
r̂g+1/2, ẑh+1

)
Êz
(
r̂g+1/2, ẑh+1

)
]

(6.16)

D̂z

(
r̂g+1/2, ẑh

)
= κ33

(
r̂g+1/2, ẑh

)
Êz
(
r̂g+1/2, ẑh

)
+

1

2
[κ32

(
r̂g+1/2, ẑh−1/2

)
Êθ
(
r̂g+1/2, ẑh−1/2

)
+ κ32

(
r̂g+1/2, ẑh+1/2

)
Êθ
(
r̂g+1/2, ẑh+1/2

)
]

+
1

4
[κ31

(
r̂g, ẑh−1/2

)
Êr
(
r̂g, ẑh−1/2

)
+ κ31

(
r̂g, ẑh+1/2

)
Êr
(
r̂g, ẑh+1/2

)
+ κ31

(
r̂g+1, ẑh−1/2

)
Êr
(
r̂g+1, ẑh−1/2

)
+ κ31

(
r̂g+1, ẑh+1/2

)
Êr
(
r̂g+1, ẑh+1/2

)
]

(6.17)

The advantage of this approach is that the error is of the order of h2/λ2, where h is the

step size and λ is the characteristic scale length of electric field [74].

6.2.3. Boundary conditions

To model the presence of the vacuum chamber walls in Fig. 3.4, the simulation domain

is enclosed by ideally conductor boundary conditions. Hence, the tangential component

of electric field is equal to zero. The boundary conditions are summarized as

Êr (r̂, 0) = Êθ (r̂, 0) = 0, (6.18)

Êr

(
r̂, L̂

)
= Êθ

(
r̂, L̂

)
= 0, (6.19)

Êθ (r̂w, ẑ) = Êz (r̂w, ẑ) = 0. (6.20)

The conditions on the magnetic field components are directly derived from the above,

noting that the normal magnetic field component to the walls is equal to zero. In

addition, axis conditions is applied at r = 0. To analyze equations, this conditions
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depend on the different value of m mode, so we have [74, 76]

Êz (0, ẑ) = [r̂Êθ] (0, ẑ) = 0, (m 6= 0) (6.21)

[r̂Êθ] (0, ẑ) = B̂θ (0, ẑ) = 0, (m = 0) . (6.22)

An important advantage of Yee’s scheme is that it can deal with the ideally conducting

boundary condition easily, placing the boundary condition at the correct sub-grid.

6.2.4. The antenna discretizations

The antenna types used in the simulations are introduced below. In the study of code

convergence and validation of next sections, the 1D plasma-wave code is applied to

validate the 2D plasma-wave code. Hence, consistent antenna currents must be chosen

for the two codes. According to the Fourier expansion of 1D and 2D model, the current

density has the relation

∑
m

j
(2)
θ (r, z,m) exp (imθ) =

∑
l

∑
m

j
(1)
θ (r, l,m) sin

(
lπ

L
z

)
exp (imθ) (6.23)

∑
m

j(2)
z (r, z,m) exp (imθ) =

∑
l

∑
m

j(1)
z (r, l,m) cos

(
lπ

L
z

)
exp (imθ) (6.24)

where the superscript 1 and 2 express the current density in the 1D and 2D model,

respectively. Selecting a given (l,m) mode, Eq. 6.23 and 6.24 can be simplified to

j
(2)
θ (z) δ (r − ra) = j

(1)
θ sin(

lπ

L
z)δ (r − ra) (6.25)

j(2)
z (z) δ (r − ra) = j(1)

z cos(
lπ

L
z)δ (r − ra) (6.26)

where δ represents the Dirac delta function. To simplify the validation of the 2D code,

and taking into account the linearity of the problem, only in one component, jθ or jz,

and only one (l,m) mode is considered at each time. All types of antenna can be seen

as the sum of these two simple antennas with multiplying coefficients. Therefore, the

expression of current density for these two antennas due to Eq. 6.25 and 6.26 can be

written as follows:

1. Azimuthal antenna:

j
(1)
θ = Ia, j(1)

z = 0 (6.27)

j
(2)
θ (z) δ (r − ra) = Ia sin(

lπ

L
z)δ (r − ra)

j(2)
z (z) δ (r − ra) = 0

(6.28)
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2. Axial antenna:

j
(1)
θ = 0, j(1)

z = Ia (6.29)

j
(2)
θ (z) δ (r − ra) = 0

j(2)
z (z) δ (r − ra) = Ia cos(

lπ

L
z)δ (r − ra)

(6.30)

For the actual 2D simulations of plasma-wave interaction, the Nagoya III antenna shown

in Fig. 4.2(a) is chosen to emit the RF wave into the plasma. The current shape function

of Nagoya III antenna has been obtained in Chapter 4. Using the Fourier transform in

the azimuthal direction in Eq. 4.49, the current density jz can be described as

jz (r, z,m) =
Ia

2πra
(1− cosmπ) δ (r − ra) g(z; z1, z2) (6.31)

where g(z; z1, z2) which has been introduced in Eq. 4.46 describes a uniform function in

the range of (z1 ≤ z ≤ z2). z1 and z2 represent the position of two ends of antenna. In

addition, the azimuthal component of current density jθ can be easily obtained due to

Eq. 4.34.

6.3. Discussion of convergence and validation

In this section, the convergence and validation of the 2D plasma-wave code are car-

ried out and the accuracy of this code will be discussed. The 1D plasma- wave code

(HELWAVE1D) which has been discussed in previous chapter is used to validate the 2D

plasma-wave code (HELWAVE2D).

The same simulation is set up for both codes, and therefore the analysis is restricted

to the type of simulations that the 1D code can tackle. Three different test cases,

which include the pure vacuum case (without plasma), the uniform plasma case (plasma

density n0 is a constant) and the non-uniform plasma case (plasma density n0 = n0(r)),

are calculated to verify the HELWAVE2D code.

A regular cylinder helicon source inside a metal chamber from a typical 50W helicon

thruster geometry and plasma properties is considered as the input data to carry out in

both 1D and 2D codes [15, 44]. The gas used here is argon and the main parameters

are summarized in Tab. 6.2
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6.3.1. Convergence

A general principle for the numerical convergence of Yee’s scheme is that the mesh size

must be smaller than half the smallest wavelength. Hence, the mesh sensitivity of the

HELWAVE2D code in different situations is investigated.

Fig. 6.2 shows the radial profile of the component of EM fields with the variation

of node numbers in the pure vacuum case. The curve convergences when the node

number (nr, nz) is larger than (100, 50). In this situation the wave field is dominated by

transverse electric (TE) and transverse magnetic (TM) modes [107]. The wavelength in

vacuum is 2πc/ω, of the order in the magnitude of meters, much larger than the mesh

size used, therefore the speed of convergence is fast.

0 0.005 0.01 0.015 0.02
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

r[m]

I
m
(E

z
)[
×
1
0
3
V
/
m
]

 

 

(nr, nz) = (50, 25)

(nr, nz) = (100, 50)

(nr, nz) = (200, 100)

(nr, nz) = (300, 150)

(a) Im(Ez)

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3
x 10

−3

r[m]

I
m
(B

r
)[
G
]

 

 

(nr, nz) = (50, 25)

(nr, nz) = (100, 50)

(nr, nz) = (200, 100)

(nr, nz) = (300, 150)

(b) Im(Br)

Figure 6.2: Convergence of wave field profiles in the pure vacuum case at z = L/4,
θ = 0 and (l,m) = (1, 1). Fig a and b are Im(Ez) and Im(Br), respectively. (nr, nz)
represents the node number in r and z direction, respectively.

The convergence in the uniform plasma case at different magnetic fields is demonstrated

in Fig. 6.3 and 6.4. At B0 = 150G, the profiles converge quickly. To the contrary, the

Parameter Value

rp Plasma radius 0.01 m

L Plasma and cage axial length 0.1 m

rw External cage radius 0.02 m

B0 Applied magnetic field 150 G

Te Plasma temperature 10 eV

n0 Plasma density 3.8× 1018 m−3

νe Electron collision frequency 8.96 MHz

fRF Frequency of the RF emission 13.56 MHz

ra Antenna loop radius 0.012 m

Ia Antenna current 1 A

Table 6.2: Summary of input data for the code validation.



Chapter 6. The 2D Plasma-wave Interaction Model 100

convergence is slow and profiles are still divergent at B0 = 600 G. This is because the

wavelength at B0 = 600 is quite small. As we previously mentioned, two general modes

named helicon modes and Trivelpiece–Gould (TG) mode propagates in the uniform

plasma [55]. The helicon mode has a larger wavelength than the TG mode. Increasing

the magnetic field, plasmas go to the surface wave regime which only TG mode can

propagate [44]. Therefore, the finer mesh grid should be taken into account in high

magnetic field case.

0 0.005 0.01 0.015 0.02
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

r[m]

R
e(
E

z
)[
V
/
m
]

 

 
(nr, nz) = (50, 25)
(nr, nz) = (100, 50)
(nr, nz) = (200, 100)
(nr, nz) = (300, 150)

(a) Re(Ez)

0 0.005 0.01 0.015 0.02
−5

−4

−3

−2

−1

0

1

2
x 10

−3

r[m]

R
e
(B

r
)[
G
]

 

 

(nr, nz) = (50, 25)

(nr, nz) = (100, 50)

(nr, nz) = (200, 100)

(nr, nz) = (300, 150)

(b) Re(Br)

Figure 6.3: Convergence of wave field profiles in the uniform plasma case at z = L/4,
θ = 0 and (l,m) = (1, 1). The magnetic field B0 is 150G. Fig a and b are Im(Ez)
and Im(Br), respectively. (nr, nz) represents the node number in r and z direction,
respectively.
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Figure 6.4: Convergence of wave field profiles in the uniform plasma case at z = L/4,
θ = 0 and (l,m) = (1, 1). The magnetic field B0 is 600G. Fig a and b are Im(Ez)
and Im(Br), respectively. (nr, nz) represents the node number in r and z direction,
respectively.
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6.3.2. Validation

After the discussion of convergence, the validation of HELWAVE2D code is considered.

The 1D radially wave code HELWAVE1D is used to benchmark the 2D code.

6.3.2.1. Comparison in the vacuum case

In this part, the comparison between HELWAVE1D code and HELWAVE2D code in

the vacuum case is carried out. The radial distribution of wave fields is compared in

Fig. 6.5. The calculated results in both codes are consistent. The fields vary sharply

at the position of antenna due to the current sheet present there. The 2D plot of the

component of EM field in both r and z direction shown in Fig. 6.6 further confirms

the consistency between the two codes. The harmonic behaviors is observed in the axial

direction.
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Figure 6.5: Comparison between HELWAVE1D and HELWAVE2D of wave field pro-
files in the pure vacuum case at z = L/3, θ = 0 and (l,m) = (2, 1). Fig a and b are
Im(Er) and Im(Br), respectively.
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(a) HELWAVE1D (b) HELWAVE2D

(c) HELWAVE1D (d) HELWAVE2D

Figure 6.6: Comparison of 2D contour of wave field in the pure vacuum case between
HELWAVE1D and HELWAVE2D code at θ = 0 and (l,m) = (2, 1).

6.3.2.2. Comparison in the uniform plasma case

Fig. 6.7 shows the validation in the uniform plasma at B0 = 150G. The real part of

Er and Br is compared between two codes. It is shown that the consistency is not

changed whether having plasmas or without plasmas. In this case, waves propagates in

the double wave regime and it lead to the helicon mode and TG mode combining with

each other.
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Figure 6.7: Comparison between HELWAVE1D and HELWAVE2D of wave field pro-
files in the uniform plasma case at z = L/3, θ = 0 and (l,m) = (2, 1). The magnetic
field B0 is 150G. Fig a and b are Re(Er) and Re(Br), respectively.

Comparing the 2D plot in Fig. 6.8, the harmonic behavior is not only in the radial direc-

tion, but also in the axial direction. Both codes agree. The reason of this phenomenon

is due to the eigenmode forming in the ideally conducting chamber.
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(a) HELWAVE1D (b) HELWAVE2D

(c) HELWAVE1D (d) HELWAVE2D

Figure 6.8: Comparison in the uniform plasma case of 2D wave fields in both r and z
direction between HELWAVE1D and HELWAVE2D code at θ = 0 and (l,m) = (2, 1).
The magnetic field B0 is 150G.

In order to confirm the consistency between two codes in more detail, the power deposi-

tion in plasmas is compared. The distribution of power absorption in the radial direction

is given in Fig. 6.9, showing great agreement. The total power absorbed by plasmas and

the plasma resistance is shown in Tab. 6.3. It further proves that the HELWAVE2D has

a good accuracy and the error is less than 1% compared to the 1D code.

Total power (W ) Resistance (Ω)

HELWAVE 1D 1.192× 10−4 2.384× 10−4

HELWAVE 2D 1.197× 10−4 2.394× 10−4

Table 6.3: Comparison of Total power and resistance.
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Figure 6.9: Comparison of the distribution of power absorption in r direction between
HELWAVE1D and HELWAVE2D code in the uniform plasma case at (l,m) = (2, 1).
The magnetic field B0 is 150G.
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Figure 6.10: The density profiles.

6.3.2.3. Comparison in the radially non-uniform plasma case

Generally, the plasma density is not uniform in the HPT. Therefore, the non-uniform

plasma case must be investigated. Due to the limitation of 1D code, only radially non-

uniform plasma density is taken into account. The radially density profile is assumed to

be given by [71]

n(r) = n0

[
1−

(
r

rp

)s]t
(6.32)

Here, (s, t) = (2, 1) and (s, t) = (2, 2) is employed to form density profiles. It is shown

in Fig. 6.10.

Similarly, the radial profile of wave fields and 2D plot is applied to validate the 2D

code. Fig. 6.11 and 6.12 are the results for (s, t) = (2, 1) and Fig. 6.13 and 6.14 for

(s, t) = (2, 2). For these two different density profiles, the results from HELWAVE2D

are well consistent with ones from HELWAVE1D. It shows that the HELWAVE2D code
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is suitable for calculating complex situations. The density profile strongly influences the

wave propagation in the r direction. The harmonic behavior is stronger for the smooth

density profile.
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Figure 6.11: Comparison between HELWAVE1D and HELWAVE2D of wave field
profiles in the non-uniform plasma case at z = L/3, θ = 0 and (s, t) = (2, 1), (l,m) =
(2, 1). The magnetic field B0 is 150G. Fig a and b are Re(Ez) and Re(Bθ), respectively.

(a) HELWAVE1D (b) HELWAVE2D

Figure 6.12: Comparison in the non-uniform plasma case of 2D wave fields in both
r and z direction between HELWAVE1D and HELWAVE2D code at (s, t) = (2, 1)
,(l,m) = (2, 1) and θ = 0. The magnetic field B0 is 150G.
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Figure 6.13: Comparison between HELWAVE1D and HELWAVE2D of wave field
profiles in the non-uniform plasma case at z = L/3, θ = 0 and (s, t) = (2, 2), (l,m) =
(2, 1). The magnetic field B0 is 150G. Fig a and b are Re(Ez) and Re(Bθ), respectively.

(a) HELWAVE1D (b) HELWAVE2D

Figure 6.14: Comparison in the non-uniform plasma case of 2D wave fields in both
r and z direction between HELWAVE1D and HELWAVE2D code at (s, t) = (2, 2)
,(l,m) = (2, 1) and θ = 0. The magnetic field B0 is 150G.

The distribution of power absorption for two different density profiles in the radial

direction is shown in Fig. 6.15. The power absorption concentrates near the boundary

and few power deposits in the central region. Therefore, it is noted that the density

profile has significant influence on the power deposition. The profile (s, t) = (2, 2)

absorbs more power than (s, t) = (2, 1). Tab. 6.4 gives the total power and plasma

resistance for these two profiles. The error between 1D and 2D code is again less than

1%.



Chapter 6. The 2D Plasma-wave Interaction Model 108

(a) (s, t) = (2, 1) (b) (s, t) = (2, 2)

Figure 6.15: Comparison of the distribution of power absorption in r direction
between HELWAVE1D and HELWAVE2D code in the non-uniform plasma case for
(l,m) = (2, 1). The magnetic field B0 is 150G. Fig a is (s, t) = (2, 1) and Fig b is
(s, t) = (2, 2).

Code type
(s, t) = (2, 1) (s, t) = (2, 2)

Total power(W) Resistance(Ω) Total power(W) Resistance(Ω)

HEW 1D 3.709× 10−3 7.418× 10−3 0.0204 0.0408

HEW 2D 3.712× 10−3 7.424× 10−3 0.0205 0.0410

Table 6.4: Comparison of Total power and resistance.

6.4. Wave propagation in the presence of a plasma plume

In order to investigate the influence of the plasma plume on the wave propagation

and power absorption and the influence of plasma and magnetic field non-uniformity, a

typical HPT structure in the vacuum chamber is presented here [44]. Fig. 6.16 shows

the schematic structure of a HPT in the vacuum chamber.

Figure 6.16: The structure of simulation
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The cylindrical plasma source of a HPT of length Ls = 0.05 m and radius rp = 0.01 m is

located in the middle of chamber. The plasma plume expands to the vacuum from the

exit. To maintain the computational complexity of the problem at an manageable level,

only the near region of the plasma plume is taken into account. The length of the plume

part is set to Lp = 0.05 m. It is assumed that the plasma plume contacts the conducting

wall directly in the downstream region. Because the chamber with length L = 0.15 m

and radius rw = 0.02 m is treated as a perfect conductor, the wave reflection due to the

conducting wall influences the wave propagation in the plasma plume. A small vacuum

space with length Lv = 0.05 m is left on the backside of the plasma source. The Nagoya

III antenna with length La = 0.025 m is located in the vacuum space at ra = 0.012 m

and the thickness of antenna wire is assumed to be 0.002 m.

(a) Plasma density (b) Magnetic field

Figure 6.17: The 2D distribution of non-dimensional plasma density and magnetic
field. The black box represents the RF antenna

Furthermore, the antenna frequency is set to be 13.56 MHz which is commonly used

in helicon research. A normalized antenna current of Ia = 1 A is applied. For a short

helicon source, we assume that the plasma density is radially non-uniform but axially

uniform in the source part and fully inhomogeneous in the plume part. In addition,

a Gaussian profile of plasma density is used. The magnetic field in the source part is

assumed to be purely axial. In the plasma plume, a divergent magnetic field is taken

into account and calculated in terms of a single-loop magnetic coil. The plasma density

and magnetic field profiles in the plasma plume are obtained from the 2D magnetic

nozzle code DIMAGNO [138]. The contours of the non- dimensional plasma density

and magnetic field are shown in Fig. 6.17. An enhanced effective collision frequency is

used to enhance the convergence of the code with a limited amount of grid nodes. After

observing convergence problems at lower frequencies, an effective electron frequency of

0.1ω is selected as the nominal value for the whole region.
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In the following, the simulation results and discussions are presented. The influence of

the azimuthal modes m, the magnitude of magnetic field, the effective collision frequency

and the influence of plasma plume are investigated in detail.

6.4.1. The azimuthal modes

The antenna impedance versus m for different magnitudes of magnetic fields is given

in Fig. 6.18. The plasma density applied here is n0 = 3.8 × 108m−3. It is found that

the resistance and reactance decrease rapidly with increasing |m| for each magnetic field

value. Moreover, the resistance of the m = +1 mode is much larger than for other

modes. At B0 = 150 G, the resistance of m = +1 is up to 98% of all modes. Hence, it

shows that m = +1 mode is the main mode excited by the antenna and dominates the

power absorption. This conclusion has been obtained in the regular helicon source case

[75, 89]. The consistency implies that the wave propagation in the plasma plume still

satisfies the main assumptions of cylindrical plasmas. Additionally, in contrast with the

resistance, the symmetric profiles are obtained for the reactance with different m modes.

The reactance is less affected by the sign of m.
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Figure 6.18: The impedance varying with m modes for different magnitudes of mag-
netic fields. The centered plasma density applied here is n0 = 3.8 × 108 m−3. Fig. a
and b represent the resistance and reactance, respectively.

The 2D contour plots of power density for different azimuthal modes at B0 = 150

G are shown in Fig. 6.19. Observe that the radial and axial scales in the plots are

different. It is concluded that the power absorption of negative modes is very small

and concentrates in the region near the antenna. For the positive m modes, the quasi-

periodically local peaks are observed in the bulk of the plasma along the axial direction.

The similar phenomenon has been observed in the cylindrical helicon source case [74].

To the contrary, the local peaks of power absorption in the plasma plume tend to follow
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the flow of plume along the magnetic lines. According to the cylindrical helicon wave

theory, the axial eigenmodes due to the conducting wall of the chamber are the reason

to explain the periodically local peaks [73, 74]. It is also confirmed that the positive

m = +1 mode dominates the power absorption and is strongly coupled to plasmas. This

conclusion is consistent with experimental measurements [90, 97] and numerical results

[70, 89] for the helicon source.

(a) m = −3 (b) m = 3

(c) m = −1 (d) m = 1

Figure 6.19: The 2D distribution of power absorption for different m modes when
B0 = 150 G. The centered plasma density apllied here is n0 = 3.8 × 108 m−3. The
black box represents the RF antenna.

In summary, the m = +1 mode is the main mode excited by the antenna and makes the

main contribution to the power absorption. Therefore, the other azimuthal modes can

be neglected in simulations, and in the following discussion only the m = +1 mode is

taken into account.
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(a) Er (B0 = 75 G) (b) Br (B0 = 75 G)

(c) Er (B0 = 150 G) (d) Br (B0 = 150 G)

Figure 6.20: The 2D contour of electromagnetic field for B0 = 75 G and B0 = 150
G: a, c and b, d present the real part of Er and the real part of Br, respectively.
The applied central plasma density is n0 = 3.8 × 108 m−3 and the azimuthal mode is
m = +1.

6.4.2. The magnitude of the magnetic field

The background magnetic field is one of most important parameters to influence the

wave propagation and the performance of HPT. The effects of magnitude of B0 for

cylindrically homogeneous plasmas has been studied in Chapter 5. It is necessary to

investigate the characteristics of wave propagation when the non-uniformity and plasma

plume are taken into account. In our simulation case, the magnetic field in the source

part is purely axial but non-uniform in the radial direction. In the plume part, B0 is a

function of (r, z) and diverges downstream.

Fig. 6.20 and 6.21 shows the 2D plots of wave fields for different magnetic fields. It

is found that the wave propagation tends to follow the magnetic lines in terms of the

divergence of B0 in the downstream. This relation has been explained theoretically in

Chapter 3. From the Er fields in Fig. 6.20 and 6.20, the TG mode which has a short

wavelength dominates the region near the boundary between plasmas and vacuum. The
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(a) Er (B0 = 300 G) (b) Br (B0 = 300 G)

(c) Er (B0 = 600 G) (d) Br (B0 = 600 G)

Figure 6.21: The 2D contour of electromagnetic field for different magnetic field: a
and c are the real part of Er, b and d are the real part of Br. The applied central
plasma density is n0 = 3.8× 108 m−3 and the azimuthal mode is m = +1.

long wavelength helicon mode mainly propagates in the bulk of the plasma. In addition,

the local peaks in the axial direction are visible in the Br field. With increasing the

magnetic field, less and wider local peaks are obtained. At B0 = 75 G, four local peaks

are observed and only two can be seen at B0 = 600 G. This phenomenon is related to

the parallel wavenumber k‖ of the eigenmodes. According to the dispersion relation of

axially uniform plasmas, k2
‖ is inversely proportional to the ratio ωce/ω [73]. Therefore,

the larger magnetic field leads to a smaller parallel wavenumber and longer parallel

wavelength is obtained.

The corresponding power density of Fig. 6.20 and 6.21 are given in Fig. 6.22. The quasi-

periodically local peaks related to the k‖ are shown clearly in figures. The ‘hot’ regions

which have a high value of power density is consistent with the results we obtained in

Fig. 6.20 and 6.21. The power absorption in this case is mainly concentrated in the bulk

region of the plasma due to the collisional damping of electrons. It is suggested that the

TG mode makes small contribution in this case. From the simulated cases, B0 = 150 G
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provides the maximum power deposition.

(a) B0 = 75G (b) B0 = 150G

(c) B0 = 300G (d) B0 = 600G

Figure 6.22: The distribution of power density for different magnetic field. The
black box represents the RF antenna. The applied central plasma density is n0 =
3.8× 108 m−3 and the azimuthal mode is m = +1.

Tab. 6.5 gives the comparison of plasma resistance in different magnitudes of magnetic

fields and the contribution of helicon source and plasma plume are presented. It is

shown that the power absorption first increase and then decrease with the variation of

magnetic fields and reaches the maximum at B0 = 150 G. The contribution of helicon

source and plasma plume are comparable though the magnitude of power density in the

plasma plume is lower than the helicon source due to the reduction of plasma density and

magnetic field. This is because the plume part has a larger volume than helicon source.

It is concluded that the wave propagation and power deposition in the near region of

plasma plume can not be neglected, and indeed is comparable to the absorption in

the source. This observation has strong implications in the power balance (and in the

efficiency) of HPT devices.
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Magnetic field B0

Plasma resistance Re(Z)

Source Plume Total

B0 = 75 G 0.0054 (41%) 0.0078 (59%) 0.0132

B0 = 150 G 0.016 (36%) 0.029 (64%) 0.045

B0 = 300 G 0.0144 (49%) 0.0148 (51%) 0.0292

B0 = 600 G 0.0009 (50%) 0.0009 (50%) 0.0018

Table 6.5: Comparison of plasma resistance for different magnetic fields. The resis-
tance contributed by the helicon source and plasma plume is presented respectively.

6.4.3. Influence of the collisional frequency

In this section, the effect of effective collision frequency is discussed. The variation of

the antenna impedance with the collision frequency for different magnetic fields is shown

in Fig. 6.23. It is concluded that the effective collision frequency mainly changes the

antenna resistance which highly depends on the power absorption of plasmas and does

not affect strongly the antenna reactance. For power absorption it has an optimal value

which can provide high resistance. For different magnetic fields, the optimal value of

νe is varied. The larger the applied magnetic field, the higher νe is required to obtain

the maximum. However, comparing the value of resistance for different magnetic fields,

the influence of B0 dominates the power absorption when a fixed plasma density profile

is taken into account. At B0 = 150 G, the maximum antenna resistance R = 0.072 is

obtained when νe/ω = 0.02.

0.01 0.05 0.1 0.5 1

0

0.02

0.04

0.06

0.08
B
0
=150 [G]

B
0
=300 [G]

B
0
=600 [G]

(a) Resistance

0.01 0.05 0.1 0.5 1
1.8

2

2.2

2.4
B
0
=150 [G]

B
0
=300 [G]

B
0
=600 [G]

(b) Reactance

Figure 6.23: The impedance varying with effective collision frequency for different
magnitudes of magnetic fields. The centered plasma density apllied here is n0 = 3.8×
108 m−3 and the azimuthal mode is m = +1. Fig. a and b represent the resistance and
reactance, respectively.
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The 2D plots of power density for different effective collision frequency at B0 = 150 G

are shown in Fig. 6.24. The power is mainly absorbed in the bulk region of plasmas

due to the collisional damping of electrons. Several periodically local ‘hot’ regions are

presented. At a lower νe, the higher magnitude of power density in ‘hot’ region is

obtained. The ‘hot’ regions in downstream tend to become cooler when a larger νe is

applied. This is consistent with the results of the trends of plasma resistance in Fig.

6.23. The higher collision frequency leads to less power deposition. It can be concluded

that the power deposition cannot be improved by enhancing effective collision frequency

when it is beyond the optimal value.

(a) νe/ω = 0.05 (b) νe/ω = 0.1

(c) νe/ω = 0.5 (d) νe/ω = 1

Figure 6.24: The distribution of power density for different collision frequency at
B0 = 150 G. The black box represents the RF antenna. The centered plasma density
apllied here is n0 = 3.8× 108 m−3 and the azimuthal mode is m = +1.

6.4.4. Comparison with no plume case

Due to previous results, it is suggested that the wave propagation in the plasma plume

can be explained by the cylindrical helicon wave theory. It is necessary to study the

source case to compare with the source-plume case in order to investigate the influence
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Figure 6.25: The source structure of simulation

of plasma plume on the wave propagation. The schematic structure of simulation is

shown in Fig. 6.25. The plasma source is expanded to the downstream with the same

length as the plasma plume. Therefore, the same plasma density and magnetic field

shown in Fig. 6.26 are applied in the whole cylindrical plasma column.

(a) Plasma density (b) Magnetic field

Figure 6.26: The 2D distribution of non-dimensional plasma density and magnetic
field in the source case. The black box represents the RF antenna.

The comparison of wave fields between the source case and plume case at B0 = 150 G and

B0 = 600 G are shown in Fig. 6.27 and 6.28, respectively. At B0 = 150 G, the harmonic

waves in the axial direction are visible. The periodically local peaks are clearly observed

in the longitudinal axis in both case. It can be explained by the dispersion relation

of helicon waves in a axially uniform plasmas [73, 74]. The short wavelength wave

(TG mode) is mainly damped in a narrow layer near the boundary between plasmas

and vacuum. Due to the divergence of magnetic fields in the source-plume case, the

wave propagates along the magnetic lines and the strength of fields tends to become

weaker than the source case in the bulk region in terms of the decrease of n0 and B0

in the plasma plume. For B0 = 600 G, the wave propagation is still consistent in both
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cases. However, the TG mode dominates the wave propagation. The highly oscillations

are observed near the boundary and hardly propagates inside the bulk of plasmas. In

addition, the influence of wave reflection due to the conduction wall become small in the

source-plume case because of the divergence of magnetic fields.

(a) Source case (Er) (b) Source-Plume case (Er)

(c) Source case (Br) (d) Source-Plume case (Br)

Figure 6.27: The 2D contour of electromagnetic field for the source case and plume
case at B0 = 150 G. Fig. a, b and c, d are the comparison of Er and Br, respectively.
The applied central plasma density is n0 = 3.8 × 108 m−3 and the azimuthal mode is
m = +1.

The comparison of power absorption is shown in Fig. 6.29. The periodically local

‘hot’ regions inside plasmas due to the eigenmode of metal chamber are visible. With

the increment of B0, the distance between two local peaks are expanded due to the

inversely proportional relation of k2
‖ and ωce/ω. It is shown that the phenomenon in the

source-plume case is consistent with the regular source case. The theory and principle

applied in cylindrical helicon sources still can be applicable in the source-plume case. In

addition, the decrease of plasma density and magnetic field in the plasma plume take

responsibility for the reduction of power absorption. Tab. 6.6 describing the antenna

impedance of Fig. 6.29 illustrates this phenomenon.
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(a) Source case (Er) (b) Source-Plume case (Er)

(c) Source case (Br) (d) Source-Plume case (Br)

Figure 6.28: The 2D contour of electromagnetic field for the source case and plume
case at B0 = 150 G. Fig. a, b and c, d are the comparison of Er and Br, respectively.
The applied central plasma density is n0 = 3.8 × 108 m−3 and the azimuthal mode is
m = +1.
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(a) Source case (B0 = 150G) (b) Source-Plume case (B0 = 150G)

(c) Source case (B0 = 600G) (d) Source-Plume case (B0 = 600G)

Figure 6.29: The distribution of power absorption comparing between source case
and plume case for different magnetic fields. The applied central plasma density is
n0 = 3.8× 108 m−3 and the azimuthal mode is m = +1.

Magnetic field B0

Source case Source-Plume case

Re(Z) Im(Z) Re(Z) Im(Z)

B0 = 150 G 0.052 2.12 0.045 2.11

B0 = 600 G 0.0018 2.13 0.0018 2.12

Table 6.6: The comparison of antenna impedance for different magnetic fields in
both source case and source-Plume case. The resistance and reactance are presented
respectively.

6.5. Summary

The 2D plasma-wave interaction model has been described and the corresponding 2D

calculation code HELWAVE2D based on the finite difference method has been developed

to investigate the influence of the inhomogeneity and the plasma plume on the wave
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propagation and power deposition. The staggered grid structure are applied in the code

to discretize the EM fields and the ideally conducting boundary condition in the cage

wall are considered to close the set of linear equation system.

In order to validate the 2D code, the convergence and the comparison with 1D code which

has been previously proved are carried out. It has been concluded that the characteristics

of convergence depends on the wavelength in plasmas. The general law is that the cell

size which is used in the simulation must be smaller than the local wavelength so that it

can capture all the information of waves. In addition, the comparison between 1D and

2D code has been implemented in three general situations including the pure vacuum

case, the uniform density case and the radially non-uniform density case. It is confirmed

that the 2D code has a good consistency with 1D code and can be applied in different

parametric situations.

Then, the 2D simulation of plasma-wave interaction including the source and plume

region are implemented. It is proved that the m = +1 mode is mainly excited by the

antenna and dominates the power absorption. The periodically local peaks of wave fields

and power density in the axial direction due to the eigenmode of conducting wall are

observed. With increasing the magnetic field, the distance of local peaks become larger.

It is because the inversely proportional relation between the k2
‖ and ωce/ω according to

the dispersion relation in axially uniform helicon plasmas. In addition, the resistance of

the source part and the plume part are comparable. It means that the power absorption

does not mainly concentrate in the plasma source and it is not very beneficial for the

propulsion. To investigate the effective collision frequency, it is concluded that it has an

optimal collision frequency that provide the maximum power absorption. For different

magnetic fields, the larger magnetic field is applied, the larger collision frequency is

needed to obtain the maximum. The comparisons between the regular source case and

source-plume case are carried out in order to evaluate the influence of the plasma plume.

It is shown that the cylindrical helicon plasma theory still satisfies in the plasma plume.

The waves tend to propagate along the magnetic lines due to the divergence of the

magnetic field in the plasma plume. The reduction of magnitude of the plasma density

and magnetic fields take the responsibility to the decrease of power deposition in the

plume part.
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Conclusions

This Thesis has performed an extensive literature review of the state of the art in wave-

plasma modelling and the present understanding of the physical mechanisms involved

in it, and it has then developed and validated a plasma-wave interaction code and used

it to characterize the power deposition and the impedance of a helicon plasma thruster.

In order to improve the performance of helicon plasma thrusters and guide their design,

it is necessary to understand the physical process of plasma-wave interaction which plays

a significant role in HPT. To this end, the literature review in the first part of the thesis

helped define the starting point for the modelling contribution of this Thesis, taking into

account the existing progress in the theoretical, experimental and numerical research of

helicon plasma sources and thrusters.

A general wave model in cold magnetized plasmas was then described to give a general

frame to analyse the Helicon and companion waves, discussing the different parametric

regimes for wave propagation and characterization. Based on this discussion, the two-

dimensional (2D) wave model and one-dimensional (1D) wave model suitable for prac-

tical HPT configurations were derived with a clear set of assumptions and boundary

conditions.

Based on the 0D dispersion relation and 1D wave model, an analysis was conducted on

the influence following parameters: (a) magnetic field strength, (b) excitation frequency,

(c) plasma column length and density (and ion type), (d) shape of the exciting antenna,

(e) axial location and length of the antenna, and (f) relative radius of the antenna and

the relative radius of the external conducting cage.

Two families of antenna shapes, the double-saddle family and the helical family were

explored. The Nagoya III antenna is the common case connecting the two families. For

the double saddle family, plasma resistance increases with the angle of the antenna arcs.

123
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With the goal of maximizing the resistance of the equivalent circuit, the Nagoya III

antenna is the best choice within that family. A central location and an antenna length

of about half of the plasma column yield the highest values of plasma resistance. The

behaviour of the helical family is more complex. Starting from the Nagoya III antenna,

plasma resistance tends to increase with the number of turns of the helical segments but

it requires using longer antenna lengths. The analysis points out that optimal helical

antennas would have between 1 and 2 turns and would have axial lengths larger than

one-half of the plasma column.

Plasma resistance is highest when the antenna radius is close to the plasma radius.

Also, the resistance increases when the radius of the external cage increases, revealing

an important role of the size of the resonance cavity, reaching an asymptotic behaviour

for cage radius above 1.5 times the antenna radius.

The combined influence of the antenna frequency, the plasma column length, the mag-

netic field strength, and the plasma density depends on two dimensionless parameters.

The first one is the ratio between the RF ω and the electron-cyclotron frequency (the

latter being proportional to the magnetic field). The second parameter involves the

chamber length (that is the maximum axial wavelength that can be accommodated in

the plasma column) and the plasma density. These two dimensionless parameters define

three distinct parametric regions in the CMA diagram: the inductively-coupled regime,

for weak enough magnetic fields; the double wave regime, when both the helicon and the

TG modes propagate through the plasma column; and the single wave regime, for large

magnetic fields or small plasma densities, when only the TG mode propagates next to

the plasma edge.

Plasma resistance is found to be highest within the double-wave regime (which would

correspond to the nominal helicon or ‘blue mode’ in the literature). Furthermore, ap-

proximate scaling laws among the above parameters have been defined for achieving

optimal resistance. These laws establish a proportional dependence between optimal

plasma resistance and any of the parameters: antenna frequency, magnetic field, and

density. Since plasma resistance presents multiple peaks when these parameters are

varied, an important design requirement is to set the nominal condition in a parametric

interval where resistance peaks are not very narrow. This applies mainly to plasma

density, which is the less controllable parameter.

A change of wave regime takes place when the antenna frequency equals the lower

hybrid frequency, which introduces the influence of the propellant type through the

ion-to-electron mass ratio. High peaks of resistance are found when the RF is below

the lower hybrid frequency, but these peaks are quite narrow and the wave does not

propagate deep inside the plasma column. Hence, and although more research would be
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required for this lesser-known regime, keeping the RF above the lower hybrid frequency

is deemed advisable.

The successful cross-validation between 1D and 2D codes provides confidence in the

correctness of both integrators. The 2D wave model with its Yee’s finite difference scheme

has enabled investigating the influence of having inhomogeneous plasma properties in

the source, and of the presence of an expanding plasma plume outside of it.

Regarding the former, it has been observed that the radial profile of the plasma density

has a profound effect on wave propagation and absorption, potentially blocking the

propagation of the wave into the central part of the plasma column. Thus, a large

dependency on power absorption and resistance depends on this otherwise secondary

factor.

Regarding the latter, the comparison between the source-only case and source- and-

plume case showed that the cylindrical helicon plasma theory is still satisfied in the

plasma plume. However, the waves propagate along the magnetic lines due to the diver-

gence of the magnetic field into the plasma plume. This is enabled by the comparable

drop of magnetic field strength and plasma density in the region of the plume. Notice-

able absorption and takes place in the plume region for this reason, which is undesirable

for propulsion, where power should be absorbed upstream to maximize the efficiency of

the device. Also, this hints at the possibility of a fraction of the wave power escaping

downstream and out of the plasma, with the consequent additional efficiency loss. A

clever magnetic field design that creates a constriction at the magnetic throat to better

control the drop of plasma density could potentially improve this situation, but that

analysis is left for future work. It has been shown that the m = 1 mode is main one

excited by the antenna and dominates the power absorption. Periodic local peaks of

electric field and power absorption in the axial direction due to the dominant eigenmode

in the resonant cavity are observed. With increasing the magnetic field, the distance

between local peaks becomes larger. This is due to the inversely proportional relation

between the k2
‖ and ωce/ω according to the dispersion relation in axially uniform helicon

plasmas. Regarding the effect of the collision frequency, it is concluded that it has an

optimal collision frequency that provide the maximum power absorption. Also, it is

observed that the larger the magnetic field, the larger the collision frequency is needed

to obtain the maximum.

Lastly, the following lines of future work have been identified:

1. Investigate the propagation of the plasma wave in an open space with the im-

plementation of absorbing boundary conditions. While the case covered in the
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present Thesis is relevant for the operation of a helicon plasma source in the vac-

uum tank of a laboratory, the operation in space will introduce the possibility of

losing a fraction of the wave as radiation into empty space. This improvement in

the code capabilities will allow the quantification of this fraction, and the study of

countermeasures to minimize it (e.g. a Faraday cage around the thruster).

2. Improve the implementation of the 2D code with a compiled programming lan-

guage for speed and memory efficiency, like Fortran.

3. Couple the plasma-wave model with a plasma-dynamic code to iteratively find

the self-consistent solution of the plasma density, electron temperature, and power

absorption. This effort is planned for future implementation, with the combination

of the 2D wave code with other existing codes in the EP2 research group (Hyphen

code).

4. Extend the analysis to other frequency domains, such as the neighborhood of

the electron-cyclotron resonance (ECR). This is relevant for the analysis of other

propulsive devices that are recently being developed, in particular for ECR thrusters

which has a similar geometrical configuration to the helicon plasma thruster but

operates in the several GHz range with magnetic fields in the order of 900 G.

5. Explore the importance of electron thermal effects and non-linear effects on the

propagation and absorption of the wave. This line of development will go beyond

the linear, cold-plasma-tensor model employed in the present analysis. However,

while non-linear absorption mechanisms are expected to be important in other de-

vices like the ECR thruster, helicon wave absorption is deemed be well-represented

by linear models.
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